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Abstract

We propose a definition of compact quantum groupoids in the setting of C*-algebras,
associate to such a quantum groupoid a regular C*-pseudo-multiplicative unitary, and use
this unitary to construct a dual Hopf C*-bimodule and to pass to a measurable quantum
groupoid in the sense of Enock and Lesieur. Moreover, we discuss examples related to
compact and to étale groupoids and study principal compact C*-quantum groupoids.
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1 Introduction

Overview In the setting of von Neumann algebras, measurable quantum groupoids were
studied by Lesieur and Enock [6l [7, [ @], building Vallin’s notions of Hopf-von Neu-
mann bimodules and pseudo-multiplicative unitaries |20} 2I] and Haagerup’s operator-valued
weights.

In this article, we propose a definition of compact quantum groupoids in the setting of
C*-algebras, building on the notions of Hopf-C*-bimodules and C*-pseudo-multiplicative
unitaries introduced in [I7, [I6]. To each compact C*-quantum groupoid, we associate a
regular C*-pseudo-multiplicative unitary, a von-Neumann algebraic completion, and a dual
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Hopf C*-bimodule. Moreover, we extend this C*-pseudo-multiplicative unitary to a weak
C*-pseudo-Kac system; hence, the results of [16] can be applied to the study of coactions
of compact C*-quantum groupoids on C*-algebras.

To illustrate the general theory, we discuss several examples of compact C*-quantum
groupoids: the C*-algebra of continuous functions on a compact groupoid, the reduced
C*-algebra of an étale groupoid with compact base, and principal compact C*-quantum
groupoids.

Let us mention that many constructions and results seem to extend to a more general
notion of quantum C*-groupoids where the Haar weights are still assumed to be bounded
but where the C*-algebra of units need no longer be unital and where the KMS-state on
this C*-algebra is replaced by a proper KMS-weight.

Plan Let us outline the contents and organization of this article in some more detail.

In the first part of this article (Sections 2,3,4), we introduce the definition of a compact
C*-quantum groupoid. Recall that a measured compact groupoid consists of a base space
G°, a total space G, range and source maps r,s: G — G, a multiplication G,x,.G —
G, a left and a right Haar system, and a quasi-invariant measure on G°. Roughly, the
corresponding ingredients of a compact C*-quantum groupoid are unital C*-algebras B
and A, representations r,s: B°? — A, a comultiplication A: A — A # A, a left and a
right Haar weight ¢,9: A — B©P) and a KMS-state on B, subject to several axioms.
These ingredients are introduced in several steps. In Section 2, we focus on the tuple
(B,A,r,¢,5,7), which can be considered as a compact C*-quantum graph, and review
some related GNS-constructions. In Section 3, we recall from [I7] [I6] the definition of
the fiber product A # A and of the underlying relative tensor product of Hilbert modules
over C*-algebras. Finally, in Section 4, we give the definition of a compact C*-quantum
groupoid and obtain first properties like uniqueness of the Haar weights and the existence
of an invariant state on the basis.

In the second part of this article (Sections 5,6,7), we associate to every compact C*-
quantum groupoid a fundamental unitary, a von-Neumann-algebraic completion, and a dual
Hopf C*-bimodule. This fundamental unitary satisfies a pentagon equation, generalizes
the multiplicative unitaries of Baaj and Skandalis [I], and can be considered as a pseudo-
multiplicative unitary in the sense of Vallin [2I] equipped with additional data. The unitary
and the completion will be constructed in Section 5. In Section 6, we study a particular
feature of this unitary — the existence of fixed or cofixed elements — and show that for a
general C*-pseudo-multiplicative unitary, such (co)fixed elements yield invariant conditional
expectations and bounded counits on the associated Hopf C*-bimodules. In Section 7, we
return to compact C*-quantum groupoids and discuss their duals.

The last part of this article (Sections 8,9) is devoted to examples of compact C*-quantum
groupoids which are obtained from compact and from étale groupoids one side and from
center-valued traces on C*-algebras on the other side. For these examples, we give a detailed
description of the ingredients, the associated fundamental unitaries, and the dual objects.

Preliminaries Let us fix some general notation and concepts used in this article.

Given a subset Y of a normed space X, we denote by [Y] € X the closed linear span
of Y. Given a C*-algebra A and a C*-subalgebra B € M(A), we denote by A n B’ the
relative commutant {a € A | ab = ba for all b € B}. Given a Hilbert space H and a subset
X € L(H), we denote by X’ the commutant of X. All sesquilinear maps like inner products
of Hilbert spaces are assumed to be conjugate-linear in the first component and linear in
the second one.

We shall make extensive use of Hilbert C*-modules. A standard reference is [8].

Let A and B be C*-algebras. Given Hilbert C*-modules E and F over B, we denote
the space of all adjointable operators E — F by Lg(E, F). Let E and F be C*-modules
over A and B, respectively, and let m: A — Lp(F) be a #-homomorphism. Then one can



form the internal tensor product E ®, F, which is a Hilbert C*-module over B [8, Chapter
4]. This Hilbert C*-module is the closed linear span of elements n ®4 &, where n € E and
€ € F are arbitrary, and (1 ®x £]if @ € = (E|m((nln)E and (@ )b = 1 @x &b for all
n,n € B, £,¢ € F, and b € B. We denote the internal tensor product by “S”; thus, for
example, £ ©, F = E ®, F. If the representation m or both m and A are understood, we
write “©4” or “S”, respectively, instead of ”S,”.

Given A, B, E, F and 7 as above, we define a flipped internal tensor product FrQF as
follows. We equip the algebraic tensor product FOE with the structure maps (€On|¢’'On’) :=
Em({nln"H)ED, (€O )b = €b O n, and by factoring out the null-space of the semi-norm
¢ = |{IEYY? and taking completion, we obtain a Hilbert C*-B-module F.©FE. This
is the closed linear span of elements £.9n, where n € E and £ € F are arbitrary, and
&ronl€=on’y = Elr((nln'))E") and (§x€m)b = Ebron for all n,n' € E, §,§' € F, and be B.
As above, we write “4©” or simply “©” instead of “;©” if the representation m or both
7 and A are understood, respectively. Evidently, the usual and the flipped internal tensor
product are related by a unitary map ¥: FS E S EoF, neE— Q.

2 Compact C*-quantum graphs

The first basic ingredient in the definition of a compact C*-quantum groupoids are compact
C*-quantum graphs. Roughly, such a compact C*-quantum graph consists of a C*-algebra
B (of units) with a faithful KMS-state, a C*-algebra A (of arrows), and two compatible
module structures consisting of representations B, B°?’ — A and conditional expectations
A — B,BP), Thinking of (the underlying graph of) a groupoid, the representations cor-
respond to the range and the source map, and the conditional expectations to the left and
the right Haar weight.

Throughout the following sections, we will use several GNS- and Rieffel-constructions
for compact C*-quantum graphs. We first recall the GNS-construction for KMS-states and
present the Rieffel-construction for a single module structure, before we turn to compact
C*-quantum graphs. To prepare for the definition of the unitary antipode of a compact
C*-quantum groupoid, we finally discuss coinvolutions on compact C*-quantum graphs.

KMS-states on C*-algebras and associated GNS-constructions We shall use
the theory of KMS-states on C*-algebras, see [3, §5], [12} §8.12], and adopt the following
conventions. Let p be a faithful KMS-state on a C*-algebra B. We denote by o* the
modular automorphism group, by H, the GNS-space, by A,: B — H, the GNS-map, by
¢u = Au(1B) the cyclic vector, and by J,,: H, — H, the modular conjugation associated to
. We shall frequently use the formula

JuDyu(b) = Aplof)y (b)*) forallbe Dom(a7),). (1)

We omit explicit mentioning of the GNS-representation w,: B — L(H,) and identify B
with 7, (B); thus, bA,(z) = 7 (b)Au(z) = A (bz) = bz, for all b,z € B.

We denote by B°? the opposite C*-algebra of B, which coincides with B as a Banach
space with involution but has the reversed multiplication, and by u°?: B°? — C the opposite
state of p, given by by p°?(b°?) := p(b) for all b € B. Using formula (), one easily
verifies that p°? is a KMS-state, that the modular automorphism group o*”" is given by
Jfop (b°P) = o, (b)°® for all b € B, t € R, and that one can always choose the GNS-space
and GNS-map for u°? such that Hyor = H, and Ao (b°P) = J, A, (b*) for all b€ B. Then
Cuor = Cuy Jpor = Jy, wpor (b) = Jumu(b)*J, for all be B, and

Apuor (b%7) = Ay (Uii/g (©), b"Au(z) = Ap(zo”

#.2(0)) for all b€ Dom(c", ), z € B.



Module structures and associated Rieffel constructions We shall use the fol-
lowing kind of module structures on C*-algebras relative to KMS-states:

Definition 2.1. Let pu be faithful KMS-state on a unital C*-algebra B. A p-module struc-
ture on a unital C*-algebra A is pair (v, ) consisting of a unital embedding r: B — A and
a completely positive map ¢: A — B such that r o ¢: A — r(B) is a unital conditional
expectation, v := po ¢ is a KMS-state, and of (r(B)) € r(B) for all t € R.

Given a module structure as above, we can form a GNS-Rieffel-construction as follows:
Lemma 2.2. Let u be a faithful KMS-state on a unital C* -algebra B, let (v, ¢) be a p-module
structure on a unital C*-algebra A, and put v := po ¢.

i) of or =roof forallteR.
it) There exists a unique isometry ¢: H, — H, such that (A, (b) = A, (r(b)) for allbe B.
iii) CJu = JuC, Cb=71(b)¢, ¢*Av(a) = Au(o(a)), ¢*a = ¢(a)C* for allbe B, a€ A.

iv) There exists a p°?-module structure (r°?, ¢°?) on A°P such that r°?(b°?) = r(b)°? and
@°P(a’?) = ¢p(a)°? for allbe B, a€ A. For allbe B, (Auor (b°F) = Apon (1P (b°F)).

Proof. 1) This follows easily from the uniqueness of the modular automorphism group of a
faithful KMS-state.

ii) Straightforward.

iif) ¢Ju = Ju¢ because Dom(o}),) is dense in B and (JuAu(b) = CAN(Uf/Q(b)*) =
Ay(r(az‘.‘/Q(b)*)) = A (075 (r(b))*) = JLCAL(b) for all b € Dom(a}),) by i). The proof of
the remaining assertions is routine.

iv) Straightforward. a

Compact C*-quantum graphs The definition of a compact C*-quantum graph in-
volves the following simple variant of a Radon-Nikodym derivative for KMS-states:

Lemma 2.3. Let A be a unital C*-algebra with a KMS-state v and a positive invertible
element & that satisfies v(6) =1 and oy (§) =6 for all t € R.

i) The state vs on A given by vs(a) = v(6Y2a6Y?) for all a € A is a faithful KMS-state
and o/° = Adgit oo} = of o Adgit for all t € R.

i) The map Nvs: A — H,, a — A,(a6"?), is a GNS-map for vs, and the associated
modular conjugation J,; is equal to J,, .

ii) If 6 € A is another positive invertible element satisfying v(8) =1, o¥(6) = & for all
teR, and vz = vs, then § =90. O

Definition 2.4. A compact C*-quantum graph is a tuple (B, u, A, 7, ¢,s,,6), where
i) B is a unital C*-algebra with a faithful KMS-state p,
ii) A is a unital C*-algebra,
i11) (r,®) and (s,) are a p-module structure and a u°?-module structure on A, respectively,
such that r(B) and s(B°?) commute,
iv) 6 € Anr(B) ns(B°?) is a positive, invertible, o” -invariant element such that v(§) = 1
and u 0 = (110 6)s.
Given a compact C*-quantum graph (B, p, A,r,¢,s,%), we put v := po @, v = p%P o,
and denote by Cp,Cy: Hy — H, the isometries associated to (r,¢), (s,v) as in LemmalZ2.
For every compact C*-quantum graph (B, i, A, 7, $,s,1), we have vor = podor =p
and v 1 os = pu? ot os = pu°?. The compositions v o s and v~ or are related to u°? and
1, respectively, as follows.

Lemma 2.5. Let (B,u, A,r,,5,v,8) be a compact C*-quantum graph.



i) ¢(8) € B and (5™") € B°P are positive, invertible, central, invariant with respect to
o and o, respectively, and satisfy p(¢(8)) = 1 = p°P(P(5~1)).

i) v or = ugs) and vos = “Zz&*l)'
Proof. 1) We only prove the assertions concerning ¢(d). Since ¢ is positive, there exists an
€ > 0 such that 6 > el4, and since ¢ is positive, we can conclude ¢() > ep(la) = €elp.
Therefore, ¢(9) is positive and invertible. It is central because bp () = ¢(r(b)d) = ¢(dr (b)) =
@(8)b for all b € B, and invariant under o* because ot (¢(8)) = ¢(of (§)) = ¢(6) for all t € R.
ii) The first equation holds because for all b € B, v~ (r(b)) = u(o(6?r()6Y?)) =
w(bd(8)) = pu(p(6)?bep(8)*/?). The second equation follows similarly. |

Let (B,u, A,r,¢,8,%,6) be a compact C*-quantum graph. Then for all b,c € B,
Y(r(0)c? = 1(r(b)s(c?)) = (s(c”)r(b)) = c¢”1p(r(b)) and similarly ¢(s(b"))c = ch(s (b)),

so that we can define completely positive maps
ri=1or: B— Z(B) and 1= ¢os: B - Z(B). 2)
We identify Z(B) and Z(B°?) with B n B°? € L(H,,) in the natural way.

Coinvolutions on compact C*-quantum graphs The following concept will be
used to define the unitary antipode of a compact C*-quantum groupoid:

Definition 2.6. A coinvolution for a compact C* -quantum graph (B, u, A,r, $,s,1,8) is an
antiautomorphism R: A — A satisfying RoR = id4 and R(r(b)) = s(b°?), ¢(R(a)) = ¢(a)?
forallbe B, a€ A.

Lemma 2.7. Let R be a coinvolution for a compact C*-quantum graph (B, u, A,r, $, 5,1, ).
i) cfoR=Ro O'ZZI for allt e R, and R(§) = 6~ . In particular, ¢(8) = (571).
i) 7(b) = 71(b°P) for allbe B.
iii) There exists a unique antiunitary I: H, — H,, A,—1(a) — A, (R(a)*), and
IA,(a) = A (R(a6™)*),  Ia*I = R(a), I? =idw, ICpJu=Co, IJ, = Ju 1
Proof. 1) The first equation follows from the fact that R is an antiautomorphism and that
vo R =v~!. To prove the second equation, put ¢’ := R(6™*). Then
v(@) =v 16T =v(1) =1,
ot (8" = R(0”, (67Y) = R(0”4 0 Adsi (671)) = R(0”,(671)) = R(5™}) = &,
vs(a) = v '(a) = v(R(a)) = v (6 Y*R(a)6 %) = v(6"2ad"?) = vs (a)

for all a € A, and by Lemma 23 iii), § = 4.
ii) (¢pos)(b°?) = (poRo Ros)(b°?) = (¢ or)(b)°? for all be B.
iii) The formula for I defines an antiunitary because for all a € A,

2

[A(R(a)*)]* = (0 ¢) (R(a)R(a)*) = (o ¢ o R)(a*a) = (4 o)) (a*a) = |A,-1 (a)]".
The first two equations given in ii) follow immediately. Next, I? = idy because
I’Ay(a) = Ay (R(R(a6"?)*8"2)*) = A, (a8"2671%) = Au(a)
for all a € A, and Iy J, = (» because
Iy Ju D (b%) = I¢yApor (0°F) = TA, -1 (s(b7")) = Au(r(0)*) = (oA (0¥)

1

for all b € B. The relation O';f_l = Roo”,0R (t € R) implies that for all a € Dom(ai”/; ),

JoIA—i(a) = A (02 (R(a)*)*) = Ay (R(0%5 (@)*)*) = IJ,—1A,-1(a).

Since J,-1 = J,, we can conclude J,I =1J,. O



3 The relative tensor product and the fiber product

Fundamental to the following development is the general language of C*-modules and C*-
algebras over KMS-states, the relative tensor product of such C*-modules, and the fiber
product of such C*-algebras: The fiber product is needed to define the target of the comul-
tiplication of a compact C*-quantum groupoid, and the relative tensor product is needed
to define this fiber product and the domain and the range of the fundamental unitary.

We proceed as follows. First, we introduce the language of C*-modules and C*-algebras
over KMS-states. Next, we describe the C*-module structures that arise from a compact
C*-quantum graph and which are needed later. Finally, we present the relative tensor
product and the fiber product. Except for the second paragraph, the reference is [17]

C*-modules and C*-algebras over KMS-states We adapt the framework of C*-
modules and C*-algebras over C*-bases introduced in [17] to our present needs, replac-
ing C*-bases by KMS-states as follows. A C™*-base is a triple (38,9, %T) consisting of a
Hilbert space £ and two commuting nondegenerate C*-algebras 8, BT € £(£). We restrict
ourselves to C*-bases of the form (H,, B, B°?), where H, is the GNS-space of a faithful
KMS-state p on a C*-algebra B, and where B and B°” act on H, = Hyor via the GNS-
representations, and obtain the following notions of C*-modules over u.

Definition 3.1. Let p be a faithful KMS-state on a C*-algebra B. A C*-p-module is a
pair (H,a), briefly written Hao, where H is a Hilbert space and oo € L(H,, H) is a closed
subspace satisfying [aH,] = H, [aB] = «, and [a*a] = B € L(H,). A morphism between
C*-p-modules H, and Kg is an operator T € L(H, K) satisfying Ta € 8 and T*3 € a.
We denote the set of such morphisms by L(Ha, Kg).

Lemma 3.2. Let i be a faithful KMS-state on a C*-algebra B and let Hy be a C*-p-module.

i) a is a right Hilbert C*-B-module with inner product given by {(£|€'Y = £*¢ for all
£,¢ ea.
11) There exist isomorphisms a S Hy, —> H, £ S(— &C, and H, @ a —> H, (@& — &(C.

ii1) There exists a nondegenerate representation po: B°? — L(H) such that p(b°P)(£C) =
Eb°P¢ for allbe B, (e, (€ Hy.

iv) Let Kg be a C*-p-module and T € L(Ha, Kg). Then left multiplication by T defines an
operator in Lp(«, B), again denoted by T, and Tpa (b°P) = pp(b°P)T for allbe B. O

Definition 3.3. Let p1, ..., un be faithful KMS-states on C*-algebras Bi,...,B,. A C*-
(t1, .- ., pn)-module is a tuple (H,ou,...,an), where H is a Hilbert space and (H, ;)
is a C*-p;-module for each i = 1,...,n such that [pa,(B{")a;] = «a; whenever i # j.
The set of morphisms of C*-(u1,. .., pn)-modules (H,a1,...,an) and (K, Bi,...,Bn) is
L((H,a1,...,00),(K,B1,...,5n)) =)oy L(Ha;, Kp,) € L(H,K).

Remark 3.4. Let p1,...,un be faithful KMS-states on C*—algebras Bi,...,Byn and let
(H,ai,...,0an) be a C*-(u1,. .., pin)-module. Then po,(B;?) S L(Ha,) whenever i # j; in
particular, [pa,; (B;"), pa; (B;")] = 0 whenever i # j.

Next, we define C*-algebras over KMS-states.

Definition 3.5. Let p, ..., un be faithful KMS-states on C*-algebras Bi,...,B,. A C*-
(1, - . -, fn)-algebra consists of a C*-(u1, ..., pn)-module (H,a1,...,a,) and a nondegen-
erate C*-algebra A © L(H) such that [pa;,(B{*)A] € A for each i = 1,...,n. In the
cases n = 1,2, we abbreviate A} := (Ha, A), A?{’*B := ((H,a,3),A). A morphism between
C*-(p1, ..., pn)-algebras (H, a1, ..., an), A) and ((K,71,...,7),C) is a nondegenerate -
homomorphism ¢: A — M(C) such that for each i =1,...,n, we have [I4;a;] = i, where
Is; :={T € L(Ha,;,Ky,) | Ta = ¢(a)T for all a € A}. We denote the set of all such
morphisms by Mor(((H,a1,...,an), A), (K,71,...,7),C)).

Remark 3.6. If ¢ is a morphism between C*-p-algebras A% and C7}., then ¢(pa (b)) =
p~(b°P) for all b e B; see [16, Lemma 2.2].



The C*-module of a compact C*-quantum graph To proceed from compact C*-
quantum graphs to compact C*-quantum groupoids, we need several C*-module structures
arising from the GNS-Rieffel-construction in Lemma 2.2

Lemma 3.7. Let u be a faithful KMS-state on a unital C*-algebra B, let (r,¢) be a C*-
pu-module structure on a unital C*-algebra A, and put v := po¢, H := H,, & := [A(],
8= [A%%C].
i) aHg is a C*-(u, p°?)-module and ps = r°?, pg =r.
it) A% is a C*-u°?-algebra.
i) a’?¢ = 0", 5(a)¢ for all a € Dom(c”, ) nr(B)".
iv) A+ (Anr(B))? < L(Hz) and A°® + (Anr(B)') S L(Hp).

Proof. i) Lemma immediately implies that Hg is a C*-p-module and that Hg is a
C*-p°P-module. The equations for ps and pg follow from the fact that by Lemma Z2]
pa(P)al = alb®? = ar(b)°P¢ = r(b)°Pal and pg(b)a®¢ = a°?Cb = a®Pr(b)¢ = r(b)a®?¢ for
all b e B, a € A. In particular, [ps(B°?)8] = [r(B)°?A°P(] = B and [pg(B)a] = [r(B)A(] =
@, whence 5Hg is a C*-(u, u°?)-module.

it) By i), [pa(B)A] = A.

iii) For all a € r(B)" n Dom(c”,,) and b€ B,

a®CAu(0) = Au (r(0)0”is2(a)) = Av(0Zi2(a)r (b)) = 0%i/2(a)CAL (D).

iii) We only prove the first inclusion, the second one follows similarly. Clearly, [AQ] = &.
Since of (r(B)) € r(B) for all t € R, the subspace C' := Dom(c”,,) n 7(B)" is dense in
Anr(B), and by iii), [(A n7(B)")°Pa] = [CAC] = [AC(] < [AC] = a. |
Proposition 3.8. Let (B,u, A, 7, ¢,s,1,68) be a compact C*-quantum graph. Putv := pog,
v =P oy =vs and

~

H:=H,,  a:=[AQ], B:=[A"¢],  B:=[AG], a:=[A"¢].  (3)
i) (H,8,8,B,0) is a C*(u, u°", 1u°, p)-module and pa =%, ps =7, p5 = s°, pa = 5.
i) A% is a C*-(u, u°P)-algebra.

iii) Let R be a coinvolution for (B,u,A,r,¢,s,1,0) and let I: H, — H, be given by
A, 1(a) = A (R(a)*). Then I¢sd, = Cy, ICyJd, =Cy and 1B, = &, IBJ, = a.

Proof. 1), ii) Immediate from Lemma [37]
iii) We have I{yJ, = (g because for all b € B,

IGuTuhu(b®) = IGuAper (b77) = TA,-1 (s(b°7)) = Aw (R(s(b7))*) = A (r(b¥)) = CoAu(b™).

The remaining assertions follow easily. O

The relative tensor product of C*-modules The relative tensor product of C*-
modules over KMS-states is a symmetrized version of the internal tensor product of Hilbert
C*-modules and a C*-algebraic analogue of the relative tensor product of Hilbert spaces
over a von Neumann algebra. We briefly summarize the definition and the main properties;
for details, see [I7) Section 2.2].

Let u be a faithful KMS-state on a C*-algebra B, let Hz be a C*-p-module, and let
K, be a C*-p°P-module. The relative tensor product of Hg and K, is the Hilbert space
Hg®,K := 6 H, ©~. It is spanned by elements £ © ( © 7, where £ € 3, ( € Hu, n € 7,
and the inner product is given by (¢ & ¢ @ nl¢’ & ¢’ @) = (C|e*en*n'¢y = (Cn*nf €'y
for all £,¢' € B,¢, ¢ e Hy,n,m' €.



Obviously, there exists flip isomorphism
Y: Hs® K - K ®pH, {c(On—>nG(e¢. (4)
The isomorphisms 8 S H, = H, £ (¢ =¢&C, and H, ©v = K, (& ( =n(, (see Lemma
[B2) induce the following isomorphisms which we use without further notice:
Hp,0y= Hp® K =28G,, K, ((on=Eccon=EenC (Eep, (e Hinen).
Using these isomorphisms, we define the following tensor products of operators:
Se®@,T:=560TeL(BC,, K)=L(H®,K) forall SeLl(Ha), TE py(B) € L(K),
Sg@\T :=50TeL(H,,©7) = LIHp®,K) forall Se ps(BPY € L(H), T € L(Kj).
Note that S©T =501deT =S T for all S e L(Hg), T € L(K5).
For each £ € 3, n € , there exist bounded linear operators
|1 K > Hp®,K, w— {Sw, €l =17 € swm py(£7€)w,
2t H —> Hs® K, w>won, Mz =3 wen— ps(n*nw.

We put |81 := {|{h |§ € 8} and similarly define (8|1, [7)2, (7|2
Assume that $ = (H,a1,...,am,B3) is a C*-(01,...,0m,u)-module and that & =

(K,v,61,...,6,) is a C*-(u°?,71,...,7n)-module, where o1,...,0m,T1,...,T, are faithful
KMS-states on C*-algebras A1,..., Am,C1,...,Cy. Fori=1,...,mand j=1,...,n, put
a; <7y = [|v)200] € L(Ho,, Hp®4 K), B> 0j = [|B0d;] = L(Hr, Hs® K).

Then the tuple H @ & := (Hg® K, a1497,...,am <7, B01,...,6>0,) is a C*-(01,...,0m,
m
Ti,...,Tn)-module, called the relative tensor product of § and K. Foralli=1,...,m,a€ A;
and j=1,...,n, ceCy,
Plaay) (aOP) = Pa; (a’op)5®"/ 1d7 P(B»éj) (COP) =id ,B®’yp5j (COP).

The C*-relative tensor product is bifunctorial: If $ = (H,a1,...,a6m,0B) is a C*-

(01, -+, Tm, p)-module, R=(K,501,...,00)aC*(uP 11, ..., Ty)-module, and S € L($, ),
T € L(&, R), then there exists a unique operator S T € L(H ® K, H ® &) such that
n 7 1

(S®T)Eccon) =S{c(oTn forall{ep, (e Hyner.
©

The C*-relative tensor product is unital in the following sense. If we consider B, B°?
embedded in L£(H,) via the GNS-representations, then the tuple $ := (H,, B, B?) is a
C*-(p1, n°?)-module, and the maps

Hg®por H, — H, £ (0L - &7¢, H, B®,K — K, be (©n~ nb,

are isomorphisms of C*-(a1,...,0m,u)- and C*-(u°?,71,..., 7, )-modules H ® Y = § and
I
H® R = R, natural in § and K, respectively.
I

The C*-relative tensor product is associative in the following sense. Assume that
v, p1,. .., pi are faithful KMS-states on C*-algebras D, E1, ..., E;, that & = (K,7,01,...,0n,€)
isa C*-(u?, 71, ..., Tn,v)-module, and £ = (L, p,91,...,%) a C*-(v°?, p1, ..., p1)-module.
Then the isomorphisms of Hilbert spaces

(Hp®yK)poe®s L = 8 6p, Kp.©¢ = Hp®yap(Kc®sL) (5)
are isomorphisms of C*-(01,...,0m,T1,---,Tn, p1,- -, pi)-modules (HROR)RL =~ HRO(RRL).
© v m v

We shall identify the Hilbert spaces in (Bl without further notice and denote these Hilbert
spaces by Hg®~ K Qg¢L.
We shall need the following simple construction not mentioned in [17]:



Lemma 3.9. Let Hg, ﬁg be C*-p-modules, K., K5 C*-u°?-modules, and I: H — H,
J: K - K anti-unitaries such that 18J, = B and JyJ, = 7.
i) There exists a unique anti-unitary [p®~J: Hp® K — EIB@):,[( such that
T

(1599”‘])(5 cCeon) =1, Ju(O JIndy forall§€p, (€ Hy nenr.

W) (Is®+ )61 = 18I and (Is @~ T)myz = |JnJu)al for all € B, ne .

iit) (Ig®~J)(Sp®T) = (IS’I*B®:YJTJ*)([5®»YJ) for all S e L(Hg), T € L(K).
T T
Proof. Straightforward. O

The fiber product of C*-algebras The fiber product of C*-algebras over KMS-
states is an analogue of the fiber product of von Neumann algebras. We briefly summarize
the definition and main properties; for details, see [I7), Section 3].

Let i be a faithful KMS-state on a C'*-algebra B, let A*Z be a C*-p-algebra, and let C}
be a C*-p°P-algebra. The fiber product of A% and C7; is the C*-algebra

Ap#yC = {x € LIH®,K) | z|B)1,z* |80 < [|B)1C] and z|y)2, z*|7)2 < [|7)2A]}.

If A and C are unital, so is Ag*,C, but otherwise, Ag*,C may be degenerate.
Conjugation by the flip ¥: Hg® K — K,®sH in (@) yields an isomorphism

Adz: A/B*WC g C’Y*/BA' (6)

Assume that 2l = (H, a1, ..., am, 3, A) isa C*-(01,...,0m, p)-algebra and € = (K, 61,
ey 00, C)a C*-(u°?, 11, . .., Ty )-algebra, where o1, . ..,0m, T1, . . . , Tn, are faithful KMS-states
on C*-algebras A1,...,Am,C1,...,Cph. If Ag#,C is nondegenerate, then

A= ((Hg® K, a197,...,am<7,B601,...,8>0,), Agx,C)

isa C*-(01,...,0m,T1,..., Tn)-algebra, called the fiber product of 2 and €.
_ Assume furthermore that % = (H, a1, ...,am, 8, A) is a C*-(o1,...,0m, p)-algebra and

¢ = (f{,’y,gl, vy 0n, C) is a C*-(u°?, 71, ..., 7n)-algebra. Then for each ¢ € Mor(Q{,Q{) and
1 € Mor(€, €), there exists a unique morphism

¢ %1 € Mor(2 # €, A * &)

such that (¢#1)()(Ss®,T) = (Ss®-T)x for all w € Agx,C, S € L(Hg, Hj), T € L(K~, K5)
satisfying Sa = ¢(a)S and Tc = (c)T for alla € A, ce C.

A fundamental deficiency of the fiber product is that it need not be associative. In our
applications, however, the fiber product will only appear as the target of a comultiplication,
and the non-associativity of the former will be compensated by the coassociativity of the
latter.

We shall need the following simple construction not mentioned in [I7]:

Lemma 3.10. Let A%, Af} be C*-p-algebras, C}, C‘;’? C*-pu°P-algebras, and R: A — A°P,

S: C — C° x-homomorphisms. Assume that I: H — H and J: K — K are anti-unitaries

such that IBJ, = B, R(a) = I*a*I for all a € A, and JvJ, = 7, S(¢c) = J*c*J for

all c € C. Then there exists a x-homomorphism Rg#,S: Ag#,C — (AB*:,C’)O" such that

(Rg#,S)(z) := (I,ggbw])*x*(];ggbﬂ,]) for all x € Ag#x,C. This x-homomorphism does not
w w

depend on the choice of I or J.
Proof. Evidently, the formula defines a #-homomorphism Rg#,S. The definition does
not depend on the choice of J because (£|1(Rp#4S)(2)|E = J*TET 1x*|I€ T d =

S(IE Juhia|1€Ju1) for all @ € Ag#,C by Lemma 3 ii), and a similar argument shows
that it does not depend on the choice of I. O



4 Compact C*-quantum groupoids

In this section, we introduce the main object of study of this article — compact C*-quantum
groupoids. Roughly, a compact C*-quantum groupoid is a compact C*-quantum graph
equipped with a coinvolution and a comultiplication subject to several relations. Most
importantly, we assume left- and right-invariance of the Haar weights, the existence of a
modular element, and a strong invariance condition relating the coinvolution to the Haar
weights and to the comultiplication.

We proceed as follows. First, we discuss the appropriate notion of a comultiplication
and recall the notion of a Hopf C*-bimodule, of bounded invariant Haar weights, and of
bounded counits. Then, we introduce and study the precise definition of a compact C*-
quantum groupoid. Finally, we show that the modular element can always be assumed to
be trivial, and that the Haar weights are unique up to scaling.

Hopf C*-bimodules over KMS-states Throughout this paragraph, let u be a faith-
ful KMS-state on a C*-algebra B.

Definition 4.1 ([I7]). A comultiplication on a C*-(u, u°?)-algebra A%” is a morphism
A€ Mor(Az,’*B7 A?‘{’*B * AZ’B) that makes the following diagram commute:

A A Aa*[gA

\l/id %A
A Aa#pap(AargA)

{

AargA 2% (Ay#5A)avarsAC_s L(Huo#sHa%pgH).

A Hopf C*-bimodule over u is a C*-(u, u°?)-algebra together with a comultiplication.

The following important invariance conditions will be imposed on the Haar weights of a
compact C*-quantum groupoid:

Definition 4.2. Let (A?;,’*B7 A) be a Hopf C*-bimodule over u. A bounded left Haar weight
for (A?jﬂ7 A) 1is a non-zero completely positive contraction ¢: A — B satisfying

i) ¢(ps(b)aps(c)) = bp(a)c for all a € A and b,c € B,
i) ¢((El1A(a)lEN) = E%ps(d(a))€ for all a€ A and &€ € a.

A bounded right Haar weight for (A%”B,A) is a mon-zero completely positive contraction
P A — B°P satisfying

i)” Y (pa(b°P)apa(c)) = by (a)c® for alla € A and b,c € B,
i) Y ((nlaA@)ln)2) = n*pa(¥p(a)n’ for all a € A and n,n' € B.
Remarks 4.3. Let (A%”, A) be a Hopf C*-bimodule over .
i) If ¢ is a bounded left Haar weight for (A%”, A) | then pgop: A — ps(B) is a conditional

expectation.
ii) If ¢: A — B satisfies condition ii) and if [{a|1A(A)|a)1] = A, then ¢ also satisfies con-
dition i) because ¢ (ps (0)<¢[1A(a)[€)1p5(c)) = H((EBl1A(a)l€ c)1) = b*E¥ ps(d(a))€c =
b ¢ (€1 A(a)|E)1)c for all a€ A, bce B, £,& € a.
Similar remarks apply to bounded right Haar weights.

The notion of a counit of a Hopf algebra extends to Hopf C*-bimodules as follows.
Definition 4.4. Let (A%”, A) be a Hopf C*-bimodule over p. A bounded (left /right) counit
for (A%P A is a morphism e € Mor (A%’B,[,(HH)}BI;BOP) satisfying (the first/second of) the
following conditions:
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i) e(<n|2A(a)|n’>2) =n*an' for alla€ A and n,n’ € B,
i) e(<£|1A(a)|£'>1) =¢*al’ forallae A and €,¢ € a.

Remark 4.5. i) Condition i) and ii), respectively, hold if and only if the left/the right
square of the following diagram commute:

AnxgA 2 2 AargA

A
e*id\L l l/id *e

L(H,)p#pA —= L(H,p®sH) —> L(H) <= L(Ho®por H,) <~— Aaxpor L(H,.).

ii) A standard argument shows that if a bounded left and a bounded right counit exist,
then they are equal and a counit.

Compact C*-quantum groupoids Given a compact C*-quantum graph (B, u, 4,7, ¢,
$,1,d) with coinvolution R, we use the notation introduced in Proposition 3.8 and put
vi=pod, vt i=pPop=vs, Ji=J, =J, 1,

H:=H,  a:=[AG], B:=[A7¢]  B:=[AG]l,  a:=[A"¢],  (7)

and define an antiunitary I: H — H by IA,-1(a) = A,(R(a)*) for all a € A. Since
IaJ, = B, IBJ, = a, and R(a) = Ia*I for all a € A, we can define a #-antihomomorphism
RoxgR: AatgA — AgraAby x> (Ia®pI)*2* (1o ®al) (Lemma [3I0).

T T

The definition of a compact C*-quantum groupoid involves the following conditions that
are analogues of the strong invariance property known from quantum groups:
Lemma 4.6. Let (B, u, A,r,¢,s,9%,8) be a compact C*-quantum graph with a coinvolution
R and a comultiplication A for A?{”B such that (Ra#gR)o A = Ads oA o R. Then
R({u1A@)(d7 a®p1)|¢ud1) = (Col2(La®sR(d) ) A(R(a))|¢s)2  for all a,d € A.
Proof. Let a,d € A. By Lemmas [3.9 and 2.7]
(Col2(1a®sR(d) ") A(R(a))[Co)2 = (Col2(1a®p1 (@) DE(1a@s ) A(a)*(1a ® 51) " ElCo)2
"
= <C¢I1(1a§>61)((d°p)*a®,@1)ﬁ(a)*IIC¢>JN>1I
W

= Iyl ((d")*a®p1) Aa)*[Cypr T
= R({Cpl1A(a)(d"a®p1)[Cy1). O

As a direct consequence, we obtain the following result:

Lemma 4.7. Let (B, p, A, r,¢,s,1%,68) be a compact C* -quantum graph with a coinvolution
R and a comultiplication A for A% such that (Ra#sR) o A = Ads oA o R. Then the
following two conditions are equivalent:

i) R({Cpl1A(a)(dPa®s1)Cp01) = (Culi(aPa®3p1)A(d)[Cp)1 for all a,d € A.
ii) R((Col2A(a)(1a®sdP)|Co)z2) = {Col, (1a®sa™) A(d)[Co)2 for all a,d € A. O
Now we come to the main definition of this article:

Definition 4.8. A compact C*-quantum groupoid is a compact C* -quantum graph (B, u, A,
7, ¢,5,%,8) with a coinvolution R and a comultiplication A for A?{’*B such that

i) [A(A)|a)1] = [lapr A] = [A(A)|Cu)1A] and [A(A)[B)2] = [I8)24] = [A(A)[Ce)24];
i) ¢ is a bounded left Haar weight and v a bounded right Haar weight for (A%", A);
iit) R((Gy[1A(a)(d7a®p1)|¢up1) = (Col1(aPa®s1)A(d)|Co)1 for all a,d € A.
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Let us briefly comment on this definition. The coinvolution R is uniquely determined by
condition iii). The Haar weights are unique up to some scaling, as we shall see at the end of
this section. At the end of the next section, we will see that (Ra#*sR)0A = Ads oAo R; in
particular, the modified strong invariance condition in Lemma (7] ii) holds by Lemma [£7]

From now on, let (B,u, A,7,¢,s,9,6, R,A) be a compact C*-quantum groupoid.

Lemma 4.9. {a € An7r(B) | Ala) = 1a®sa} = s(B°?) and {a € An s(B°?) | Ala) =
aa®gpl} = r(B).
Proof. We only prove the first equation. Clearly, the right hand side is contained in the left

hand side. Conversely, if a € A n r(B)" and A(a) = 1a®pa, then a = ((y|1A(a)|(p)1 =
s(¥(a)) by right-invariance of 1. |

The conditional expectation onto the C*-algebra of orbits Let us study the
maps 7 = or: B— Z(B?) = Z(B) and 7' = $os: B? — Z(B) =~ Z(B°P) introduced in
@)). First, note that 7(b) = 71(b°P) for all b € B by Lemma 27 ii).

Proposition 4.10. The maps 7 and 7' are conditional expectations onto a C* -subalgebra
of Z(B) = B n B°? and satisfy
soT=rorT, ol or =1 for allt € R,
Tod =104, 7(bo", 5(d)) = 7(do", ,(d)) for all b,d € Dom(c* ).
The proof involves the following equation:
Lemma 4.11. For allb,c,e € B and d € Dom(c", ,),

o1 A(r(0)s(c*)) ((r(d)s(e™)) " a®s1)|Cup1 = r(7(bol; 5 (d)))r(e)s(c™).
Proof. Let b, c,d, e as above. Then
Cul1A(r(®)s(c®)) ((r(d)s (™))" a®s1)|Cur1 = {Cu 1 (r(b) (r(d)s(e”)) " a®as(c™)) |Gy 1

= ps(Chr(®)r(d) s ()P Cy)s(c™)
= (CurO)r(d)Cpe)s(c™),

and by Lemma Biii), (7 (b)r(d)FCy = Cf;r(ba’jm(d))gw = 71(bo", ;5 (d)). O

Proof of Proposition[{.10 The left- and right-invariance of ¢ and + imply that for all a € A,

o(s(¥(a) = (& s(¥(a))Co = (1 {Cs|2(a)[Co)2C
= (el A@)|CenCE = Cir(8(a))Cy = »(r(d(a))).

Therefore, 7T op = 7o and ror =7l or =7l o (or)=70por = 7. Next, sor =ror
because for all b e B,

s (r(b))) = o1 AT O)ICu)1 = o1 (r(0)a®s1)|Ce1 = ps(Cur(0)Cs) = r(%(r(b))).
In particular, we find that for all b,c,d € B,
T(B)7(c)7(d) = T(0)%(r(c))(d) = ¥ (s(7(b))r(c)s(7(d))) = ¥ (r(7(bed))) = T(bed).
Therefore, 7 is a conditional expectation onto its image.
Let t € R. Then o (7(B)) S 7(B) because o/ o1 = ", otpor = 1o o’y or =
ooy or =toroof. Since v := p|.(p) is a trace, we can conclude from Lemma [22]1) that

ofor=T100f =T.
Finally, let b,d € Dom(a‘ii/Q)A By Lemma [£11] and condition iii) in Definition 48]

r(7(bol;5(d)) = {Cp 1 A(r(0) (r(d)” a®p1)Cu1
= R({Cuh A(r(d) (r(0) 7 a®s1)ICu)1) = s(r(do”, (b))

Since s o7 =r o7 and r is injective, we can conclude 7(bo", ,(d)) = 7(do”, ,(b)). |
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The modular element The modular element of a compact C*-quantum groupoid can
be described in terms of the element

0:=¢(8)=v( ')e Bn B
(see Lemma 235l and Lemma [27]1)) as follows.
Proposition 4.12. § = 7(0)s(0) ™" and A(8) = 6.®s0.

Proof. By Lemma [Z7] i), the element & :=~7‘(0)§(0)_1 is positive, invertible, and invariant
with respect to o¥. Moreover, v~ *(a) = v(6Y2ad'/?) for all a € A because

v (s(0)Pas(6)'%) = p (6"*0(a)6'%) = (o 05 04)(a)
= (u oporog)(a) = u(0*¢(a)0"?) = v(r(6)*ar(6)"?)

for all a € A by Proposition EEI0] and Lemma 7] ii). Now, § = § by Lemma 23] iii), and
AB) = 1(0)a®s5(0) ™" = 1(0)pa(071)a®sps(0)s(0) ™! = 6,856 because 0 € Z(B). |

An important consequence of the preceding result is that for every compact C*-quantum
groupoid, there exists a faithful invariant KMS-state on the basis:
Corollary 4.13. pgo ¢ = (ug)°® 0.
Proof. For all a € A, we have u(01/2¢(a)91/2) = 1/(1"(0)1/2ar(0)1/2) = V_l(s(9)1/2a5(9)1/2) =
MOP(01/2’¢(Q)01/2). O

This result implies that in principle, we could restrict to compact C*-quantum groupoids
with trivial modular element 6 = 14. We shall not do so for several reasons. First, the
treatment of a nontrivial modular element does not require substantially more work. Second,
the freedom to choose the state p might be useful in applications. Finally, we hope to
prepare the ground for a more general theory of locally compact quantum groupoids, where
the modular element can no longer be assumed to be trivial.

The KMS-state u can be factorized into a state v on the commutative C*-algebra 7(B) <
Z(B) and a perturbation of 7 as follows. We define maps

To-1: B = 7(B), b 7(072007), v = pglymy: 7(B) = C, b u(0M?60Y?).
Note that 7(#™!) = 1 because 8 = ¢(8) = ¢(r(6)s(8) 1) = 67(871).
Proposition 4.14. y =voTy-1.

Proof. By Propositions 410 and we have p(b) = v(r(b)) = v (6 Y2r(b)6~Y?) =
P (02 (r (0712607 1/2))0?) = (v o Ty-1)(b) for all be B. O

Uniqueness of the Haar weights A central result in the theory of locally compact
(quantum) groups is the uniqueness of the Haar weights up to scaling. In this paragraph, we
prove a similar uniqueness result for the Haar weights of a compact C*-quantum groupoid.

The Haar weights of a compact C*-quantum groupoid can be rescaled by elements of B
as follows: For every positive element v € B°?, the completely positive contraction

¢s(~/) A > B: a — ¢(3(7)1/2a5(7)1/2)7
is a bounded left Haar weight for (A?{’B, A) because for all a € A and £, &' € o
s (€11 A@[EN) = 3L (La®s5(7)*)Ala) (1a®s5(1) ) [€1)
= o(EhA(s(MPas(v)) €)= *bu() ()€

Likewise, for every positive element v € B, the completely positive contraction

Yr(yy: A= B, ams ¢(r(y)?ar(7)'?),

is a bounded right Haar weight for (A% A).
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Theorem 4.15. Let q~5, 7,/;, & be such that (B, u, A, r, &,3,1/:,5) is a compact C*-quantum
graph.

i) If ¢ is a bounded left Haar weight for (A(;}’B7 A), then ¢ = ¢.,, where v = (6 1)07 L.
i) If 1 is a bounded right Haar weight for (A%?, A), then ) = 1, where v = ¢(6)07 .

Proof. We only prove i), the proof of ii) is similar. Put 7 := pod, 5! := pPot), 0 := (6 1).
Let a € A. Then

$(s(¥(a))) = $(Cu 1 A(@)[Cud1) = D(r(d(a)))- (8)

We apply w to the left hand side and find, using Lemma 2.5 ii),
(s(1(a))) = uZ (Y(a)) = v~ (s(0)as(0)?) = v(5"%s(0)*as()"*5").

Next, we apply p to the right hand side of equation (§) and find

v (r(9(a) = po((a) = o (r(0)Zar(0)'?).

Since the left hand side and the right hand side of equation () are equal and 6 = 7(0)s(9)*,
we can conclude o(d) = u(s(’y)l/st(’y)l/Q) for all d € A and in particular

u(b*d(a)) = o(r(b)*a) = v(s(3)*r(b)*as(1)'?) = u(6*(s(7)*as(3)'"?))

for all be B, a € A. Since y is faithful, we have ¢(a) = ¢(s(v)2as(y)"?) for all ae A. O

5 The fundamental unitary

In the theory of locally compact quantum groups, a fundamental réle is played by the mul-
tiplicative unitaries of Baaj, Skandalis [1] and Woronowicz [22]: To every locally compact
quantum group, one can associate a manageable multiplicative unitary, and to every man-
ageable multiplicative unitary two Hopf C*-algebras called the “legs” of the unitary. One
of these legs coincides with the initial quantum group, and the other one is its generalized
Pontrjagin dual. Moreover, the multiplicative unitary can be used to switch between the
reduced C*-algebra and the von Neumann algebra of the quantum group.

Similarly, we associate to every compact C*-quantum groupoid a generalized multiplica-
tive unitary. More precisely, this unitary is a regular C*-pseudo-multiplicative unitary in
the sense of [I7]. The first application of this unitary will be to prove that the coinvolution
of a compact C*-quantum groupoid reverses the comultiplication. The second application
will be to associate to every compact C*-quantum groupoid a measured quantum groupoid
in the sense of Enock and Lesieur [5][9]. The third application, given in the next section,
will be to construct a generalized Pontrjagin dual of the compact C*-quantum groupoid in
form of a Hopf C*-bimodule. Finally, one can use this unitary to define reduced crossed
products for coactions of the compact C*-quantum groupoid as in [16].

C*-pseudo-multiplicative unitaries The notion of a C*-pseudo-multiplicative uni-
tary extends the notion of a multiplicative unitary [I], of a continuous field of multiplicative
unitaries [2], and of a pseudo-multiplicative unitary on C*-modules [10] [18], and is closely
related to pseudo-multiplicative unitaries on Hilbert spaces [21]; see [17, Section 4.1]. The
precise definition is as follows. Let u be a faithful KMS-state on a C*-algebra B.

Definition 5.1 ([I7]). A C*-pseudo-multiplicative unitary over y consists of a C*-(u°P, p, u°?)-
module (H, B, a, 8) and a unitary V : H;®.H — Ha®pH such that

Vieda)=ava, V(Bs>B) =548, V(BsB)=asf, V(Baa)=818  (9)
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and the following diagram commutes:

H;®oH ;@ H V5,5®aid Ho®pH ;®aH M Ho®pH ®pH,
id 3®mvl TVM@B id
H ;@00 (Ha®sH) (H ;@0 H)aoa®s H (10)
id 3®le ngg
H;®uHs®cH V5opBald (Ho®sH)5,,®a H

where Y23 denotes the isomorphism

(Ha®BH)E</3®aH = (Hpa@ﬂ) Qa = (Hﬂé©a)0a<a@/3 = (HB®aH)a<a®BH7

Phap
Cedenm(Can ek

Given a C*-pseudo-multiplicative unitary (H, B\, a, B, V), we adopt the following leg notation.

We abbreviate the operators V3>3®a id and V aqa®gid by Via, the operators id a®g.oV and

id B@aqav by Vasz, and (id 5®a sa2)Vi2Xas by Vis. Thus, the indices indicate those positions
in a relative tensor product where the operator acts like V.

Let (H, B, a,3,V) be a C*-pseudo-multiplicative unitary. We put

A(V) := [(Bl2V]ey2] € L(H), A(V) := [(a1V]B)1] € L(H).

~

These spaces satisfy A(V) S L(Hg) and A(V') € L(H}), so that we can define maps

Av: A— L(Hz®uH), G- V*(1a®sa)V, Av:A— L(Ha®sH), a> V(az@al)V*.
il 9

Definition 5.2 ([I7]). We call a C*-pseudo-multiplicative unitary (H, @oz,ﬂ,V) regular
if [a|1V]|a)2] = [aa™], and well-behaved if (ﬁ(V)%a7£v) and (A(V)%?, Av) are Hopf
C*-bimodules over u°? and u, respectively.

Theorem 5.3 ([17]). Every regular C*-pseudo-multiplicative unitary is well-behaved.
Let (H, E, a,3,V) be a C*-pseudo-multiplicative unitary. We put

VP = SV Hp®aH 2 Ha®sH Lo H;@uH 2 Ho®;H.

Then (H, 8, a, B7 V°P) is a C*-pseudo-multiplicative unitary over u°?, called the opposite of
(H,B,a,8,V) [I7, Remark 4.3]. One easily checks that VP is regular if V is regular.

The fundamental unitary of a compact C*-quantum groupoid Throughout
this section, let (B, u, A, 7, $,s,7%,6, R, A) be a compact C*-quantum groupoid. We use the
same notation as in the preceding section.

The main result of this paragraph is the following theorem.

Theorem 5.4. There exists a reqular C* -pseudo-multiplicative unitary (H, 37 a, B,V) such
that V0|alyy1 = A(a)|Cuy1 for all a € A.

We prove this result in several steps. Til the end of this section, we fix a compact
C*-quantum groupoid (B, u, 4,7, ¢, s,1,d, R, A) and use the same notation as in Section @l

Proposition 5.5. i) There ezists a unique unitary V : H;®H — Ho®sH such that
V0aCu)1 = A(a)|Cy1 for all a € A.
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ii) V(aG © d°"¢y) = Aa)(Cv © dP(y) for all a,d € A.
iii) V(B»B) =B« B, V(BrB)=avfB, V(Bra) =a>a, V(@aa) =a<p.
Proof. i) Let ae A, n€ B, ( € H,. Since v is a bounded right Haar weight for (A%{”B7 A),
(Ala)(Cy & COMKA@) (e ©COM) 4y, 0,m = LICEmMA* ) m)26uC)
= {¢[n* pa(Clia™ay)nC)
= {aCy © n¢laCy & NC) 1 ;0a1)-

Therefore, there exists an isometry V': H3®«H — Ho®gH such that ViaCpy = Aa)|Cp
for all a € A. Since [A(A)|B)2] = [|8)24],

V(B4 8) = [VIACB] = [A(A)[Cu)18] = [A(A)B)2Cs] = [IBY2ACs] = B« B.

In particular, V is surjective and hence a unitary.
ii) By Proposition 12 we have for all a,d € A

a8~ ¢y © d¢,)

as™")(¢y © A6,

)0 a®s0 ) (¢, 1 ©d762C) = Aa) (G ©d7y).

iii) The first relation was already proven above. Since [A(A)|(y)1A] = [|ad1 4],
V(B> B) = VIBnAG] = [VIAGHAG] = [AA)[Cu)1A¢] = [lay AGy] = s B

~

and similarly V(8 > &) = a » @. Finally, by ii), for all be B and a,d€ A
V1]a Cy)2dlebCu = V(dr(b)¢, © a®(y) = A(dr(b)) (¢ © a”(y)
= A(d)(r(b)¢r © a’¢s) = A(d)|a”Cs)20ebCu
and hence [V]a@)za] = [VIA®Cpr2 AGs] = [A(A)A7(o)200] = [A(A)B)20s] = [I18)2AC] =
O

a<fB.

The strong invariance condition on the coinvolution yields the following important in-
version formula for the unitary V' constructed above.

Theorem 5.6. V* = (J,®s)V(Ja®sl).
Ju Ju
Proof. Put V := (Ja®zI)V(Joa ®psI). Then for all a,b,¢c,de€ A
Ju Ju

(aty G V¢ [VH(ePCmr © d7PC) ) = (A(a)(Cy & b7 C,—1) [ ¢y © d™P G
= {Cy © (-1]|A>@®)(€a®p1) (Cp © (B7)*d7C))
= (1o L A(@™) (€ a®s1)[Cupr (db™) P (o),

{aCy S b7P(, -1 [V (¢ © dP(s)) = {(a*)PCy © TbPC,—1 |V (c*Cpmr © TdoP(y))

= (Go © 16°7(,—1[(aPa®s 1) A(c*) (Cy © 1d°PC,))
= {Cy © I¢,—1|(aPa®s 1) A(c*) (Cy © T(bP)*doP(,))
= (I¢,-1[{Cul1(a?a®p1) A(c*)[Cppr I (db*)oPC, )
= (-1 [1{Cu 1 (@™ a®s 1) A(C™) [Cupr I (dD™) P (o ).

Now, the claim follows from condition iii) in Definition [£8] O
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Proof of Theorem[5.4 By Lemma [3.9]ii) and Propositions [B.8]iii) and B.5liii), left multipli-
cation by (‘]3 RIVH (‘]3 ® o) acts on subspaces of L(H,, H3®QH) below as follows:
T T

(75@al) (5@aD)

[lay20] —2— [|B)2a] = 8281 ~> (1B 8.J,] —— [lay118.,] = [jepal,
(JEJ®QI) (J 5 J®a1)

[l028] ——> [18)276] = [18)287,] 5 [la)2dTu] —— [|82TaTu] = [18)26],
(J50aD) (J50aD)

18] —2 5 [jada1B] = [lad1@g] Y5 [Bradu] — 2 [Japa,] = [[ad .

Now, Theorem [£.6] implies V(< a) = ava, V(Baa) = B0, V(E >/§) =arv E These
relations and the relations in Proposition [.5]iii) are precisely (@).
Let us show that diagram (I0) commutes. Let a,d € A and w € H. Then

VasVia(aGy © dCy © w) = Vaa(A(a) ,,5®a 1) (Cp © dCy & w) = AP (a) (¢4 & Ad) Gy Sw)),
where A® = (A xid) o A = (id *A) o A. On the other hand,

Vi2VisVas (aly © dCy S w) = Vi2Vis(ay © A(d)(Cy G w))
= Vi2Auz(a) ¢y © A(d) (¢ S w)) = AP (a) (¢ © A(d) ¢y B w))),

where Ais(a) = Y23(A(a)s,5®qid)X2s. Since a and d were arbitrary, we can conclude
VagViz = Vi2Vi3Vas.
Finally, V is regular because by Theorem [£.6] Lemma [3:9]ii) and Proposition B.8]iii),

KahVia)e] = Kah (/3 ®aD)V(J5@al)l)2]

= [I{BLV*|8)2J]
= [I{Cu 11 A(A)[B)2]]
= [[{Cu1|B)2AT] = [IBJ,s - JuCEAT] = [aa*]. O

By Theorem[5.3] the regular C*-pseudo-multiplicative unitary (H, B, a, B, V) constructed
above yields two Hopf C*-bimodules (A(V)%”?, Ay) and (ﬁ(V)i,’o‘7 Av).
Proposition 5.7. (A(V)%? Avy) = (4%° A).

Proof. We have A(V) = [(al1V|B)] = Kadi A(A)IGun] = [AalilCun] = [Apal(a™y)] =
[As(B°?)] = A and Ay (a) = V(a5®.1)V* = A(a) for all a € A. a

The Hopf C*-bimodule (A\(V)%a, Av) will be studied in the next section.
Our first application of the fundamental unitary is to prove that the coinvolution reverses
the comultiplication.

Theorem 5.8. (Ro#*sR) oA = AdsoAoR.
The proof involves the following formulas:
Lemma 5.9. i) AELV|EN0) = (€[1ViaVis|€'1 for all € € o, & € B.
ii) RELVIEN) = TE 1 VITET ) for all E € €' € .
Proof. i) For all £ € a, £ € B, we have that AELVIEN) = V(KELVIEN) ;@ 1) V*
|1 Vas Vi Vas|€951 = (€1 V12 Vi3|€ )15 see also [17, Lemma 4.13].

ii) By Lemma [39] and Theorem [5.6] we have that R((£|1V|€')1) = I W V*[EnT
<J€'Ju|1(Ja§51)*V*(Ja@61)*|J€Ju>1 = (JE Ju W V|JEJu)n for all £ € a, & € B
w w

O
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Proof of Theorem[5.8. Let £ € a and ¢’ € B. By Lemma [5.911),

(Ads o(RaxsR) 0 A) (L1 V[ED1) = (Ads o(Ra#sR)) (€[ Vi2Visl€ )
= Ads, ((Ia?ﬁ[)*<§’|lvlévlg|£>1(IQ?BI)).

By Lemma [3:9]ii), we can rewrite this expression in the form

Ads ((JE€Tu1(J5 @anaTa®p))VisVi2(Ja © 10 @5 1)*|JE 1)
M M M 1

Two applications of Lemma [3.9]iii) and Theorem and an application of Lemma [5.9] ii)
show that this expression is equal to
Ads: ((T€' T, VisVazlJETudn) = (€ TuiViaVisl JE, 0
= A(JE T 1 VIIETu) = A(RKELVIEN)). a

A second fundamental unitary Like in the theory of locally compact quantum
groups, we can associate to a given compact C*-quantum groupoid besides (H, 3,a,3,V) a
second C*-pseudo-multiplicative unitary (H,a, 3, a, W) as follows.

Theorem 5.10. There exzists a reqular C*-pseudo-multiplicative unitary (H,a, 3,8, W)
such that W*|aCsy2 = A(a)|Cpy2 for all a € A. Moreover,

W =S(3@)V*([5®aD)S = (Ia® ;)VP (1o ®41).
T T T T
Proof. Let a€ A and £ € H. Since I¢yJ, = (s and A(R(a)*) = Z(IaJ®B[)A(a)(I/J»J®QI)E7

S @al)*V(I;@a1)* (€ © aly) = N(Ia @DV (Ials T, © I€)
“ “ = Z(Iag%zaf)V(R(a)*Cw © I§)
= Z(Ia%aI)A(R(a)*)(Cw G I¢)
= A(a)(fa%BI)Z(Cw G I6) = A(a)(£© (p).

Therefore, the unitary W = S(13®a1)V*(I5®al)% satisfies W*[aCsy2 = A(a)|(py2 for
Ju Ju

all @ € A. Since (H,ﬁ,a,g, V°P) is a regular C*-pseudo-multiplicative unitary, so is
(H,a,8,8,W). O

The passage to the setting of von Neumann algebras In this paragraph, we
indicate how every compact C*-quantum groupoid can be completed to a measurable quan-
tum groupoid in the sense of Lesieur [9] and Enock [5]. We assume some familiarity with
[9] or [5].

Let p be a faithful KMS-state on a unital C*-algebra B. Then the state i on N :=
B” € L(H,) given by y — {{.|y(.) is the unique normal extension of y and is faithful
because ¢, is cyclic for m,0op (B°?) € N'. Evidently, the Hilbert space Hz := H, and the
map Ag: N — Hp, y — y(u, form a GNS-representation for fi.

Lemma 5.11. Let u be a faithful KMS-state on a unital C*-algebra B and let (v, $) be a u-
module structure on a unital C*-algebra A. We put N := B" < L(H,), M := A" € L(H,),
and use the notation of Lemma[2.2

i) r extends uniquely to a normal embedding 7: N — M.

it) ¢ extends uniquely to a normal completely positive map <z~5: M — N, and v =jio q; If
¢ is faithful, so is ¢.
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iii) Cy =7(y)¢, C*x = (x)C*, d(xi(y)) = ¢(x)i(y) for allze M, ye N.

Proof. 1) Uniqueness is clear. Put & := [A(]. By LemmasB2 andB7 H, ~ & H,,. Hence,
we can define a *-homomorphism 7: N - L(a® H,) = L(H,) by = + ids ©z. By Lemma
B 1) 7 extends 7, and routine arguments show that 7 is normal and injective.

ii) ¢ is uniquely determined by ¢(z) = ¢*z(¢ for all z € M, and clearly 7(x) = (¢, |2, =
{Cu|CF2CCL) = (Lo @)(z) for all z € M. If ¢ is faithful, so is v and, since i is faithful and
v=7[io (;3, also q~5 is faithful.

iii) Use Lemma [2.2]iii) and the fact that 7, ¢ are normal extensions of 7, ¢. O

Let (B, p, A, 7, ¢, 8,1, 68, R, A) be a compact C*-quantum groupoid. We keep the notation
introduced before and put

N :=B"c L(H,), N .= (B = N' € L(H,), M :=A"c L(H).
By the previous remarks, the maps p, r, ¢, s, ¥ have unique normal extensions
p:N->C, #*:No>M, ¢:M—>N, 5N >M, ¢:M-—N.

Before we can extend the comultiplication A from A to M, we need to recall the definition
of the fiber product of von Neumann algebras [I4] and the underlying relative tensor product
of Hilbert spaces [15]; a reference is also [19] §10]. The relative tensor product of H with
itself, taken with respect to §,7 and fi, is defined as follows. Put

D(Hy; i) »= {n € H[IC > 0¥y € N : [F(y)nl < CllyCul}-

Evidently, an element € H belongs to D(Hy; i) if and only if the map N¢, — H given
by y¢, — 7(y)n extends to a bounded linear map L(n): H,, — H, and L(n)*L(n’) € N’ for
all n," € D(Hz; j1). The relative tensor product H;:;®rH is the separated completion of the

m
algebraic tensor product H @ D(Hy; i) with respect to the sesquilinear form defined by
WO On) = WIBLM*L( )W) for all w,w’ € H, n,n" € D(Hz; ).
We denote the image of an element w ® 7 in Hg@;H by ws®:n.
m

Lemma 5.12. i) a°?¢, € D(H; i) and L(a®P(y) = aP(y € B for all a € A.

11) There exist inverse isomorphisms

Q5 Ha®sH = H)p,©8 - Hs®+H, Vap: Hi®:H —aSp, H=H.®sH
s

fi
such that for allw e H, a€e A, £ € o, n € D(H#, 1), (€ H,
Do p(w O a”(y) = ws®ra® ¢y, Va,5(6¢:@n) = £ S L(n)C.

Proof. i) For all a€ A, y € N, #(y)a’®{, = a7 (y)CsCu = a°PCyylu. The claims follow.
ii) The formulas for @, 3 and ¥, g define isometries because for all w, a, &, n, ( as above,

lw© a®¢sl” = (w]pa(Ch (@) *aPCs)w) = (w|3(L(aC) * L(a®P())w) = |ws®ra ¢ |

and

1€¢s@rnll* = CECIE(L()* Ln)EC) = (CIE*EL () * L(n)C)
= (L) *ps(E*EF) L)) = € © L™

Moreover, ¥, 3 0 @, = id because for all a,§, ¢ as above,

(Ta.50Pap) (€60 a""C) =€ 0 L(a™C)C = €0 a” (¢ = £ 0 a’ (. U
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We identify Hoa®pH with H:@7H via ®4 5 and ¥, s without further notice.

The fiber product Mz#*:M is iieﬁned as follows. One has 7#(N) D(Hr; 1) S D(Hr; i),
and for each =, 2’ € M’, thgre exists a well-defined operator z:®:z' = L(H:®#H) such that
(x;(?;x’)(wg(@;n) = zwsQsan for all w e H, n € D(Hz; i). Nov‘:z, :

Lemma 5.13. A extends to a normal #-homomorphism A: M — Ms#zM.
0

Proof. Simply define A by A(z) := V(z ©id)V* for all z € M. |

The notion of a measurable quantum groupoid was first defined in [9]; later, the definition
was changed in [5] §6].

Theorem 5.14. (N, M,f,é,A,cZ),@/;,ﬂ) is a measurable quantum groupoid.

Proof. First, one has to check that (N, M, 7,5, A) is a Hopf-bimodule; this follows from the
definition of A and the fact that V is a C *_pseudo-multiplicative unitary.

Second, one has to check that ¢~> and 7,/; are left- and right-invariant, respectively. This
follows from the fact that these maps are normal extensions of ¢ and ¢, which are left- and
right-invariant, respectively.

Finally, one has to check that the modular automorphism groups of 7 = fio (Z) and

™ = [i°? 0 1) commute, but this follows from the fact that 7! = Ug1/a. O

6 Supplements on C*-pseudo-multiplicative unitaries

In this section, we interrupt our discussion of compact C*-quantum groupoids and study
several properties C*-pseudo-multiplicative unitaries that shall prove useful later. The
corresponding properties for multiplicative unitaries were introduced and studied in [IJ.
Throughout this section, let p be a faithful KMS-state on a unital C*-algebra B.

Fixed and cofixed elements for a C*-pseudo-multiplicative unitary We shall
study elements with the following property:

Definition 6.1. Let (H,B,a,ﬂ, V) be a C*-pseudo-multiplicative unitary over u. A fixed
element for V is an element n € B\ N a satisfying Vim1 = [ny € L(H, Ho®pH). A cofixed
element for V is an element £ € a n B satisfying V|€)2 = |£)2 € L(H, Ha®pH). We denote
the set of all fized/cofized elements for V' by Fix(V') /Cofix(V).

Til the end of this paragraph, let (hﬂﬁ7 a,3,V) be a C*-pseudo-multiplicative unitary
over .

Remarks 6.2. i) Fix(V) = Cofix(V°?) and Cofix(V') = Fix(V°P).
ii) Fix(V)*Fix(V) and Cofix(V)*Cofix(V') are contained in B n B°? = Z(B).

iii) Since Fix(V) € 3 n &, we have po(B*?)Fix(V) = Fix(V)B° < § and p5(B)Fix(V) =
Fix(V)B < «a. Likewise, pg(B)Cofix(V) € a and po(B°?)Cofix(V) < 5.

Lemma 6.3. i) ({]2V[)2 = pa (%) = pz(£*¢) for all €, & € Cofix(V), and (n[1V|n')1 =
ps(m*n') = pa(n*n') for alln,n" € Fix(V).
ii) pz(B)Cofix(V) € Cofix(V) and pg(B)Fix(V) € Fix(V).
iii) [EE*E] = E for E € {Cofix(V), Fix(V)}.
iv) [Cofix(V)*Cofix(V)] and [Fix(V)*Fix(V)] are C*-subalgebras of Z(B).
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Proof. We only prove the assertions on Cofix(V'); the other assertions follow similarly.

i) Forall £, ¢ € Cofix(V) and ¢ € H, {£]2V[€")2¢ = (€|2|€)2¢ = pa (£¥E')¢ and ((£]2V]E7D2)*C

(€]21€)2¢ = pz(£*E)*C.

ii) Let b € B and £ € Cofix(V). Then pz(b)¢ € p3(B)B n pz(B)a S B n «, and
V15018 = Vo162 = paiy VI = 0y DI = Io0)8)2 because V(B »
By=ash.

i) Let &,&,6"” € Cofix(V). Then pa(§'*¢") = p3(§'*¢") by i) and hence V[£€'*E")2 =
V1€205(8"*€") = [§)2pa (§7%") = 166" )2 in L(H, Ha®sH).

iv) Immediate from iii). |
Definition 6.4. We call (H, 3, a, 3, V) or briefly V étale if n*n = idg for some n € Fix(V),
and compact if £*¢ = idg for some ¢ € Cofix(V).

Remarks 6.5. i) By Remark[6.2] V is étale/compact if and only if V°? is compact /étale.

ii) If V is compact, then idy € A(V); if V is étale, then idy € A(V). This follows directly
from Lemma [6.3]

The following observation supports the plausibility of the assumptions in condition i) of
Definition [4.8t

Remark 6.6. Let (H,B, a, 3,V) be a regular C*-pseudo-multiplicative unitary over u. If
& € Fix(V) and 8 = [A(V)&], then by [16l Lemma 5.8],

[Av(AV))E1 AV)] = [V(AV) 50V * €)1 A(V)]
= [VIAW)&onAW)] = [VIBWAV)] = [la) A(V)].

Likewise, if 70 € Cofix(V) and a = [A(V)no], then [Ay (A(V))|nod2 A(V)] = [|8)2A(V)].
The (co)fixed vectors of the C*-pseudo-multiplicative unitaries introduced in Theorems
5.4l and B.10] are easily determined:
Proposition 6.7. Let (B,u, A,r, $,5,1,8, R,A) be a compact C*-quantum groupoid.
i) The associated C* -pseudo-multiplicative unitary (H, B,a, B, V') is compact and Fix(V) =
[r(B)Gy]-
i1) The associated C* -pseudo-multiplicative unitary (H, o, 3, &, W) is étale and Cofix(W) =
[s(B°")Cs]-
Proof. 1) Evidently, ¢, € Fix(V), and by Lemma [63] ii), [r(B){y] = [ps(B){ys] S Fix(V).
Conversely, if no € Fix(V'), then 1o € B= [A¢y] and therefore

1m0 = pa(ChCa)m0 = ol2lnoniCs = (Csl2Vno)1s
€ [(Cp2A(A)|CypD1Cs]
= [(Cs[2A(A)[Cpr2Cp] = [r(9(A))Cu] = [r(B)Cy]-

ii) This follows easily from i) and the relation W = (1o ® 31)V(Ia ®s1). a
T T

Haar weights and counits obtained from (co)fixed elements Fixed and cofixed
elements for a C*-pseudo-multiplicative unitary yield bounded Haar weights and bounded
counits on the legs as follows:
Theorem 6.8. Let (H7B,a7ﬂ, V) be a well-behaved C*-pseudo-multiplicative unitary over
1.

i) Assume that (H, B, a,3,V) is étale and that no € Fix(V) satisfies nino = idg, .
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(a) A bounded left counit € for (A\(V)%a7£v) is given by €(@) := nFano. For all
n € B,€ € a, we have €((n]2V|€)2) = n*€. In particular, € does not depend on the
choice of no, €(A(V)) = [8*al, and [8* ] is a C*-algebra. If V is regular, then €
is a bounded counit.

(b) A bounded right Haar weight 1 for (A(V)%P, Av) is given by ¢(a) := n¥ano.

i) Assume that (H,(3,a,3,V) is compact and that & € Cofix(V) satisfies £X&0 = idg, .

(a) A bounded right counit ¢ for (A(V)%P,A) is given by e(a) := £¥ao. For all
nea,f€ B, we have e({n|1V]E)1) = n*€. In particular, € does not depend on the
choice of no, e(A(V)) = [a*B], and [a*ﬁ] is a C*-algebra. If V is reqular, then €
is a bounded counit. R

(b) A bounded left Haar weight (Zfor (E(V)’%a, 3\/) 18 given by (Z(a) = £&ago.

Proof. We only prove the assertions concerning (E(V)%a, ﬁv)7 the corresponding assertions
for (A(V)%?, Av) follow by replacing V by VP,
i) (a) Evidently, € is a completely positive contraction. Let 7,7 € 8 and &, £’ € . Then

@2V [€)2m0 = (nl2lmo1§ = non™€ = nong (nl2V1€)2m0 = noe(n]2V[£)2)- (11)
Now, € is a #-homomorphism and €(A(V)) = [8*a] because
16 N2V 1€2m0m0 (1’ 12V [€ D20 = 03 laVIE)2(n'|2VIE Dm0, €2V [€)2) = ngmon™€ = n*s.
Since [nda] = B and [776"3] = B°P, the map € is morphism of C*-(u, u°?)-algebras A\(V)’ga
and [B*a];"*". Tt is a left counit because (¢ # id)(A(@)) = (w0l V*(1a®3d)V o) =

{mol1 (1 a®5a)|no>1 =3 for all ae A(V).
Assume that V is regular, and consider the following diagram:

I% [€>2 H» ®aH Ho®sH Ho®@sH 12 <n|2 I

lmﬁz lmﬁz (%) |’70>2\ /<7102 (nolz]
Vis Ve

5®aH 13 HB@OLHE()DO& 13 2 B®O‘ aqa@,@‘H s B®a

‘ Ay ((nl2V1)2) ]

The lower cell commutes by the proof of [I7, Lemma 4.13], cell (*) commutes because
Vas|noY2 = |no)2, and the other cells commute as well. Since n € § and £ € o were arbitrary,
€ is a bounded right counit. R R R

ii) (b) By Remark B211), [§5A(V)é] = [65pa(B)A(V)pa(B)é0] < [B*A(V)A] <
B°P. Hence, the given formula defines a completely positive contraction ¢: A A(V) B°P.
Since pa (b°P)&o = &ob°P for all b°? € B‘””7 condition i) of Definition [£2] holds. Condition ii)
holds because for all G € A(V) and 5,7’ € B,

Xl Av (@) Y180 = n* (& |2V * (id a®30) V [€0y2n
= n*(&ol2(id «®pa)[E0)2n" = 1™ pa (§5 007 - O

Balanced C*-pseudo-multiplicative unitaries and C*-pseudo-Kac systems
Weak C*-pseudo-Kac systems were introduced in [16] as a framework to construct reduced
crossed products for coactions of Hopf C*-bimodules. Let us briefly recall the definition.
Definition 6.9 ([16]). A balanced C*-pseudo-multiplicative unitary over u is a tuple
(hﬂogé@ﬂ,ﬁ/?\7 U,V), where (H,oz,&,@ﬁ) is a C*-(u, p, u°, n°?)-module, V : H;®oH —
H.®pH is a unitary and U: H — H is a symmetry satisfying the following conditions:
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i) Ua=a and UB =§;
1) (H, E,a,ﬁ, V), (H, 4, BA,a, \7), (H,«, B, a, \7) are well-behaved C* -pseudo-multiplicative
unitaries, where V and V are defined by

= (1Q®BU)V(1§®(3U)E: Ha@gH - H/§®QH

‘7
V= S(Ua®31)V(Us®al)S: Ho®sH — Hs®aH

A weak AC*-pseudo-Kac system over p is a balanced C’*-pseudg-multiplicative unitary
(H,a,a,8,8,U,V) such that (H,B,a,B,V) is well-behaved and [A(V),UA(V)U] = 0 =
[A(V),UA(V)U]. A weak C*-pseudo Kac system (H o, B,8,B,V, U) is a C*- pseudo-Kac
system if (H,E7 .8, V), (H,& B, V), (H,o, 8,4, V) are regqular and (S(1a®pU)V )

id e £(H ;®aH).

Let (H, o, @, 83, E, U, V) be a balanced C*-pseudo-multiplicative unitary over p. Then by

[16] Proposition 3.3],

A(V) = Adu(A(V)), Ay = Ad(U®U) oAy oAdy, A(V)=A(V), Ay =Ay,
(12)
A A

A(V) = Adu (A(V)), Ap = Ad(U®U) oAv o Ady, A(V)=AV), Ap=

In particular, V and V are well-behaved if V' is well-behaved.

Lemma 6.10. If (H a, a, 3, ,B U,V) is a balanced C*—pseudo multiplicative unitary, then
Fix(V) = UCofix(V) = Coﬁx( ) and Cofix(V) = le(V) Ule(V) O

Corollary 6.11. Let (H,a, &ﬂ,ﬁ, U,V) be a balanced C*-pseudo-multiplicative unitary
over i, where V is well-behaved.

i) Assume that (H, B, a,3,V) is étale and that no € Fix(V) satisfies nino = idg, .

(a) A bounded counit for (E(V)%a, Av) is given by a — niano.
(b) A bounded left Haar weight for (zél(V)(;I’B7 Av) is given by a — nifU*aUno.

i) Assume that (H, B, a,B3,V) is proper and & € Cofix(V) satisfies £¥&o = idg,,.
(a) A bounded counit for (A(V)%® Av) is given by a — & a&o.
(b) A bounded right Haar weight for (A(V)5*, Av) is given by @ — EXU*aU&.

Proof. Apply Theorem [6.8] to V or \7, respectively, and use Remark ii) and (I2)). O

7 The dual Hopf C*-bimodule

In the preceding section, we saw that the fundamental unitary associated to a compact C*-
quantum groupoid gives rise to two Hopf C*-bimodules and that one of these two coincides
with the underlying Hopf C*-bimodule of the initial C*-quantum groupoid. In this short
section, we study the other Hopf C*-bimodule, which can be considered as (the underlying
Hopf C*-bimodule of) the generalized Pontrjagin dual of the initial C*-quantum groupoid.

In principle, the dual Hopf C*-bimodules of compact C*-quantum groupoids should
precisely exhaust the class of étale C*-quantum groupoids with compact base, but a precise
definition of étale C*-quantum groupoids is not yet available. However, we can describe
some important ingredients like the underlying Hopf C*-bimodule, the unitary antipode,
and the counits of the dual of a compact C*-quantum groupoid.

Throughout this section, let (B, u, A, 7, ¢, 5,%, §, R, A) be a compact C*-quantum groupoid.
We use the notation introduced in the preceding sections.
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The dual Hopf C*-bimodule In Theorem [5.4] and Proposition 5.1 we associated to
the compact C*-quantum groupoid a regular C*-pseudo-multiplicative unitary (H, 8, o, 3, V).

Now, we determine the C*-algebra of the associated Hopf C*-bimodule (A\(V)Z’a, Av)
Proposition 7.1. i) For each a € A, there exists an operator A(a) € L(H) such that
AMa)Ay(d) = Ay ({pl2A(d)]|aP(py2) for all d € A, and A(a)* = JA(R(a))J.
i1) {x°PCe|2V ]y PClyy2 = Ayz™) for all z,y € A.
iii) A(V) = [A(A)].
Proof. By definition, A\(V) is the closed linear span of all operators of the form {x°?(y |2V |y (y )2,
where x,y € A. But for all z,y,d € A,

(@ (s |2V Iy Cu)2dCy = (x™Col2V (dCy © Y™ Cy)
= (2|2 A(d) (G © ¥ (o) = Au (o2 A (D)) Y7 )Co)2)-

This calculation proves the existence of the operators A(a) for all a € A and that A(V) =
[A(A)]. Finally, by Theorem [5:6] Lemma [3:9] and Proposition B8]

Ayz®)* = (@PCo )2V Iy Cuy2) ™
= <yopr|2(Ja@BI)V(J(X@BI)WW%%
= JAY PGy Jul2V Iz Cypup2 J
= JRY™)PCol2VIR(™) P (2 d = JN(R(2)*R(y))J = JA(R(yz*))J. O

The associated weak C*-pseudo-Kac system PutU:=1J=JI.
Theorem 7.2. (H,a,&,ﬁ,g, U,V) is a weak C*-pseudo-Kac system.
The proof involves the following formula:
Lemma 7.3. IX(a)IA,-1(d) = A1 ((Cy[1A(d)|R(a*)P¢y)1) for all a,d € A.
Proof. By Lemma [£6] we have for all a,d € A
IX(a)IA,—1(d) = IX(a)AL(R(d)™)
= IGol2AR(A))|a”Co)21G, =1 = ((Goh AW R(@®) PG )G D
Lemma 7.4. V=W and V = (JQS@BJ)VOP(JO‘S@B‘])'
w W

Proof. Theorems [5.6] and [5.10] imply (Up®aU)W (Ua®3U) = (Ja®3)V7P(Ja®5J)
T T

7=
and ¥ = D(Ua®s1)(J3 @)V * (75 @al)(Us@al)S = D3 @ul)V*(Is@a)E = W. O
" n

I

Proof of Theorem[7.2 By Lemma [[4] (H,«, S, q, \7) and (H,a, E,a,‘vf) are regular C*-
pseudo-multiplicative unitaries. Clearly, we have [A(V), UA(V)U] = [A(V), JIA(V)IJ] =
[A(V),JA(V)J] = 0. It remains to show that [A(V),UA(V)U] = 0. But for all z,y,d € A,
IN@)IN(y)dCy = TN (@) I{Co 2 A(d) ]y o0~ 2¢,mn

= (ol Aol Ay Cop2d ™) RE™) 7 oG

= (CuhiCols AP @)y Co)s 67 R(@*) 7 Cu)n6™12¢,

= (Go oG i AP (D52 R@*) P Cudly P CopaCo

= AW hA@)IS2R(@*) P16
AW)Coh AAST )| R(*) P ¢u)16"2¢,

AWMA@)TAS™%C -1 = A(y) I\ (@) IdCy.

Therefore, [A(V), UA(V)U] = [A(V), IJA(V)JI] = [A(V),IA(V)I] = 0. O
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Coinvolution and counit on the dual Hopf C*-bimodule Proposition [] im-
mediately implies:

Corollary 7.5. There exists a *-antiautomorphism R: A\(V) — A\(V), am— Ja*J. a

This #-antiautomorphism is a coinvolution of the Hopf C*-bimodule (A\(V)%a, Av) in
the sense that it reverses the comultiplication:

Proposition 7.6. AoR= Ads O(éé*aé) oA.

Proof. By ([I2) and Lemma [T.4] we have for all a € A\(V)

Av(@) =V(@s®;)V* = (Ja ®3J)ZV*Z(JaJ®EJ)(aa®51)(Ja @EJ)*EVZ(JQ?EJ)*

le" H

— (Ads o(R#a R) 0 Av) (R(@). .

The constructions in Section [l yield a counit on A\(V):

Proposition 7.7. i) The Hopf C*-bimodule (A\(V)%a, Av) has a bounded counit €, given
by eA(y*x)) = CEAW* )y = JuCGa*yCyJu for all z,y € A.

ii) €(R(@)) = J,e@)* J, for alla e A(V).

Proof. i) By Proposition [6.7], Theorem i), and Corollary [611] i), the map €: A\(V) —
L(H), @+ ¢}acy, is a bounded counit, and by Theorem 6.8 i) and Proposition [T}
e (y*z)) = €((JzJCs 2V Ty Cy)2) = JuCla*yCy, for all z,y € A.

i) For all @ € A(V), we have &(R(@)) = ¢¥Ja*JCy = Ju(CEaCy)* Ju = Jue@)* Ju. O

8 Principal compact C'*-quantum groupoids

In this section, we study compact C*-quantum groupoids that are principal. Most impor-
tantly, we show that a principal compact C*-quantum groupoid is essentially determined by
the conditional expectation 7: B — 7(B) € Z(B) and the state u|-(p), and that the dual
of a principal compact C*-quantum groupoid is the C*-algebra of compact operators on a
certain C*-module.

Principal compact C*-quantum groupoids Recall that a compact groupoid G is
principal if the map G — G° x G° given by x — (r(z), s(z)) is injective or, equivalently, if
C(G) = [r*(C(G"))s*(C(G))]. The second condition suggests the following definition:

Definition 8.1. A compact C*-quantum graph (B,u, A,r,¢,s,1,d) is principal if A =
[r(B)s(B°?)], and a compact C*-quantum groupoid (B, p, A,r, ¢, s,1,d, R, A) is principal if
A= [r(B)s(B™)].

To simplify the following discussion, we only consider the case where § = 14. Corollary
[A13] shows that this is not a serious restriction.

Let (B,u, A,7,¢,5,%,14) be a principal compact C*-quantum graph. Then there exist
at most one coinvolution R for (B, u, A,r,¢,s,1,14) and at most one comultiplication A
for A% because necessarily R(r(b)s(c??)) = s(b°)r(c) and A(r(b)s(c°P)) = r(b)a®ss(cP)
for all b,c € B. We shall give conditions for the existence of such a coinvolution and a
comultiplication, and determine when (B, u, A,r, ¢,s,1,14, R,A) is a principal compact
C*-quantum groupoid. These conditions involve the completely positive contractions 7 =
Yor: B— Z(B®?) =~ Z(B) and 77 = ¢ 0 s: B°? - Z(B) =~ Z(B°?) introduced in (2).

Theorem 8.2. Let (B, i, A,r,$,5,%,14) be a principal compact C*-quantum graph. Then
the following two conditions are equivalent:
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i) There exzist R, A such that (B,u, A,7,¢,8,1%,14,R,A) is a compact C*-quantum
groupoid.

i) T(b) = 71(b°?) for all b € B, 7: B — 7(B) is a conditional expectation, uoT = u,
ror =sor, and 7(bo" Z/Q(d)) = 7(do", , (b)) for allb,d € Dom(d", ).

Before we prove this result, let us give an application: every compact C*-quantum
groupoid has an underlying principal compact C*-quantum groupoid. The nontrivial part
of this assertion is that the comultiplication restricts to a morphism of C*-(u, u°?)-algebras.

Corollary 8.3. Let (B, M,A T, ¢, 8,9, 14, R, A) be a compact C*-quantum groupoid. Put
A:=[r(B)s s(BP)] € A, ¢:= 9|3, ¢ := |z, R:= R|;. Then there exists a unique A such
that (B, w A, s, A,R A) is a compact C* -quantum groupoid. O

The proof of Theorem is divided into several steps. First, note that for all b,c € B,
$(s(b)r(c)) = 7' (b)c, Y(r(b)s(c)) = 7(b)c”?,
v(s(b)r(c)) = p(r'(6%)e), v (r(b)s(c™)) = p (T(b)c).

Lemma 8.4. Let (B,pu, A, 7, ¢,5,1,14) be a principal compact C*-quantum graph. There
exists a coinvolution R for (B, u, A,7,¢,s,%,14) if and only if 7(b) = 77 (b°P) for all be B.

(13)

Proof. The only if part is Lemma 27ii). So, assume that 7(b) = 71 (b°P) for all b€ B. Then
there exists an antiunitary I: H — H such that Ir(b)s(c’?)(,—1 = s(b°?)*r(c)*¢, for all
b, c € B because by (13,

|s(®°F)* CV“ =v(s((b*b)P)r(cc*)) = vt (r(®*b)s((cc®)?)) = ||r(b)s(c°p)cl,_1”2.

A short calculation shows that Ir(b)*s(c®?)*I = s(b°P)r(c) for all b,c € B. Therefore, we
can define a #-homomorphism R: A — A by a — Ia™I, and R(r(b)s(c°?)) = s(c°?)r(b) for
all b, c € B. Finally, (I3) implies that (¢ o R)(a) = ¢ (a)°? for all a € A. a

Lemma 8.5. Let (B, i, A,r, $,5,9,14) be a principal compact C* -quantum graph such that
7(b) = 7T (6°P) for allbe B, 7: B — 7(B) is a conditional expectation, and poT = p.

i) Foralld,e € B, where e is analytic for o¥, there exists an operator Tg.. € L(H, H.®pH)
such that for all x € 7(B) v r(B)°? and y € s(B°?) u s(B°?)°?,

Ta,exyCe = 2Cy © de™ (i © yCo, (14)
and for all b,c,b',c,d', e’ € B, where € is analytic for o*,
Tie(r(b)Cp S d'€'PCu© s('F)Cs) = r(r(d*d' ol 5 (e'e™))r(V)s(<"F)¢.  (15)
it) Put T :={Ty. | d,e € B, e analytic for o*}. Then [Ta] = ava, [T*(a>a)] = a and
[TBl=B<B, [T*(B<B)] =8

i11) There exists a comultiplication A for A?{’*B.

Proof. 1) Let d, e be as in i). Then there exists a T4, € L(H, Ho.®pH) such that equations
(@) and ([IZ) hold for all x € r(B), y € s(B°?) because

(r(B)o © deGu © 5(e)Colr (B)God © G © 5o ™Yy o
= {Culd* () ¢( (b* b))¢( ((CC )"))d € ¢y
= {Cu|T (™ )T (' c*)d*d (e'e*) P )y
= pu(r(®*V)r(c*)d*d " Z/Q(ee )
= p(r(* )7 (c'c*)r(d*d o, 5 (e'e¥)))
=,u(7—(b bT(d*d 0'72/2(66 )T (c'c*))
= {r(b)s(c®)¢ur(T d*daﬂp(ee Nr®)s(cP)C)y
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for all b,c,b',c,d ;e € B, where ¢’ is analytic for o*. Using Lemma [31 iii), one easily
concludes that Ty .zyC, = xCyp © de®P(u © y(y for all x € r(B)°P and y € s(B°P)°P.
ii) Let b,ce€ B and d, e as in i). Then for all f € B,
Ta,er(b)"s(c™) "o f P Cu = Ta,er (f0)*s(c™) "¢y
=7(fb)"Cp © e’ © 5(c) (o
= |s(c™)?r(e) (o2 (b) ™ s(d™") P Co £ Cu.
This relation implies [T 8] = 8« 8, and the remaining assertions follow similarly.

iii) For all b, ¢, d, e € B, where e is analytic for o*, we have Ty .7(b)s(c°?) = 7(b)a®pss(cP).
Now, the claim follows from ii). |

Proof of Theorem[82 1) implies ii) by Proposition [LI01 Conversely, assume that ii) holds.

Then the preceding lemmas imply that there exist a coinvolution R for (B, u, A, 7, ¢, s,1,14)

and a comultiplication A for A‘;I’B. We show that the conditions in Definition 4.8 hold.
First, we check condition [L8]1). Since pg =r and po = s,

[A(A)|ap1] = [Ips(B)a1pa(B7)] = [|aB)1pa(B™)] = [la)1ps(B)pa(B)] = [la)1 A],
[A(A)[Cu)1A] = [lps(B)Cur1ps(B)A] = [|ps(B)Cs B A] = [|ps(B)s(B*)*Cur1 Al = [lap1 A].
Similar calculations show that [A(A)|B)2] = [|8)2A4] and [A(A)|Csr2A] = [|B)24].

Next, ¢ is a bounded left Haar weight for (A?{’B, A) because for all b,c € B,

(Col2A(r(8)s(c”))[Co)2 = {Csl2(r(b)a®s5(c”))[Cs )2

= 7(b)pa((Fs(c™)Cs)
=r(b)s(p(s(c™))) =r(b)s(r(c)) = r(br(c)) = r(¢(r(b)s(c))).
A similar calculation shows that 9 is a bounded right Haar weight for (A%°, A).

Finally, we prove that ¢, and R satisfy the strong invariance condition L8] iii). By
Lemma [£T17] we have for all b,c,d, e € Dom(aﬁm)

Cul1A(r()s(c)) ((r(d)s(e™))*" a®p1) |y 1 = r(e)s(c™)r(7(bo’; 5 (d)))
= R(s(eOP)r(c)s(T(dJﬁi/Q(b))
= R({CuhA(r(d)s(e™)) ((r(0)s(c”) " a®s1) [Gu)1)-
Since Dom(o", ;) S B is dense, condition {8iii) holds. O

The reconstruction of a principal compact C*-quantum groupoid A princi-
pal compact C*-quantum groupoid is completely determined by the conditional expectation
7: B —> 7(B) € Z(B) and can be reconstructed from 7 as follows. Assume that

e (' is a commutative unital C*-algebra with a faithful state v,
e B is a unital C*-algebra with a v-module structure (¢, 7) such that +(C) € Z(B).
We put p:= v o7 and identify C with ¢(C) via ¢.
Lemma 8.6. 7(bo", ,(d)) = 7(do", (b)) for allb,d € Dom(c", ).
Proof. For all ce C, we have o' (c) = g7 (c) = c for all t € R by Lemma [2:2] and hence
v(c*T(bot () = p(c*bot 5 (d) = (Au(b* )| TAL(d*))
= (Au(d®)|JAL(b%e))
= p(do", ,(c*b)) = p(dc*a”, , (b)) = v(c*T(do", , (D).

Since ¢ € C' was arbitrary and v faithful, the claim follows. O
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As in Proposition [377] we define an isometry (r: H, — H, by Ay (c) — Au(c), identify
B, B°? with C*-subalgebras of £(H,,) via the GNS-representations, and put

v:i=[BG] € L(Ho, Hy), V7= [B(] € L(Ho, Hy).

Proposition 8.7. There exists a unique principal compact C*-quantum groupoid (B, u, A,
7, ¢,8,%,1a, R,A) such that A = Byor@B°? € L((H,)or®~(Hy)) and for all b,c € B,

r(B) = byor @17, G(byor®,c”) =br(e), () = L@, (byor®,c”) = 7(b)e™.

Proof. Routine arguments show that there exists a unique principal compact C*-quantum
graph (B, u, A, 7, ¢,s,%,14) with A, 7, s, ¢, ¥ as above; let us only note that the completely
positive contractions ¢: A — B and ¢ — B°? are well-defined because they are given by
x > ((r|22|¢r )2 and © — (- |12|( )1, respectively. Now, the assertion follows from Theorem
3. 2] |

Every principal compact C*-quantum groupoid is of the form constructed above:
Proposition 8.8. Let (B, u, A,r,¢,8,%,14, R, A) be a principal compact C* -quantum group-
oid and put T = or.

i) C := 7(B) is a commutative unital C*-algebra, v := p|c is a faithful state on C, (id, )
is a v-module structure on B, and p =vorT.
Denote by ¢r: H, — H; the isometry cCo — ¢Cr and put v := [B(:], v°P := [B°P¢-].
it) There exists a unitary Z: H, — (H,)yor®~(H,) such that for all b,c € B,

E(r(d)?s(c)P¢) = b 6@ and  E(r(b)s(cP)(y) = blr © Cu © 7P

Moreover, Ef = [[7)1B°?] and Za = [|7°P)1 B].

iii) Adsz restricts to an isomorphism A — Bop®y B, 1(b)s(cP) > byor ®~cP.

Proof. 1) This follows directly from Proposition 410 and Proposition T4l

ii) There exists an isomorphism Z: H, — (Hu),er®,(H,) satisfying the first equation
in ii) because by Proposition E14] ([@3), and i) ||r(b)°?s(c°P)°P¢ | = v(r(bb*)s((c*c)°P)) =
v(T(bb*)T(c¥c)) = ||b°P¢r © G © ¢l |? for all b,c € B. From Lemma (32)) iii), one easily
deduces T'r(b)s(c®)y = b+ © (v © cP¢, for all b,c € B. Finally, EB = [|[47)1B°?] and
Ea = [|7°P)1 B] because for all b,c,d € B,

Er(D)s(c™)Cud” G = Er(b)s(e7dM)G,1 = bCr & G © CPdTCe = [bGr e d TG,
Er (D) Ps(7) T Cud G = r(0)Ps(CT) T S(dT)G = bTCr 6 G © edCr = [BTCyred

iii) Straightforward. a

The dual Hopf C*-bimodule Let (B,u, A,r, ¢,s,%,5, R,A) be a principal compact
C*-quantum groupoid and (H, B: a, B,V) the associated C*-pseudo-multiplicative unitary
(see Theorem [5.4). We show that the dual Hopf C*-bimodule (A\(V)%a,ﬁv) studied in
Section [ can be identified with the C*-algebra of compact operators on a Hilbert C*-
module over 7(B). This result is a (reduced) analogue of the result that for every principal
compact groupoid G, the irreducible representations of C*(G) are labelled by the orbits
G"/G and that each such representation is by all compact operators [13].

We use the notation of Proposition B8 and denote by K, = L(H,) the C*-algebra
corresponding to K¢ () ©id € L(y© H,,) with respect to the natural isomorphism v& H, =
H,, £5¢ w— &. Thus, K; = [{kv,. | b,c € B}], where ky.: H, — H, is given by
d¢, — br(c*d)¢, for all b,c € B. Note that K. S L((H)~)-

Lemma 8.9. (/CT)}BIZP’B is a C*-(u°?, u)-algebra.
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Proof. Clearly, (H,,B°", B) is a C*-(u°", u)-module. We have [pper (B)K.] = K, =
[p5(B?)K;] because for all a,b,c,d € B, a’ € Dom(c", ), por(a)ks,cdCu = abr(c*d)Cu
kab,edCy and pp(a'®P)kp,cdCu = a’*Pbr(c*d)(u = bU—z/Q( a')r(c*d)¢, = kba’i-/z(a’),cdgu- u

The comultiplication ﬁv can be described in terms of the isomorphism
Y: (H,)pr®s(H,) = B ©H,©B = H,, b?c(0cm b"c.
Note that T*IC. T S (K ) gor #5 (K- ) because [Y*IC- T| By ] = [T*K.B?] = [Y*B?K,] =
[|B°?»1 K+] and similarly [T*K,Y|B)2] = [|B)1K-].
Theorem 8.10. Let (B, u, A, 7, $,5,%, 14, R, A) be a principal compact C*-quantum groupoid
and (A\(V)%a73v) the dual Hopf C*-bimodule.
i) There exists an isomorphism of C*-(u°%, p)-algebras j: (ICT)gZp’B — A(V)*Z’ , given
by k — Z*(id 4 or k) E.
it) Avoj=(j*j)OAd»r .
iii) R(j(kve)) = j(ke ), where ¢ = ol ()" and b’ = a}),(b)* for all b,c € Dom(c}),).
i) €o0j =idg,.

Proof. 1) Let b,c € B be analytic for o and put a := r(b)s(c°?). Then the operator A(a)
defined in Proposition [TT] acts as follows. For all d, e € B,
A@)r(d)s(€”)Cw = Au ({Col2(r(d)a®ss(e™)r(b) P s(c”) ) |¢s)2)
= pu (B CE(EN)s ()P C)r(d)G = 5(bPH(s((0%a(0e) ")) r(d)Co,

and hence EX(a)Z*(d¢; © (v © €°P(r) = dér © & © VP71 (o 1/2( c)e)(r. Assume that e €
Dom(afzﬁ). Then by Proposition 10, Lemma [B71iii), and o*-invariance of T,

EN@EH (s & G © 0%y (€)Gr) = dlr & o © 0¥ (B0 ()e)Cr
=d¢- 9w © Uii/Q (b)T(CUii/Q (€)¢r-

Therefore, EA(a)=* = (id yor®:ky,cx), where b’ = 0, ,(b), and A(V) = Z*(id yor @K, ) E.
Since v is faithful and = unitary, the map j: Kr — A(V) given by k — =*(id ~or®~ k)= is
an isomorphism of C*-algebras.

It remains to show that j is a morphism of C*-(1u°?, u)-algebras. Evidently, tk = j(k)t for
all k€ K, and all t € [2*|7(°?);]. By Proposition B8 i), [E*|y)1B] = 3, [E*|y*P)1B] =

a, [(YhEB] = [(Y1 /) B] = [CB"] = B, and [(y*"|1Za] = [(1**[1ly"")1 B] = [CB] =
B. The claim follows. R
ii) By definition of Ay and j, we have for all x € a, y €7, k€ K-

Av GV HenE*|yd1 = V* (1a®pi (k) a0 Z*[y)1 = Vo (k)= |y)r = VFah Z* [y)k.
Likewise, by definition of j * j and Y, we have for all u € v?, ve~, ke K-
(G (TR (E¥ w1 5or@BE* [)1)T* = (E¥|up15er®BE™ [v)1) T KTTH
= (E*|ud1 por@BE" [0)1) T ¥k

Now, [V*|a)1Z*[y)1] = [(E*|¥°P)1 Bor@BE" [v)1) T *] because for all b, ¢, d, e € B,

VEr(®)7s(c) P CunEF [dCryre™ Cu = VF (r(b) P s(c™) ¢y © r(d)s(e”)Cv)

=V*(r(®)” ¢y & r(cd)s(e™)Cv)

= ( )7y S r(ed)s(e”)Cy
1671 Bor @BE" |cd(r)1) (1S (u © e”)
6P ¢ )1 Bor @BE" [edCrr) T e (.



Since [V*|ays=*|y)1 H,] = H, we can conclude Ay (j(k)) = (j * 7)(T* kT) for all k € K.
iii) Let e € Dom(c?}),) and b,c € Dom(c7}),). Since Js(f*")’¢, = 01/2 S (s(fP)°PY*C, =
s(afi/Q(f*)"p)o”CV for all f € Dom(c",) and 7(b*o fZ/Q(e*)) T(e* O'_Z/Q(b*))7

i/2
R(j(kb,e))s(e™) P ¢y = Jj (ko) * Ts(e) PGy
= Jj(kep)s(0" 5 (e*)P)PC,
= Js((cr (b* L/2<e*>>>°")”<u
= 50", 5 (c*T(0", 5 (b*)*€)P)PC = s((dT(b* €))7 Lo,

where b’ = o}, (b)* and ¢’ = 0}, (c)*. The claim follows.

iv) For all b,¢,d € B,
€(j(kv,e))dC, = C:}jj(kbw)cwdgu = C;j(kbw)s(dop)opgv
= Cps((br(c*d) ") "¢ = br(c*d)Cu = kpedCu. O

The C*-pseudo-Kac system Recall that in Theorem [[2] we associated to every
compact C*-quantum groupoid a weak C*-pseudo-Kac system.

Theorem 8.11. Let (B, u, A,7,¢,5,%,14, R, A) be a principal compact C* -quantum group-
oid. Then the weak C*-pseudo-Kac system (H,a, @, B,3,U,V) is a C*-pseudo-Kac system.

Proof. The C*-pseudo-multiplicative unitaries (H, E, o, 8,V), (H,a, E, a, \7), (H,a, B, a, \7)
are regular by Theorems [5.4] 510 and Lemma [[4] and the operator X := X(1.®sU)V €
[,(HE@)QH) satisfies X3 = id because for all b, ¢, d, e € B,

X3 (r(0)s(c¢™)Cw & r(d)s(e™)G) = X716 U)(r(b)Cy & r(d)s(c™)s(e™)C)
X*(s(d)r(ec)Cu ©r(b)Cy)
= X2(1 3 U)(r(ec)Cv © s(d™)r(b)Co)
X (r(d)s(b™)¢w & 1(ec)Cy)
=21 U)(r(d)¢w & sOb™)r(ec)Cy)
(€C)°P)Cu ©r(d)Cy
c)Gupe™ S r(d)Cy = r(b)s(c™) ¢y © r(d)s(e”)Cu. O

9 Compact and étale groupoids

Prototypical examples of compact C*-quantum groupoids are the function algebra of a
compact groupoid and the reduced groupoid C*-algebra of an étale groupoid with compact
space of units. In this section, we construct these examples, determine the associated dual
Hopf C*-bimodules, and show that the associated weak C*-pseudo-Kac systems are C*-
pseudo Kac systems. We shall use some results from [I7] and [16] which we recall first.

Preliminaries on locally compact groupoids Let us fix some notation and termi-
nology related to locally compact groupoids; for details, see [I3] or [11].

Throughout this section, let G be a locally compact, Hausdorff, second countable groupoid.
We denote its unit space by G°, its range map by rg, its source map by sg, and put

=15 "({u}), Gu := sg' (u) for each u e G°.

Let X be a left Haar system on G and denote by A™! the associated right Haar system.
Let pc be a probability measure on G° with full support and define measures v, uél on G
by

ffdua - LO @) @) d j favg! LU Lu F@)dr" (@) ducs (u)
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for all f € Co(G). Thus, v;' = ixva, where i: G — G is given by z — x~'. We assume
that p is quasi-invariant in the sense that ve and v3' are equivalent, and denote by D :=
dve/dvg' the Radon-Nikodym derivative.

In the following applications, we shall always assume that the unit space G° is compact
and that the Radon-Nikodym derivative D is continuous.

The C*-pseudo-Kac system of a locally compact groupoid In [I7] and [16], we

associated to G a C*-pseudo-multiplicative unitary and a C*-pseudo-Kac system as follows.
Denote by 1 the trace on C(G°) given by f — ., fduc. Put K := L*(G, v¢) and define

representations r, s: C(G®) — L(K) such that for all 2 € G, £ € C.(G), and f € C(G),

(r(N)E) () = f(ra(@))é(@), (s()€) (@) = f(sc(x))é(@)-

We define Hilbert C*-C(G®)-modules L?(G, ) and L*(G, A™) as the respective completions
of the pre-C*-module C.(G), where for all £,¢' € C.(G), ue G°, f € C(G°), z € G,

<§’|§>(u>=Lumf<x)dv<m>, (€f)(x) = &(z) f(ra(z))  in case of L*(G,\),
<£’|£>(u>=jc g@)é(@)dr, (x), () (@) =&(x)f(sa(x)) in case of L*(G,A™Y).

There exist isometric embeddings j: L?(G,\) = L(H,, K) and j: L*(G,A™") — L(H,, K)
such that for all £ € C.(G), ¢ € H,, z € G,

(1(€)¢) (x) = £(x)¢(ra()), (1)) (@) = (@) D(w) ™% (sc(x)). (16)

Put p := j(L*(G,\) and ¢ := j(L*(G, A7 1)). Then (K, 0, p, p) is a C*-(u°P, p, 1°?)-module,

and j and j are unitary maps of Hilbert C*-modules over C(GP).
Define measures v2, on G2, := {(z,y) € G x G | s¢(z) = ra(y)} and V7, on G2, :=
{(z,y) € G* | ra(z) = ra(y)} by

o] s i Lo f . Lsm Fla,y) dN @ (y) dX* (@) dpc (u),
L%Tg v}, = LO J ) J 9(z,y) dX"(y) d\"(z) dpc (u)

for all f € Co(G2,), g € Co(G2,). Then there exist isomorphisms
®op Ko®K — L*(G7,p, V2,), 0 K@K — L*(GY,,v7,)
such that for all ,¢ € C.(G), ¢ € C.(G°), (z,y) € G2, (z',y) € G2,
o, (7 (1) © € ©5(9) (@, ) = () D(x) "¢ (s6(2))E (),
Dy, (j(n) ©¢© (€)@Y) = n(a)C(ra(@))EW).

From now on, we identify K,®,K with L? (Gim yf’,n) via ®,,, and K ,®,K with L? (G,%’,n7 me)
via @, , without further notice.

Theorem 9.1 ([I7],[16]). There ezists a C*-pseudo-Kac system (K, p, o, p,0,Uc, Va) such
that for all w € Cc(G2,), (z,y) € G, £€ C(G), z € G,

(Vew)(z,y) = w(z,z™'y), (Ucé)(z) = &(z HD(z) 2.

Proposition 9.2. i) If G is r-discrete and 1go € C(G) denotes the characteristic func-
tion of the unit space, then j(lgo) = 7(1go) € Fix(Ve) and (K, o, p, p, V&) is compact.

it) If G is compact, then j(1¢) € Cofix(Vg) and (K, o, p,p, Ve) is étale.
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Proof. Straightforward. O

The concrete Hopf C*-bimodules (ILT(VG)}’(’p7 AVG) and (A(Va)%’, Av) can be described
as follows. Denote by m: Co(G) — L(L?*(G,vc)) the representation given by multiplication
operators. Recall that for each g € C.(G), there exists an operator L(g) € L(K) such that

(L(9)f) () = me g(z)D(x) 2 f(@ ty)d\ W () for all fe Co(G),y€ G,

and that L(g)* = L(g*), where g*(z) = g(z~!) for all z € G. The reduced groupoid
C*-algebra C¥(G) is the closed linear span of all operators L(g), where g € C.(G) [13].

Theorem 9.3 ([17]). i) A(Ve) = m(Co(G)) and (Avg (m(f)w)(z,y) = flzy)w(z,y)
for each f € Co(G), we L*(G3,,v2,), (z,y) €GE ..
it) A(Va) = CFH(G), and for each g € Co(G), we L*(G?,,vp,), (z,y) € G\,

(Avo (L))o = [ a@DE) a2 i),

The function algebra of a compact groupoid Let G be a locally compact groupoid
as before but assume that GG is compact. Then the following assertions are evident:

Lemma 9.4. i) There exists a compact C*-quantum graph (C(G°), u, C(G),r, ¢,5,1, D7)
with coinvolution R such that

(r(F)(@) = f(ra(z)), (s(F)(@) = f(s6(x)) for all f € C(G°), z € G,
<¢<g>><u>=f o(9)AN"(v), <¢<g>><u>=f J)ANT (y)  for all g€ C(C), ue G,

u
u

and (R(g))(x) = g(z™') for all ge C(G), x € G. The states v = po¢ and v ' = o)
are gwen by v(g) = §, gdva and v () = Se gdvg" for all g€ C(G).
ii) If we identify H = H, with K = L*(G,v) via f¢, = f for all f € C(G), then
J(f) = fCs and j(f) = fCy for all f € C(G), and (H,&,pB,B,a) = (K,p,p,0,0). 1
With respect to the canonical identification H = H, =~ L? (G,v) = K, the representation
m: C(G) — L(K) =~ L(H) corresponds to the GNS-representation for v. We identify C(G)
with m(C(G)) € L(K) = L(H) via m.
Theorem 9.5. 7’) (C(G0)7 H, C(G)7 T, ¢7 S, ¢7 D717 AVG ) R) s a compact C*'qua‘ntum group-
oid.
ii) The associated C* -pseudo-multiplicative unitary (H,«, B, &, W) equals (K, o, p, p, Va).

iii) The associated weak C*-pseudo-Kac system (sz,&ﬂ,ﬁ, U,V) is a C*-pseudo-Kac
system.

iv) Ady defines an isomorphism between the dual Hopf C*-bimodule (A\(V)%a,ﬁv) and
(CHE)R" Ave)-

Proof. i) Put A := AVG" By Theorems [0.1] @3] [I7, Theorem 4.14], and Lemma [0.4]
(C(@)F%,A) = (A(Ve)”, Avg) is a Hopf C*-bimodule and [A(C(G))]ay1] = [Jap1C(G)],
[A(C(G)]B)2] = [18):C(G)].

By Lemma [04] iii) and Proposition ii), {4 = j(1g) € Cofix(Ve). Remark shows
that [A(C(G))[C4)2C(G)] = [|8)2C(G)]. Moreover, ¢y = Ul € Fix(Ve) by Lemma B0
CG) = A\(Vg) = A(Vg) by equation ([[Z), and now a second application of Remark
shows that [A(C(G))I¢snC(G)] = [lanC(G)].

By Theorem 6.8 and Corollary B.IT] ¢: a = ¢fay and ¢: a = (fUalU(y are a bounded

left and a bounded right Haar weight for (C(G)%”, A), respectively.
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Finally, we show that the strong invariance condition iii) in Definition [£§ holds. For all
f,9 € C(G), the operator {Cy|1A(f)(g°7a®s1)|Cyy1 is given by pointwise multiplication by
the function

Hyy: G—C, yrs f Fay)g(@)arl, (@),
G

ra(y)

and by right-invariance of A71,

(R(Hy.))(y) = Hos(y™') = L glay ™) f(@)dN (-1 (@)
rgy™h)
= @A @) = By foralye.
ra )

ii) With respect to the identifications Hoa®sH = Ko®,K =~ L*(G2,,v2,) and Hs®sH =
K@K = L*(G},,v},),

(W¥5(9)2f) (. y) = (A9)ICor2f) (x,y) = f(x)g(zy)

for all (z,y) € G2, and f,g € C(G) and hence (W*w)(z,y) = w(z, ry) = (Viw)(z,y) for all
we L*(G3,,vi,).

iii) Since C(G) is commutative, J¢ = €, and (U¢)(z) = (IJ¢)(x) = £(z~Y)D(x)™Y? =
(Ugé)(x) for all & € L*(G,ve) and z € G. By Theorem @1} (K, p,0,p,0,Uc,Vc) is a
C*-pseudo-Kac system, and since Vo = W = V by ii) and Lemma [T4 we can use [I6]
Proposition 5.5] to conclude that (H, «, @, 8, E, U,V) is a C*-pseudo-Kac system.

iv) This assertion follows from the relation V= Vg (see above), equation (I2)), and
Theorem [0.3] O

The groupoid C*-algebra of an étale groupoid Let G be a locally compact
groupoid as above but assume that G is r-discrete and that A is the family of counting
measures. Since G° € G is closed and open, we can embed C(G°) in C(G) by extending
each function by 0 outside of G°. Thus, 150 gets identified with the characteristic function
of G°. Denote by r,s: C(G®) — C(G) the transpose of the range and the source map r¢
and sg, respectively.

Lemma 9.6. i) There exists a compact C*-quantum graph (C(G°), u, C¥(G),t, ¢, ¢, ¢,1)
with coinvolution R such that

U(f) = L(f) for each f € C(G°), (6(L(9)))(u) = g(u) for each g € Cc(G), u € G,
RL(f) = L(f1), where f1(z) = f(z7") for allz € G, f € C.(G).

The state v = po ¢ is given by v(a) = (lgolalgo) for all a € C¥(@), and its modular
automorphism group is given by oy (L(f)) = L(D"f) for all f € Ce(G), t e R.
i) There exists an isomorphism Z: H, — K, L(f)¢, — fD™Y2, and EL(f)°?¢, = f,

EL(f)Cy = 30, EL(f)°PCs = §(f) for all f € C(GQ). In particular, E& = Z = o
and Ea = Ef = p.

Proof. i) The #-homomorphism ¢ clearly is well-defined. Denote by ¢: L*(G°, ug) —
L*(G,vg) the embedding that extends each function outside of G by 0. Then for each
g € C.(G), the operator ¢*L(g)¢ € L(L*(G°, nc)) is given by pointwise multiplication by
the function g|go, and we can define ¢: CF(G) — C(G°) € L(L*(G, uc)) by a — (*aC.
Clearly, to ¢: C¥(G) — +(C(G®)) is a conditional expectation. Since (¢, = lgo, the state
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po @ is given by v(a) = p(¢*a¢) = (lgolalgo) for all a € C¥(G). By [13] §IL5], this is a
KMS-state with modular automorphism group as stated above — indeed, for all f € C.(G),

v(L(f)*L(f)) = Lo o f(m*l)f(m—l)d)\“(m)dug(u)
- L F@) (@) D(@) " dva () = v(L(D~2F)L(D~2 f)*),

Finally, 0f ot =t and ¢ ooy = ¢ for all t € R because D|go = 1qo.
ii) First, observe that for all f € C.(G) and z € G

(L(H1go)(@) = f(x)D™(x) (17)
and hence |L()C I3 = v(L(N*L()) = L 1eo L(f) g0 = | D%, The existence
of Z follows. The remaining assertions hold because for all f € C.(G), g € C(G°),

EL(f) ¢ = EoZia(L(N))G = EL(D )G = f,
EL(f)CogCu = EL(N)L(9)Gr = EL(f5(9))Cw = fs(9) D™ = (g,
EL(f)CogCu = EL(OL(H)™ ¢ = Er(g) LD )G = r(g)f = §(£)g. =
From now on, we identify H = H, with K via = without further notice.
Lemma 9.7. (L(f)"g)(x) = §gec 9(@y)f(y~ )X (y) for all f,g € Ce(G), x € G.
Proof. Let f,g€ C:(G). Then
L(f)™g = EL(f) L(gD"*)¢ = EL(D'g)o” 1o (L())Cv
— SL(D"2g)L(D"2f)¢, = EL(h)G, = hD™2,

where for all x € G,
h(z) = f DY2(2)g(2)D"2 (= a) f (= 2)dA" ) (2)
ara(z)
— p'2 (x)j o(zy) Fly AN (y). 0
Ggsa(@)

Theorem 9.8. i) (C(G®), 1, CE(G), 1, by1, 0,1, R, Av,) is a compact C* -quantum groupoid.
i1) The associated C*-pseudo-multiplicative unitary is Vg.
iii) The associated weak C*-pseudo-Kac system is a C*-pseudo-Kac system.

iv) The dual Hopf C* -bimodule is (C(G)%’, Avg).

Proof. i) Put A := Ay,. By Theorems [0.1] 03] [17, Theorem 4.14], and Lemma [0.6]
(CH)YP, A) = (CH(@)2F, Avy,) is a Hopf C*-bimodule and [A(CH*(G))]|ad1] = [lap CH(G)],
[A(CTH(G)B)2] = [18)CF(G)]. X

By Lemma [0.6 and Proposition 2] 1% ¢yCe = L(160)Cs = j(1go) = j(1go) € Fix(Va).
Remark [6.6] shows that [A(C(G)|¢s)1CE(G)] = [|ed)1CF(G)]. Moreover, (p € Cofix (V)
by Lemma B0, C*(G) = A(Vg) = A(Va) by equation ([@2), and now a second application
of Remark [6.6] shows that [A(C(G))|Cer2C (G)] = [18)2C(G)].

The map ¢: a + (}aly is a bounded left and a bounded right Haar weight for (C* (@)%",A)
by Theorem and Corollary

Finally, let us prove that the strong invariance condition iii) in Definition [£§ holds. Let
f19,€ € Co(G). By the previous Lemma,

((L(g°P)a®p1)|Cu &) (z,y) = £(y)g(x) for all (z,y) € G,
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and hence

((Cu h AL (L") a®s1) G €) (v) = ch(y) F(DT 2 (2)g(="HEETy)d ¢ (2)

= (L(h)&)(y),
where h(z) = f(2)g(z7!) for all z € G. Switching f, g, we find

(Coli ALONL(FP)a®s1)I¢u)1) = L(hT) = R(L(R)).

Since f, g were arbitrary, condition iii) in Definition [£.8] holds.
ii) By Lemma [0.6] we have for all f,g€ C.(G), (=,y) € G2,

(VL(£)Cw © L(9)¢) (z,y) = (AL (Cv © L(9)6)) (2, )

B ch(r) FD™2(2)(Cp © L{9)G) (27w, 27 y)dA ¢ (2)

B fGTG(r) FED™T (@) 160 (2 2)g(z " y) DTV (27 y)dA O ()

= (@) D™ (@)g(x""y) D™ (27 y)
= (i(H) gD (@,a™"y) = (L) © L(9)G) (w,2™"y).

iii), iv) The proof is similar to the proof of Theorem iii), iv). |
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