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Abstract

We propose a definition of compact quantum groupoids in the setting of C�-algebras,
associate to such a quantum groupoid a regular C�-pseudo-multiplicative unitary, and use
this unitary to construct a dual Hopf C�-bimodule and to pass to a measurable quantum
groupoid in the sense of Enock and Lesieur. Moreover, we discuss examples related to
compact and to étale groupoids and study principal compact C�-quantum groupoids.
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1 Introduction

Overview In the setting of von Neumann algebras, measurable quantum groupoids were
studied by Lesieur and Enock [6, 7, 4, 9], building Vallin’s notions of Hopf-von Neu-
mann bimodules and pseudo-multiplicative unitaries [20, 21] and Haagerup’s operator-valued
weights.

In this article, we propose a definition of compact quantum groupoids in the setting of
C�-algebras, building on the notions of Hopf-C�-bimodules and C�-pseudo-multiplicative
unitaries introduced in [17, 16]. To each compact C�-quantum groupoid, we associate a
regular C�-pseudo-multiplicative unitary, a von-Neumann algebraic completion, and a dual
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Hopf C�-bimodule. Moreover, we extend this C�-pseudo-multiplicative unitary to a weak
C�-pseudo-Kac system; hence, the results of [16] can be applied to the study of coactions
of compact C�-quantum groupoids on C�-algebras.

To illustrate the general theory, we discuss several examples of compact C�-quantum
groupoids: the C�-algebra of continuous functions on a compact groupoid, the reduced
C�-algebra of an étale groupoid with compact base, and principal compact C�-quantum
groupoids.

Let us mention that many constructions and results seem to extend to a more general
notion of quantum C�-groupoids where the Haar weights are still assumed to be bounded
but where the C�-algebra of units need no longer be unital and where the KMS-state on
this C�-algebra is replaced by a proper KMS-weight.

Plan Let us outline the contents and organization of this article in some more detail.
In the first part of this article (Sections 2,3,4), we introduce the definition of a compact

C�-quantum groupoid. Recall that a measured compact groupoid consists of a base space
G0, a total space G, range and source maps r, s : G Ñ G0, a multiplication Gs�rG Ñ

G, a left and a right Haar system, and a quasi-invariant measure on G0. Roughly, the
corresponding ingredients of a compact C�-quantum groupoid are unital C�-algebras B
and A, representations r, s : Bpopq

Ñ A, a comultiplication ∆: A Ñ A � A, a left and a
right Haar weight φ,ψ : A Ñ Bpopq, and a KMS-state on B, subject to several axioms.
These ingredients are introduced in several steps. In Section 2, we focus on the tuple
pB,A, r, φ, s, ψq, which can be considered as a compact C�-quantum graph, and review
some related GNS-constructions. In Section 3, we recall from [17, 16] the definition of
the fiber product A � A and of the underlying relative tensor product of Hilbert modules
over C�-algebras. Finally, in Section 4, we give the definition of a compact C�-quantum
groupoid and obtain first properties like uniqueness of the Haar weights and the existence
of an invariant state on the basis.

In the second part of this article (Sections 5,6,7), we associate to every compact C�-
quantum groupoid a fundamental unitary, a von-Neumann-algebraic completion, and a dual
Hopf C�-bimodule. This fundamental unitary satisfies a pentagon equation, generalizes
the multiplicative unitaries of Baaj and Skandalis [1], and can be considered as a pseudo-
multiplicative unitary in the sense of Vallin [21] equipped with additional data. The unitary
and the completion will be constructed in Section 5. In Section 6, we study a particular
feature of this unitary — the existence of fixed or cofixed elements — and show that for a
general C�-pseudo-multiplicative unitary, such (co)fixed elements yield invariant conditional
expectations and bounded counits on the associated Hopf C�-bimodules. In Section 7, we
return to compact C�-quantum groupoids and discuss their duals.

The last part of this article (Sections 8,9) is devoted to examples of compact C�-quantum
groupoids which are obtained from compact and from étale groupoids one side and from
center-valued traces on C�-algebras on the other side. For these examples, we give a detailed
description of the ingredients, the associated fundamental unitaries, and the dual objects.

Preliminaries Let us fix some general notation and concepts used in this article.
Given a subset Y of a normed space X, we denote by rY s � X the closed linear span

of Y . Given a C�-algebra A and a C�-subalgebra B � MpAq, we denote by A X B1 the
relative commutant ta P A | ab � ba for all b P Bu. Given a Hilbert space H and a subset
X � LpHq, we denote by X 1 the commutant of X. All sesquilinear maps like inner products
of Hilbert spaces are assumed to be conjugate-linear in the first component and linear in
the second one.

We shall make extensive use of Hilbert C�-modules. A standard reference is [8].
Let A and B be C�-algebras. Given Hilbert C�-modules E and F over B, we denote

the space of all adjointable operators E Ñ F by LBpE,F q. Let E and F be C�-modules
over A and B, respectively, and let π : A Ñ LBpF q be a �-homomorphism. Then one can
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form the internal tensor product E bπ F , which is a Hilbert C�-module over B [8, Chapter
4]. This Hilbert C�-module is the closed linear span of elements η bA ξ, where η P E and
ξ P F are arbitrary, and xη bπ ξ|η

1

bπ ξ
1

y � xξ|πpxη|η1yqξ1y and pη bπ ξqb � η bπ ξb for all
η, η1 P E, ξ, ξ1 P F , and b P B. We denote the internal tensor product by “=”; thus, for
example, E =π F � E bπ F . If the representation π or both π and A are understood, we
write “=A” or “=”, respectively, instead of ”=π”.

Given A, B, E, F and π as above, we define a flipped internal tensor product F π<E as
follows. We equip the algebraic tensor product FdE with the structure maps xξdη|ξ1dη1y :�
xξ|πpxη|η1yqξ1y, pξ d ηqb :� ξb d η, and by factoring out the null-space of the semi-norm
ζ ÞÑ }xζ|ζy}1{2 and taking completion, we obtain a Hilbert C�-B-module F π<E. This
is the closed linear span of elements ξπ<η, where η P E and ξ P F are arbitrary, and
xξπ<η|ξ1π<η1y � xξ|πpxη|η1yqξ1y and pξπ<ηqb � ξbπ<η for all η, η1 P E, ξ, ξ1 P F , and b P B.
As above, we write “A<” or simply “<” instead of “π<” if the representation π or both
π and A are understood, respectively. Evidently, the usual and the flipped internal tensor

product are related by a unitary map Σ: F = E
�

ÝÑ E < F , η = ξ ÞÑ ξ < η.

2 Compact C
�-quantum graphs

The first basic ingredient in the definition of a compact C�-quantum groupoids are compact
C�-quantum graphs. Roughly, such a compact C�-quantum graph consists of a C�-algebra
B (of units) with a faithful KMS-state, a C�-algebra A (of arrows), and two compatible
module structures consisting of representations B,Bpopq

Ñ A and conditional expectations
A Ñ B,Bpopq. Thinking of (the underlying graph of) a groupoid, the representations cor-
respond to the range and the source map, and the conditional expectations to the left and
the right Haar weight.

Throughout the following sections, we will use several GNS- and Rieffel-constructions
for compact C�-quantum graphs. We first recall the GNS-construction for KMS-states and
present the Rieffel-construction for a single module structure, before we turn to compact
C�-quantum graphs. To prepare for the definition of the unitary antipode of a compact
C�-quantum groupoid, we finally discuss coinvolutions on compact C�-quantum graphs.

KMS-states on C�-algebras and associated GNS-constructions We shall use
the theory of KMS-states on C�-algebras, see [3, §5], [12, §8.12], and adopt the following
conventions. Let µ be a faithful KMS-state on a C�-algebra B. We denote by σµ the
modular automorphism group, by Hµ the GNS-space, by Λµ : B Ñ Hµ the GNS-map, by
ζµ � Λµp1Bq the cyclic vector, and by Jµ : Hµ Ñ Hµ the modular conjugation associated to
µ. We shall frequently use the formula

JµΛµpbq � Λµpσ
µ

i{2pbq
�

q for all b P Dompσµi{2q. (1)

We omit explicit mentioning of the GNS-representation πµ : B Ñ LpHµq and identify B

with πµpBq; thus, bΛµpxq � πµpbqΛµpxq � Λµpbxq � bxζµ for all b, x P B.
We denote by Bop the opposite C�-algebra of B, which coincides with B as a Banach

space with involution but has the reversed multiplication, and by µop : Bop Ñ C the opposite
state of µ, given by by µoppbopq :� µpbq for all b P B. Using formula (1), one easily
verifies that µop is a KMS-state, that the modular automorphism group σµ

op

is given by
σ
µop

t pbopq � σ
µ
�tpbq

op for all b P B, t P R, and that one can always choose the GNS-space
and GNS-map for µop such that Hµop

� Hµ and Λµop
pbopq � JµΛµpb

�

q for all b P B. Then
ζµop

� ζµ, Jµop
� Jµ, πµop

pbq � Jµπµpbq
�Jµ for all b P B, and

Λµop
pb
op
q � Λµpσ

µ

�i{2
pbqq, b

opΛµpxq � Λµpxσ
µ

�i{2
pbqq for all b P Dompσµ

�i{2
q, x P B.
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Module structures and associated Rieffel constructions We shall use the fol-
lowing kind of module structures on C�-algebras relative to KMS-states:

Definition 2.1. Let µ be faithful KMS-state on a unital C�-algebra B. A µ-module struc-
ture on a unital C�-algebra A is pair pr, φq consisting of a unital embedding r : B Ñ A and
a completely positive map φ : A Ñ B such that r � φ : A Ñ rpBq is a unital conditional
expectation, ν :� µ � φ is a KMS-state, and σνt prpBqq � rpBq for all t P R.

Given a module structure as above, we can form a GNS-Rieffel-construction as follows:

Lemma 2.2. Let µ be a faithful KMS-state on a unital C�-algebra B, let pr, φq be a µ-module
structure on a unital C�-algebra A, and put ν :� µ � φ.

i) σνt � r � r � σ
µ
t for all t P R.

ii) There exists a unique isometry ζ : Hµ ãÑ Hν such that ζΛµpbq � Λνprpbqq for all b P B.

iii) ζJµ � Jνζ, ζb � rpbqζ, ζ�Λνpaq � Λµpφpaqq, ζ
�a � φpaqζ� for all b P B, a P A.

iv) There exists a µop-module structure prop, φopq on Aop such that roppbopq � rpbqop and
φoppaopq � φpaqop for all b P B, a P A. For all b P B, ζΛµop

pbopq � Λνop pr
op
pbopqq.

Proof. i) This follows easily from the uniqueness of the modular automorphism group of a
faithful KMS-state.

ii) Straightforward.
iii) ζJµ � Jνζ because Dompσµ

i{2
q is dense in B and ζJµΛµpbq � ζΛµpσ

µ

i{2
pbq�q �

Λνprpσ
µ

i{2
pbq�qq � Λνpσ

ν
i{2prpbqq

�

q � JνζΛµpbq for all b P Dompσµ
i{2
q by i). The proof of

the remaining assertions is routine.
iv) Straightforward.

Compact C
�-quantum graphs The definition of a compact C�-quantum graph in-

volves the following simple variant of a Radon-Nikodym derivative for KMS-states:

Lemma 2.3. Let A be a unital C�-algebra with a KMS-state ν and a positive invertible
element δ that satisfies νpδq � 1 and σνt pδq � δ for all t P R.

i) The state νδ on A given by νδpaq � νpδ1{2aδ1{2q for all a P A is a faithful KMS-state
and σ

νδ
t � Adδit �σ

ν
t � σνt �Adδit for all t P R.

ii) The map Λνδ : A Ñ Hν , a ÞÑ Λνpaδ
1{2
q, is a GNS-map for νδ, and the associated

modular conjugation Jνδ is equal to Jν .

iii) If δ̃ P A is another positive invertible element satisfying νpδ̃q � 1, σνt pδ̃q � δ for all
t P R, and νδ̃ � νδ, then δ � δ̃.

Definition 2.4. A compact C�-quantum graph is a tuple pB,µ,A, r, φ, s, ψ, δq, where

i) B is a unital C�-algebra with a faithful KMS-state µ,

ii) A is a unital C�-algebra,

iii) pr, φq and ps, ψq are a µ-module structure and a µop-module structure on A, respectively,
such that rpBq and spBopq commute,

iv) δ P AXrpBq1XspBopq1 is a positive, invertible, σν-invariant element such that νpδq � 1
and µop � ψ � pµ � φqδ.

Given a compact C�-quantum graph pB,µ,A, r, φ, s, ψq, we put ν :� µ � φ, ν�1 :� µop � ψ,
and denote by ζφ, ζψ : Hµ Ñ Hν the isometries associated to pr, φq, ps, ψq as in Lemma 2.2.

For every compact C�-quantum graph pB,µ,A, r, φ, s, ψq, we have ν � r � µ � φ � r � µ

and ν�1
� s � µop � ψ � s � µop. The compositions ν � s and ν�1

� r are related to µop and
µ, respectively, as follows.

Lemma 2.5. Let pB,µ, A, r, φ, s, ψ, δq be a compact C�-quantum graph.
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i) φpδq P B and ψpδ�1
q P Bop are positive, invertible, central, invariant with respect to

σµ and σµ
op

, respectively, and satisfy µpφpδqq � 1 � µoppψpδ�1
qq.

ii) ν�1
� r � µφpδq and ν � s � µ

op

ψpδ�1
q

.

Proof. i) We only prove the assertions concerning φpδq. Since δ is positive, there exists an
ǫ ¡ 0 such that δ ¡ ǫ1A, and since φ is positive, we can conclude φpδq ¡ ǫφp1Aq � ǫ1B .
Therefore, φpδq is positive and invertible. It is central because bφpδq � φprpbqδq � φpδrpbqq �

φpδqb for all b P B, and invariant under σµ because σµt pφpδqq � φpσνt pδqq � φpδq for all t P R.
ii) The first equation holds because for all b P B, ν�1

prpbqq � µpφpδ1{2rpbqδ1{2qq �

µpbφpδqq � µpφpδq1{2bφpδq1{2q. The second equation follows similarly.

Let pB,µ,A, r, φ, s, ψ, δq be a compact C�-quantum graph. Then for all b, c P B,
ψprpbqqcop � ψprpbqspcopqq � ψpspcopqrpbqq � copψprpbqq and similarly φpspbopqqc � cφpspbopqq,
so that we can define completely positive maps

τ :� ψ � r : B Ñ ZpB
op
q and τ

: :� φ � s : Bop Ñ ZpBq. (2)

We identify ZpBq and ZpBopq with B XBop � LpHµq in the natural way.

Coinvolutions on compact C�-quantum graphs The following concept will be
used to define the unitary antipode of a compact C�-quantum groupoid:

Definition 2.6. A coinvolution for a compact C�-quantum graph pB,µ,A, r, φ, s, ψ, δq is an
antiautomorphism R : AÑ A satisfying R�R � idA and Rprpbqq � spbopq, φpRpaqq � ψpaqop

for all b P B, a P A.

Lemma 2.7. Let R be a coinvolution for a compact C�-quantum graph pB,µ, A, r, φ, s, ψ, δq.

i) σνt � R � R � σν
�1

�t for all t P R, and Rpδq � δ�1. In particular, φpδq � ψpδ�1
q.

ii) τ pbq � τ :pbopq for all b P B.

iii) There exists a unique antiunitary I : Hν Ñ Hν , Λν�1paq ÞÑ ΛνpRpaq
�

q, and

IΛνpaq � ΛνpRpaδ
1{2
q

�

q, Ia
�

I � Rpaq, I
2
� idH , IζψJµ � ζφ, IJν � JνI.

Proof. i) The first equation follows from the fact that R is an antiautomorphism and that
ν � R � ν�1. To prove the second equation, put δ1 :� Rpδ�1

q. Then

νpδ
1

q � ν
�1
pδ

�1
q � νp1q � 1,

σ
ν
t pδ

1

q � Rpσ
ν�1

�t pδ
�1
qq � R

�

σ
ν
�t �Adδitpδ

�1
q

�

� Rpσ
ν
�tpδ

�1
qq � Rpδ

�1
q � δ

1

,

νδpaq � ν
�1
paq � νpRpaqq � ν

�1
pδ

�1{2
Rpaqδ

�1{2
q � νpδ

11{2
aδ

11{2
q � νδ1paq

for all a P A, and by Lemma 2.3 iii), δ � δ1.
ii) pφ � sqpbopq � pφ �R � R � sqpbopq � pψ � rqpbqop for all b P B.
iii) The formula for I defines an antiunitary because for all a P A,

�

�ΛνpRpaq
�

q

�

�

2
� pµ � φq

�

RpaqRpaq
�

�

� pµ � φ � Rqpa
�

aq � pµ
op
� ψqpa

�

aq �
�

�Λν�1paq
�

�

2
.

The first two equations given in ii) follow immediately. Next, I2 � idH because

I
2Λνpaq � Λν

�

RpRpaδ
1{2
q

�

δ
1{2
q

�

�

� Λν
�

aδ
1{2
δ
�1{2

�

� Λνpaq

for all a P A, and IζψJµ � ζφ because

IζψJµΛµpb
�

q � IζψΛµop
pb
op
q � IΛν�1pspb

op
qq � Λνprpbq

�

q � ζφΛµpb
�

q

for all b P B. The relation σν
�1

t � R � σν
�t �R (t P R) implies that for all a P Dompσν

�1

i{2 q,

JνIΛν�1paq � Λν
�

σ
ν
i{2pRpaq

�

q

�

�

� Λν
�

Rpσ
ν�1

i{2 paq
�

q

�

�

� IJν�1Λν�1paq.

Since Jν�1 � Jν , we can conclude JνI � IJν .
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3 The relative tensor product and the fiber product

Fundamental to the following development is the general language of C�-modules and C�-
algebras over KMS-states, the relative tensor product of such C�-modules, and the fiber
product of such C�-algebras: The fiber product is needed to define the target of the comul-
tiplication of a compact C�-quantum groupoid, and the relative tensor product is needed
to define this fiber product and the domain and the range of the fundamental unitary.

We proceed as follows. First, we introduce the language of C�-modules and C�-algebras
over KMS-states. Next, we describe the C�-module structures that arise from a compact
C�-quantum graph and which are needed later. Finally, we present the relative tensor
product and the fiber product. Except for the second paragraph, the reference is [17]

C�-modules and C�-algebras over KMS-states We adapt the framework of C�-
modules and C�-algebras over C�-bases introduced in [17] to our present needs, replac-
ing C�-bases by KMS-states as follows. A C�-base is a triple pB,H,B:

q consisting of a
Hilbert space H and two commuting nondegenerate C�-algebras B,B:

� LpHq. We restrict
ourselves to C�-bases of the form pHµ, B,B

op
q, where Hµ is the GNS-space of a faithful

KMS-state µ on a C�-algebra B, and where B and Bop act on Hµ � Hµop via the GNS-
representations, and obtain the following notions of C�-modules over µ.

Definition 3.1. Let µ be a faithful KMS-state on a C�-algebra B. A C�-µ-module is a
pair pH,αq, briefly written Hα, where H is a Hilbert space and α � LpHµ,Hq is a closed
subspace satisfying rαHµs � H, rαBs � α, and rα�αs � B � LpHµq. A morphism between
C�-µ-modules Hα and Kβ is an operator T P LpH,Kq satisfying Tα � β and T�β � α.
We denote the set of such morphisms by LpHα,Kβq.

Lemma 3.2. Let µ be a faithful KMS-state on a C�-algebra B and let Hα be a C�-µ-module.

i) α is a right Hilbert C�-B-module with inner product given by xξ|ξ1y � ξ�ξ for all
ξ, ξ1 P α.

ii) There exist isomorphisms α=Hµ Ñ H, ξ = ζ ÞÑ ξζ, and Hµ < αÑ H, ζ < ξ ÞÑ ξζ.

iii) There exists a nondegenerate representation ρα : B
op
Ñ LpHq such that ραpb

op
qpξζq �

ξbopζ for all b P B, ξ P α, ζ P Hµ.

iv) Let Kβ be a C�-µ-module and T P LpHα,Kβq. Then left multiplication by T defines an
operator in LBpα, βq, again denoted by T , and Tραpb

op
q � ρβpb

op
qT for all b P B.

Definition 3.3. Let µ1, . . . , µn be faithful KMS-states on C�-algebras B1, . . . , Bn. A C�-
pµ1, . . . , µnq-module is a tuple pH,α1, . . . , αnq, where H is a Hilbert space and pH,αiq

is a C�-µi-module for each i � 1, . . . , n such that rραipB
op
i qαjs � αj whenever i � j.

The set of morphisms of C�-pµ1, . . . , µnq-modules pH,α1, . . . , αnq and pK,β1, . . . , βnq is
LppH,α1, . . . , αnq, pK,β1, . . . , βnqq :�

�n

i�1
LpHαi ,Kβiq � LpH,Kq.

Remark 3.4. Let µ1, . . . , µn be faithful KMS-states on C�-algebras B1, . . . , Bn and let
pH,α1, . . . , αnq be a C�-pµ1, . . . , µnq-module. Then ραipB

op
i q � LpHαj q whenever i � j; in

particular, rραipB
op
i q, ραj pB

op
j qs � 0 whenever i � j.

Next, we define C�-algebras over KMS-states.

Definition 3.5. Let µ1, . . . , µn be faithful KMS-states on C�-algebras B1, . . . , Bn. A C�-
pµ1, . . . , µnq-algebra consists of a C�-pµ1, . . . , µnq-module pH,α1, . . . , αnq and a nondegen-
erate C�-algebra A � LpHq such that rραipB

op
i qAs � A for each i � 1, . . . , n. In the

cases n � 1, 2, we abbreviate AαH :� pHα, Aq, A
α,β
H :� ppH,α, βq, Aq. A morphism between

C�-pµ1, . . . , µnq-algebras ppH,α1, . . . , αnq, Aq and ppK, γ1, . . . , γnq, Cq is a nondegenerate �-
homomorphism φ : AÑMpCq such that for each i � 1, . . . , n, we have rIφ,iαis � γi, where
Iφ,i :� tT P LpHαi ,Kγiq | Ta � φpaqT for all a P Au. We denote the set of all such
morphisms by MorpppH,α1, . . . , αnq, Aq, ppK, γ1, . . . , γnq, Cqq.

Remark 3.6. If φ is a morphism between C�-µ-algebras AαH and CγK , then φpραpb
op
qq �

ργpb
op
q for all b P B; see [16, Lemma 2.2].
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The C�-module of a compact C�-quantum graph To proceed from compact C�-
quantum graphs to compact C�-quantum groupoids, we need several C�-module structures
arising from the GNS-Rieffel-construction in Lemma 2.2.

Lemma 3.7. Let µ be a faithful KMS-state on a unital C�-algebra B, let pr, φq be a C�-
µ-module structure on a unital C�-algebra A, and put ν :� µ � φ, H :� Hν , pα :� rAζs,
β :� rAopζs.

i)
pαHβ is a C�-pµ, µopq-module and ρ

pα � rop, ρβ � r.

ii) A
β
H is a C�-µop-algebra.

iii) aopζ � σν
�i{2paqζ for all a P Dompσν

�i{2q X rpBq1.

iv) A� pAX rpBq1qop � LpH
pαq and A

op
� pAX rpBq1q � LpHβq.

Proof. i) Lemma 2.2 immediately implies that H
pα is a C�-µ-module and that Hβ is a

C�-µop-module. The equations for ρ
pα and ρβ follow from the fact that by Lemma 2.2,

ρ
pαpb

op
qaζ � aζbop � arpbqopζ � rpbqopaζ and ρβpbqa

opζ � aopζb � aoprpbqζ � rpbqaopζ for
all b P B, a P A. In particular, rρ

pαpB
op
qβs � rrpBqopAopζs � β and rρβpBqpαs � rrpBqAζs �

pα, whence
pαHβ is a C�-pµ, µopq-module.

ii) By i), rρβpBqAs � A.
iii) For all a P rpBq1 XDompσν

�i{2q and b P B,

a
op
ζΛµpbq � Λν

�

rpbqσ
ν
�i{2paq

�

� Λν
�

σ
ν
�i{2paqrpbq

�

� σ
ν
�i{2paqζΛµpbq.

iii) We only prove the first inclusion, the second one follows similarly. Clearly, rApαs � pα.
Since σνt prpBqq � rpBq for all t P R, the subspace C :� Dompσν

�i{2q X rpBq1 is dense in
AX rpBq1, and by iii), rpAX rpBq1qoppαs � rCAζs � rACζs � rAζs � pα.

Proposition 3.8. Let pB,µ,A, r, φ, s, ψ, δq be a compact C�-quantum graph. Put ν :� µ�φ,
ν�1 :� µop � ψ � νδ and

H :� Hν , pα :� rAζφs, β :� rA
op
ζφs, pβ :� rAζψs, α :� rA

op
ζψs. (3)

i) pH, pα, β, pβ, αq is a C�-pµ, µop, µop, µq-module and ρ
pα � rop, ρβ � r, ρ

pβ � sop, ρα � s.

ii) A
α,β
H is a C�-pµ, µopq-algebra.

iii) Let R be a coinvolution for pB,µ,A, r, φ, s, ψ, δq and let I : Hν Ñ Hν be given by

Λν�1paq ÞÑ ΛνpRpaq
�

q. Then IζφJµ � ζψ, IζψJµ � ζφ and I pβJµ � pα, IβJµ � α.

Proof. i), ii) Immediate from Lemma 3.7.
iii) We have IζψJµ � ζφ because for all b P B,

IζψJµΛµpb
�

q � IζψΛµop
pb
op
q � IΛν�1pspb

op
qq � ΛνpRpspb

op
qq

�

q � Λνprpb
�

qq � ζφΛµpb
�

q.

The remaining assertions follow easily.

The relative tensor product of C�-modules The relative tensor product of C�-
modules over KMS-states is a symmetrized version of the internal tensor product of Hilbert
C�-modules and a C�-algebraic analogue of the relative tensor product of Hilbert spaces
over a von Neumann algebra. We briefly summarize the definition and the main properties;
for details, see [17, Section 2.2].

Let µ be a faithful KMS-state on a C�-algebra B, let Hβ be a C�-µ-module, and let
Kγ be a C�-µop-module. The relative tensor product of Hβ and Kγ is the Hilbert space
HβbγK :� β =Hµ < γ. It is spanned by elements ξ = ζ < η, where ξ P β, ζ P Hµ, η P γ,
and the inner product is given by xξ = ζ < η|ξ1 = ζ 1 < η1y � xζ|ξ�ξ1η�η1ζ 1y � xζ|η�η1ξ�ξ1ζ 1y

for all ξ, ξ1 P β, ζ, ζ 1 P Hµ, η, η
1

P γ.
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Obviously, there exists flip isomorphism

Σ: HβbγK Ñ KγbβH, ξ = ζ < η ÞÑ η = ζ < ξ. (4)

The isomorphisms β =Hµ � H , ξ = ζ � ξζ, and Hµ < γ � K, ζ < ζ � ηζ, (see Lemma
3.2) induce the following isomorphisms which we use without further notice:

Hρβ<γ � HβbγK � β =ργ K, ξζ < η � ξ = ζ < η � ξ = ηζ pξ P β, ζ P Hµ, η P γq.

Using these isomorphisms, we define the following tensor products of operators:

SβbγT :� S = T P Lpβ =ργ Kq � LpHβbγKq for all S P LpHαq, T P ργpBq
1

� LpKq,

SβbγT :� S < T P LpHρβ<γq � LpHβbγKq for all S P ρβpB
op
q

1

� LpHq, T P LpKβq.

Note that S = T � S = id<T � S < T for all S P LpHβq, T P LpKγq.
For each ξ P β, η P γ, there exist bounded linear operators

|ξy1 : K Ñ HβbγK, ω ÞÑ ξ = ω, xξ|1 :� |ξy
�

1 : ξ
1

= ω ÞÑ ργpξ
�

ξ
1

qω,

|ηy2 : H Ñ HβbγK, ω ÞÑ ω < η, xη|2 :� |ηy
�

2 : ω < η ÞÑ ρβpη
�

η
1

qω.

We put |βy1 :�
 

|ξy1
�

� ξ P β
(

and similarly define xβ|1, |γy2, xγ|2.
Assume that H � pH,α1, . . . , αm, βq is a C�-pσ1, . . . , σm, µq-module and that K �

pK, γ, δ1, . . . , δnq is a C�-pµop, τ1, . . . , τnq-module, where σ1, . . . , σm, τ1, . . . , τn are faithful
KMS-states on C�-algebras A1, . . . , Am, C1, . . . , Cn. For i � 1, . . . ,m and j � 1, . . . , n, put

αi � γ :� r|γy2αis � LpHσi ,HβbγKq, β � δj :� r|βy1δjs � LpHτj ,HβbγKq.

Then the tuple Hb

µ
K :� pHβbγK,α1 � γ, . . . , αm � γ, β � δ1, . . . , β � δnq is a C

�-pσ1, . . . , σm,

τ1, . . . , τnq-module, called the relative tensor product of H and K. For all i � 1, . . . , m, a P Ai
and j � 1, . . . , n, c P Cj ,

ρ
pαi�γqpa

op
q � ραipa

op
qβbγ id, ρ

pβ�δjqpc
op
q � id βbγρδj pc

op
q.

The C�-relative tensor product is bifunctorial: If H̃ � pH̃, α̃1, . . . , α̃m, β̃q is a C�-
pσ1, . . . , σm, µq-module, K̃ � pK̃, γ̃, δ̃1, . . . , δ̃nq a C

�-pµop, τ1, . . . , τnq-module, and S P LpH, H̃q,
T P LpK, K̃q, then there exists a unique operator S b

µ
T P LpH b

µ
K, H̃ b

µ
K̃q such that

pS b
µ
T qpξ = ζ < ηq � Sξ = ζ < Tη for all ξ P β, ζ P Hµ, η P γ.

The C�-relative tensor product is unital in the following sense. If we consider B,Bop

embedded in LpHµq via the GNS-representations, then the tuple U :� pHµ, B,B
op
q is a

C�-pµ, µopq-module, and the maps

HβbBopHµ Ñ H, ξ = ζ < b
op
ÞÑ ξb

op
ζ, Hµ BbγK Ñ K, b= ζ < η ÞÑ ηbζ,

are isomorphisms of C�-pσ1, . . . , σm, µq- and C�-pµop, τ1, . . . , τnq-modules H b

µ
U � H and

Ub
µ
K � K, natural in H and K, respectively.

The C�-relative tensor product is associative in the following sense. Assume that
ν, ρ1, . . . , ρl are faithful KMS-states on C�-algebrasD,E1, . . . , El, that K̂ � pK, γ, δ1, . . . , δn, ǫq

is a C�-pµop, τ1, . . . , τn, νq-module, and L � pL, φ, ψ1, . . . , ψlq a C
�-pνop, ρ1, . . . , ρlq-module.

Then the isomorphisms of Hilbert spaces

pHβbγKqβ�ǫbφL � β =ργ Kρǫ<φ � Hβbγ�φpKǫbφLq (5)

are isomorphisms of C�-pσ1, . . . , σm, τ1, . . . , τn, ρ1, . . . , ρlq-modules pHb
µ
K̂qb

ν
L � Hb

µ
pK̂b

ν
Lq.

We shall identify the Hilbert spaces in (5) without further notice and denote these Hilbert
spaces by HβbγKǫbφL.

We shall need the following simple construction not mentioned in [17]:

8



Lemma 3.9. Let Hβ, H̃β̃ be C�-µ-modules, Kγ , K̃γ̃ C�-µop-modules, and I : H Ñ H̃,

J : K Ñ K̃ anti-unitaries such that IβJµ � β̃ and JγJµ � γ̃.

i) There exists a unique anti-unitary Iβb
Jµ
γJ : HβbγK Ñ H̃ β̃bγ̃K̃ such that

pIβb
Jµ
γJqpξ = ζ < ηq � IξJµ = Jµζ < JηJµ for all ξ P β, ζ P Hµ, η P γ.

ii) pIβb
Jµ
γJq|ξy1 � |IξJµy1J and pIβb

Jµ
γJq|ηy2 � |JηJµy2I for all ξ P β, η P γ.

iii) pIβb
Jµ
γJqpSβbγT q � pISI�β̃bγ̃JTJ

�

qpIβb
Jµ
γJq for all S P LpHβq, T P LpKγq.

Proof. Straightforward.

The fiber product of C�-algebras The fiber product of C�-algebras over KMS-
states is an analogue of the fiber product of von Neumann algebras. We briefly summarize
the definition and main properties; for details, see [17, Section 3].

Let µ be a faithful KMS-state on a C�-algebra B, let AβH be a C�-µ-algebra, and let CγK
be a C�-µop-algebra. The fiber product of AβH and CγK is the C�-algebra

Aβ�γC :�
 

x P LpHβbγKq

�

�x|βy1, x
�

|βy1 � r|βy1Cs and x|γy2, x
�

|γy2 � r|γy2As
(

.

If A and C are unital, so is Aβ�γC, but otherwise, Aβ�γC may be degenerate.
Conjugation by the flip Σ: HβbγK Ñ KγbβH in (4) yields an isomorphism

AdΣ : Aβ�γC Ñ Cγ�βA. (6)

Assume that A � pH,α1, . . . , αm, β, Aq is a C
�-pσ1, . . . , σm, µq-algebra and C � pK, γ, δ1,

. . . , δn, Cq a C
�-pµop, τ1, . . . , τnq-algebra, where σ1, . . . , σm, τ1, . . . , τn are faithful KMS-states

on C�-algebras A1, . . . , Am, C1, . . . , Cn. If Aβ�γC is nondegenerate, then

A � C :� ppHβbγK,α1 � γ, . . . , αm � γ, β � δ1, . . . , β � δnq, Aβ�γCq

is a C�-pσ1, . . . , σm, τ1, . . . , τnq-algebra, called the fiber product of A and C.
Assume furthermore that Ã � pH̃, α̃1, . . . , α̃m, β̃, Ãq is a C

�-pσ1, . . . , σm, µq-algebra and
C̃ � pK̃, γ̃, δ̃1, . . . , δ̃n, C̃q is a C

�-pµop, τ1, . . . , τnq-algebra. Then for each φ P MorpA, Ãq and
ψ P MorpC, C̃q, there exists a unique morphism

φ � ψ P MorpA � C, Ã � C̃q

such that pφ�ψqpxqpSβbγT q � pSβbγT qx for all x P Aβ�γC, S P LpHβ, H̃β̃q, T P LpKγ , K̃γ̃q

satisfying Sa � φpaqS and Tc � ψpcqT for all a P A, c P C.
A fundamental deficiency of the fiber product is that it need not be associative. In our

applications, however, the fiber product will only appear as the target of a comultiplication,
and the non-associativity of the former will be compensated by the coassociativity of the
latter.

We shall need the following simple construction not mentioned in [17]:

Lemma 3.10. Let AβH , Ãβ̃
H̃

be C�-µ-algebras, CγK , C̃ γ̃
K̃
C�-µop-algebras, and R : AÑ Ãop,

S : C Ñ C̃op �-homomorphisms. Assume that I : H Ñ H̃ and J : K Ñ K̃ are anti-unitaries
such that IβJµ � β̃, Rpaq � I�a�I for all a P A, and JγJµ � γ̃, Spcq � J�c�J for
all c P C. Then there exists a �-homomorphism Rβ�γS : Aβ�γC Ñ pÃβ̃�γ̃C̃q

op such that
pRβ�γSqpxq :� pIβb

Jµ
γJq

�x�pIβb
Jµ
γJq for all x P Aβ�γC. This �-homomorphism does not

depend on the choice of I or J.

Proof. Evidently, the formula defines a �-homomorphism Rβ�γS. The definition does
not depend on the choice of J because xξ|1pRβ�γSqpxq|ξ

1

y1 � J�xIξJµ|1x
�

|Iξ1Jµy1J �

S
�

xIξ1Jµ|1x|IξJµy1
�

for all x P Aβ�γC by Lemma 3.9 ii), and a similar argument shows
that it does not depend on the choice of I .
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4 Compact C�-quantum groupoids

In this section, we introduce the main object of study of this article — compact C�-quantum
groupoids. Roughly, a compact C�-quantum groupoid is a compact C�-quantum graph
equipped with a coinvolution and a comultiplication subject to several relations. Most
importantly, we assume left- and right-invariance of the Haar weights, the existence of a
modular element, and a strong invariance condition relating the coinvolution to the Haar
weights and to the comultiplication.

We proceed as follows. First, we discuss the appropriate notion of a comultiplication
and recall the notion of a Hopf C�-bimodule, of bounded invariant Haar weights, and of
bounded counits. Then, we introduce and study the precise definition of a compact C�-
quantum groupoid. Finally, we show that the modular element can always be assumed to
be trivial, and that the Haar weights are unique up to scaling.

Hopf C�-bimodules over KMS-states Throughout this paragraph, let µ be a faith-
ful KMS-state on a C�-algebra B.

Definition 4.1 ([17]). A comultiplication on a C�-pµ, µopq-algebra A
α,β
H is a morphism

∆ P MorpAα,βH , A
α,β
H �A

α,β
H q that makes the following diagram commute:

A
∆ //

∆

��

Aα�βA

id�∆��
Aα�β�βpAα�βAq

� _

��
Aα�βA

∆�id //
pAα�βAqα�α�βA � � // LpHα�βHα�βHq.

A Hopf C�-bimodule over µ is a C�-pµ, µopq-algebra together with a comultiplication.

The following important invariance conditions will be imposed on the Haar weights of a
compact C�-quantum groupoid:

Definition 4.2. Let pAα,βH ,∆q be a Hopf C�-bimodule over µ. A bounded left Haar weight
for pAα,βH ,∆q is a non-zero completely positive contraction φ : AÑ B satisfying

i) φ
�

ρβpbqaρβpcq
�

� bφpaqc for all a P A and b, c P B,

ii) φ
�

xξ|1∆paq|ξ
1

y1

�

� ξ�ρβpφpaqqξ
1 for all a P A and ξ, ξ1 P α.

A bounded right Haar weight for pAα,βH ,∆q is a non-zero completely positive contraction
ψ : AÑ Bop satisfying

i)’ ψ
�

ραpb
op
qaραpc

op
q

�

� bopψpaqcop for all a P A and b, c P B,

ii)’ ψ
�

xη|2∆paq|η
1

y2

�

� η�ραpψpaqqη
1 for all a P A and η, η1 P β.

Remarks 4.3. Let pAα,βH ,∆q be a Hopf C�-bimodule over µ.

i) If φ is a bounded left Haar weight for pAα,βH ,∆q , then ρβ�φ : AÑ ρβpBq is a conditional
expectation.

ii) If φ : AÑ B satisfies condition ii) and if rxα|1∆pAq|αy1s � A, then φ also satisfies con-
dition i) because φ

�

ρβpbqxξ|1∆paq|ξ
1

y1ρβpcq
�

� φ
�

xξb|1∆paq|ξ
1cy1

�

� b�ξ�ρβpφpaqqξ
1c �

b�φ
�

xξ|1∆paq|ξ
1

y1

�

c for all a P A, b, c P B, ξ, ξ1 P α.

Similar remarks apply to bounded right Haar weights.

The notion of a counit of a Hopf algebra extends to Hopf C�-bimodules as follows.

Definition 4.4. Let pAα,βH ,∆q be a Hopf C�-bimodule over µ. A bounded (left/right) counit

for pAα,βH ,∆q is a morphism ǫ P Mor
�

A
α,β
H ,LpHµq

B,Bop

Hµ

�

satisfying (the first/second of) the
following conditions:
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i) ǫ
�

xη|2∆paq|η
1

y2

�

� η�aη1 for all a P A and η, η1 P β,

ii) ǫ
�

xξ|1∆paq|ξ
1

y1

�

� ξ�aξ1 for all a P A and ξ, ξ1 P α.

Remark 4.5. i) Condition i) and ii), respectively, hold if and only if the left/the right
square of the following diagram commute:

Aα�βA

ǫ�id

��

A
∆oo

��

∆ //

��

Aα�βA

id�ǫ
��

LpHµqB�βA // LpHµBbβHq

� // LpHq LpHαbBopHµq
�oo Aα�BopLpHµq.oo

ii) A standard argument shows that if a bounded left and a bounded right counit exist,
then they are equal and a counit.

Compact C�-quantum groupoids Given a compact C�-quantum graph pB,µ,A, r, φ,
s, ψ, δq with coinvolution R, we use the notation introduced in Proposition 3.8 and put
ν :� µ � φ, ν�1 :� µop � ψ � νδ, J :� Jν � Jν�1 ,

H :� Hν , pα :� rAζφs, β :� rA
op
ζφs, pβ :� rAζψs, α :� rA

op
ζψs, (7)

and define an antiunitary I : H Ñ H by IΛν�1paq � ΛνpRpaq
�

q for all a P A. Since
IαJµ � β, IβJµ � α, and Rpaq � Ia�I for all a P A, we can define a �-antihomomorphism
Rα�βR : Aα�βAÑ Aβ�αA by x ÞÑ pIαb

Jµ
βIq

�x�pIαb
Jµ
αIq (Lemma 3.10).

The definition of a compact C�-quantum groupoid involves the following conditions that
are analogues of the strong invariance property known from quantum groups:

Lemma 4.6. Let pB,µ,A, r, φ, s, ψ, δq be a compact C�-quantum graph with a coinvolution
R and a comultiplication ∆ for Aα,βH such that pRα�βRq �∆ � AdΣ �∆ � R. Then

R
�

xζψ|1∆paqpd
op
αbβ1q|ζψy1

�

� xζφ|2p1αbβRpdq
op
q∆pRpaqq|ζφy2 for all a, d P A.

Proof. Let a, d P A. By Lemmas 3.9 and 2.7,

xζφ|2p1αbβRpdq
op
q∆pRpaqq|ζφy2 � xζφ|2p1αbβIpd

op
q

�

IqΣpIαbβIq∆paq
�

pIαb
Jµ
βIq

�Σ|ζφy2

� xζφ|1pIαb
Jµ
βIqppd

op
q

�

αbβ1q∆paq
�

|IζφJµy1I

� Ixζψ|1ppd
op
q

�

αbβ1q∆paq
�

|ζψy1I

� R
�

xζψ|1∆paqpd
op
αbβ1q|ζψy1

�

.

As a direct consequence, we obtain the following result:

Lemma 4.7. Let pB,µ,A, r, φ, s, ψ, δq be a compact C�-quantum graph with a coinvolution
R and a comultiplication ∆ for Aα,βH such that pRα�βRq � ∆ � AdΣ �∆ � R. Then the
following two conditions are equivalent:

i) R
�

xζψ|1∆paqpd
op
αbβ1q|ζψy1

�

� xζψ|1pa
op
αbβ1q∆pdq|ζψy1 for all a, d P A.

ii) R
�

xζφ|2∆paqp1αbβd
op
q|ζφy2

�

� xζφ|2p1αbβa
op
q∆pdq|ζφy2 for all a, d P A.

Now we come to the main definition of this article:

Definition 4.8. A compact C�-quantum groupoid is a compact C�-quantum graph pB,µ,A,
r, φ, s, ψ, δq with a coinvolution R and a comultiplication ∆ for Aα,βH such that

i) r∆pAq|αy1s � r|αy1As � r∆pAq|ζψy1As and r∆pAq|βy2s � r|βy2As � r∆pAq|ζφy2As;

ii) φ is a bounded left Haar weight and ψ a bounded right Haar weight for pAα,βH ,∆q;

iii) R
�

xζψ|1∆paqpd
op
αbβ1q|ζψy1

�

� xζψ|1pa
op
αbβ1q∆pdq|ζψy1 for all a, d P A.
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Let us briefly comment on this definition. The coinvolution R is uniquely determined by
condition iii). The Haar weights are unique up to some scaling, as we shall see at the end of
this section. At the end of the next section, we will see that pRα�βRq �∆ � AdΣ �∆ �R; in
particular, the modified strong invariance condition in Lemma 4.7 ii) holds by Lemma 4.7.

From now on, let pB,µ, A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid.

Lemma 4.9. ta P A X rpBq1 | ∆paq � 1αbβau � spBopq and ta P A X spBopq1 | ∆paq �
aαbβ1u � rpBq.

Proof. We only prove the first equation. Clearly, the right hand side is contained in the left
hand side. Conversely, if a P A X rpBq1 and ∆paq � 1αbβa, then a � xζψ|1∆paq|ζψy1 �

spψpaqq by right-invariance of ψ.

The conditional expectation onto the C
�-algebra of orbits Let us study the

maps τ � ψ � r : B Ñ ZpBopq � ZpBq and τ : � φ � s : Bop Ñ ZpBq � ZpBopq introduced in
(2)). First, note that τ pbq � τ :pbopq for all b P B by Lemma 2.7 ii).

Proposition 4.10. The maps τ and τ : are conditional expectations onto a C�-subalgebra
of ZpBq � B XBop and satisfy

s � τ � r � τ, σ
µ
t � τ � τ for all t P R,

τ � φ � τ
:

� ψ, τ pbσ
µ

�i{2pdqq � τ pdσ
µ

�i{2pdqq for all b, d P Dompσµ
�i{2q.

The proof involves the following equation:

Lemma 4.11. For all b, c, e P B and d P Dompσµ
�i{2q,

xζψ|1∆prpbqspc
op
qqpprpdqspe

op
qq

op
αbβ1q|ζψy1 � rpτ pbσ

µ

�i{2pdqqqrpeqspc
op
q.

Proof. Let b, c, d, e as above. Then

xζψ|1∆prpbqspc
op
qqpprpdqspe

op
qq

op
αbβ1q|ζψy1 � xζψ|1prpbqprpdqspe

op
qq

op
αbβspc

op
qq|ζψy1

� ρβ
�

ζ
�

ψrpbqrpdq
op
spe

op
q

op
ζψ

�

spc
op
q

� r
�

ζ
�

ψrpbqrpdq
op
ζψe

�

spc
op
q,

and by Lemma 3.7 iii), ζ�ψrpbqrpdq
opζψ � ζ�ψrpbσ

µ

�i{2pdqqζψ � τ pbσ
µ

�i{2pdqq.

Proof of Proposition 4.10. The left- and right-invariance of φ and ψ imply that for all a P A,

φpspψpaqqq � ζ
�

φ spψpaqqζφ � ζ
�

ψxζφ|2∆paq|ζφy2ζψ

� ζ
�

φ xζψ|1∆paq|ζψy1ζ
�

φ � ζ
�

ψrpφpaqqζψ � ψprpφpaqqq.

Therefore, τ : �ψ � τ � φ and τ � τ � τ : � τ � τ : � pψ � rq � τ � φ � r � τ . Next, s � τ � r � τ

because for all b P B,

spψprpbqqq � xζψ|1∆prpbqq|ζψy1 � xζψ|1prpbqαbβ1q|ζψy1 � ρβ
�

ζ
�

ψrpbqζψq � rpψprpbqqq.

In particular, we find that for all b, c, d P B,

τ pbqτ pcqτ pdq � τ pbqψprpcqqτ pdq � ψ
�

spτ pbqqrpcqspτ pdqq
�

� ψ
�

rpτ pbcdqqq � τ pbcdq.

Therefore, τ is a conditional expectation onto its image.

Let t P R. Then σ
µ
t pτ pBqq � τ pBq because σµt � τ � σ

µop

�t � ψ � r � ψ � σν
�1

�t � r �

ψ �σνt � r � ψ � r �σ
µ
t . Since υ :� µ|τpBq is a trace, we can conclude from Lemma 2.2 i) that

σ
µ
t � τ � τ � συt � τ .
Finally, let b, d P Dompσµ

�i{2q. By Lemma 4.11 and condition iii) in Definition 4.8,

rpτ pbσ
µ

�i{2pdqqq � xζψ|1∆prpbqqprpdq
op
αbβ1q|ζψy1

� R
�

xζψ|1∆prpdqqprpbq
op
αbβ1q|ζψy1

�

� spτ pdσ
µ

�i{2
pbqqq.

Since s � τ � r � τ and r is injective, we can conclude τ pbσµ
�i{2

pdqq � τ pdσ
µ

�i{2
pbqq.
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The modular element The modular element of a compact C�-quantum groupoid can
be described in terms of the element

θ :� φpδq � ψpδ
�1
q P B XB

op

(see Lemma 2.5 and Lemma 2.7 i)) as follows.

Proposition 4.12. δ � rpθqspθq�1 and ∆pδq � δαbβδ.

Proof. By Lemma 2.5 i), the element δ̃ :� rpθqspθq�1 is positive, invertible, and invariant
with respect to σν . Moreover, ν�1

paq � νpδ̃1{2aδ̃1{2q for all a P A because

ν
�1

�

spθq
1{2
aspθq

1{2
�

� µ
op
pθ

1{2
ψpaqθ

1{2
q � pµ � φ � s � ψqpaq

� pµ
op
� ψ � r � φqpaq � µpθ

1{2
φpaqθ

1{2
q � ν

�

rpθq
1{2
arpθq

1{2
�

for all a P A by Proposition 4.10 and Lemma 2.5 ii). Now, δ � δ̃ by Lemma 2.3 iii), and
∆pδq � rpθqαbβspθq

�1
� rpθqραpθ

�1
qαbβρβpθqspθq

�1
� δαbβδ because θ P ZpBq.

An important consequence of the preceding result is that for every compact C�-quantum
groupoid, there exists a faithful invariant KMS-state on the basis:

Corollary 4.13. µθ � φ � pµθq
op
� ψ.

Proof. For all a P A, we have µ
�

θ1{2φpaqθ1{2
�

� ν
�

rpθq1{2arpθq1{2
�

� ν�1
�

spθq1{2aspθq1{2
�

�

µop
�

θ1{2ψpaqθ1{2
�

.

This result implies that in principle, we could restrict to compact C�-quantum groupoids
with trivial modular element δ � 1A. We shall not do so for several reasons. First, the
treatment of a nontrivial modular element does not require substantially more work. Second,
the freedom to choose the state µ might be useful in applications. Finally, we hope to
prepare the ground for a more general theory of locally compact quantum groupoids, where
the modular element can no longer be assumed to be trivial.

The KMS-state µ can be factorized into a state υ on the commutative C�-algebra τ pBq �
ZpBq and a perturbation of τ as follows. We define maps

τθ�1 : B Ñ τ pBq, b ÞÑ τ pθ
�1{2

bθ
�1{2

q, υ � µθ|τpBq : τ pBq Ñ C, b ÞÑ µpθ
1{2
bθ

1{2
q.

Note that τ pθ�1
q � 1 because θ � φpδq � φprpθqspθq�1

q � θτ pθ�1
q.

Proposition 4.14. µ � υ � τθ�1 .

Proof. By Propositions 4.10 and 4.12, we have µpbq � νprpbqq � ν�1
pδ�1{2rpbqδ�1{2

q �

µop
�

θ1{2ψprpθ�1{2bθ�1{2
qqθ1{2

�

� pυ � τθ�1qpbq for all b P B.

Uniqueness of the Haar weights A central result in the theory of locally compact
(quantum) groups is the uniqueness of the Haar weights up to scaling. In this paragraph, we
prove a similar uniqueness result for the Haar weights of a compact C�-quantum groupoid.

The Haar weights of a compact C�-quantum groupoid can be rescaled by elements of B
as follows: For every positive element γ P Bop, the completely positive contraction

φspγq : AÑ B, a ÞÑ φ
�

spγq
1{2
aspγq

1{2
�

,

is a bounded left Haar weight for pAα,βH ,∆q because for all a P A and ξ, ξ1 P α

φspγq
�

xξ|1∆paq|ξ
1

y1

�

� φ
�

xξ|1p1αbβspγq
1{2
q∆paqp1αbβspγq

1{2
q|ξ

1

y1

�

� φ
�

xξ|1∆
�

spγq
1{2
aspγ

1{2
q

�

|ξ
1

y1

�

� ξ
�

φspγqpaqξ
1

.

Likewise, for every positive element γ P B, the completely positive contraction

ψrpγq : AÑ B
op
, a ÞÑ ψ

�

rpγq
1{2
arpγq

1{2
�

,

is a bounded right Haar weight for pAα,βH ,∆q.

13



Theorem 4.15. Let φ̃, ψ̃, δ̃ be such that pB,µ,A, r, φ̃, s, ψ̃, δ̃q is a compact C�-quantum
graph.

i) If φ̃ is a bounded left Haar weight for pAα,βH ,∆q, then φ̃ � φγ, where γ � ψ̃pδ̃�1
qθ�1.

ii) If ψ̃ is a bounded right Haar weight for pAα,βH ,∆q, then ψ̃ � ψγ , where γ � φ̃pδ̃qθ�1.

Proof. We only prove i), the proof of ii) is similar. Put ν̃ :� µ�φ̃, ν̃�1 :� µop�ψ̃, θ̃ :� ψ̃pδ̃�1
q.

Let a P A. Then

φ̃pspψpaqqq � φ̃pxζψ|1∆paq|ζψy1q � ψprpφ̃paqqq. (8)

We apply µ to the left hand side and find, using Lemma 2.5 ii),

ν̃pspψpaqqq � µ
op

θ̃
pψpaqq � ν

�1
�

spθ̃q
1{2
aspθ̃q

1{2
�

� ν
�

δ
1{2
spθ̃q

1{2
aspθ̃q

1{2
δ
1{2

�

.

Next, we apply µ to the right hand side of equation (8) and find

ν
�1
prpφ̃paqqq � µθpφ̃paqq � ν̃

�

rpθq
1{2
arpθq

1{2
�

.

Since the left hand side and the right hand side of equation (8) are equal and δ � rpθqspθq�1,
we can conclude ν̃pdq � ν

�

spγq1{2dspγq1{2
�

for all d P A and in particular

µpb
�

φ̃paqq � ν̃
�

rpbq
�

a
�

� ν
�

spγq
1{2
rpbq

�

aspγq
1{2

�

� µ
�

b
�

φpspγq
1{2
aspγq

1{2
q

�

for all b P B, a P A. Since µ is faithful, we have φ̃paq � φpspγq1{2aspγq1{2q for all a P A.

5 The fundamental unitary

In the theory of locally compact quantum groups, a fundamental rôle is played by the mul-
tiplicative unitaries of Baaj, Skandalis [1] and Woronowicz [22]: To every locally compact
quantum group, one can associate a manageable multiplicative unitary, and to every man-
ageable multiplicative unitary two Hopf C�-algebras called the “legs” of the unitary. One
of these legs coincides with the initial quantum group, and the other one is its generalized
Pontrjagin dual. Moreover, the multiplicative unitary can be used to switch between the
reduced C�-algebra and the von Neumann algebra of the quantum group.

Similarly, we associate to every compact C�-quantum groupoid a generalized multiplica-
tive unitary. More precisely, this unitary is a regular C�-pseudo-multiplicative unitary in
the sense of [17]. The first application of this unitary will be to prove that the coinvolution
of a compact C�-quantum groupoid reverses the comultiplication. The second application
will be to associate to every compact C�-quantum groupoid a measured quantum groupoid
in the sense of Enock and Lesieur [5, 9]. The third application, given in the next section,
will be to construct a generalized Pontrjagin dual of the compact C�-quantum groupoid in
form of a Hopf C�-bimodule. Finally, one can use this unitary to define reduced crossed
products for coactions of the compact C�-quantum groupoid as in [16].

C�-pseudo-multiplicative unitaries The notion of a C�-pseudo-multiplicative uni-
tary extends the notion of a multiplicative unitary [1], of a continuous field of multiplicative
unitaries [2], and of a pseudo-multiplicative unitary on C�-modules [10, 18], and is closely
related to pseudo-multiplicative unitaries on Hilbert spaces [21]; see [17, Section 4.1]. The
precise definition is as follows. Let µ be a faithful KMS-state on a C�-algebra B.

Definition 5.1 ([17]). A C�-pseudo-multiplicative unitary over µ consists of a C�-pµop, µ, µopq-

module pH, pβ, α, βq and a unitary V : H
pβbαH Ñ HαbβH such that

V pα � αq � α � α, V ppβ � βq � pβ � β, V ppβ �

pβq � α �

pβ, V pβ � αq � β � β (9)
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and the following diagram commutes:

H
pβbαH pβbαH

V
pβ� pβbα id

//

id
pβbα�αV

��

HαbβH
pβbαH

id αbβ�αV // HαbβHαbβH,

H
pβbα�αpHαbβHq

id
pβbα�αΣ

��

pH
pβbαHqα�αbβH

V α�αbβ id

OO

H
pβbαHβbαH

V
pβ�βbα id //

�

HαbβH
�

pβ�βbαH

Σ23

OO
(10)

where Σ23 denotes the isomorphism

�

HαbβH
�

pβ�βbαH � pHρα<βqρ
pβ�β

<α
�

ÝÑ pHρ
pβ
<αqρα�α<β � pH

pβbαHqα�αbβH,

pζ < ξq< η ÞÑ pζ < ηq< ξ.

Given a C�-pseudo-multiplicative unitary pH, pβ, α, β, V q, we adopt the following leg notation.
We abbreviate the operators V

pβ� pβbα id and V α�αbβ id by V12, the operators id αbβ�αV and
id

pβbα�αV by V23, and pid
pβbα�αΣqV12Σ23 by V13. Thus, the indices indicate those positions

in a relative tensor product where the operator acts like V .

Let pH, pβ, α, β, V q be a C�-pseudo-multiplicative unitary. We put

pApV q :�
�

xβ|2V |αy2
�

� LpHq, ApV q :�
�

xα|1V |pβy1
�

� LpHq.

These spaces satisfy pApV q � LpHβq and ApV q � LpH
pβq, so that we can define maps

p∆V : pAÑ L
�

H
pβb
H
αH

�

, pa ÞÑ V
�

p1αbβpaqV, ∆V : AÑ L
�

Hαb
H
βHq, a ÞÑ V pa

pβbα1qV
�

.

Definition 5.2 ([17]). We call a C�-pseudo-multiplicative unitary pH, pβ, α, β, V q regular

if rxα|1V |αy2s � rαα�s, and well-behaved if p pApV q
pβ,α
H , p∆V q and pApV q

α,β
H ,∆V q are Hopf

C�-bimodules over µop and µ, respectively.

Theorem 5.3 ([17]). Every regular C�-pseudo-multiplicative unitary is well-behaved.

Let pH, pβ, α, β, V q be a C�-pseudo-multiplicative unitary. We put

V
op :� ΣV �Σ: HβbαH

Σ
ÝÑ HαbβH

V �

ÝÝÑ H
pβbαH

Σ
ÝÑ Hαb

pβH.

Then pH,β, α, β̂, V opq is a C�-pseudo-multiplicative unitary over µop, called the opposite of
pH, β̂, α, β, V q [17, Remark 4.3]. One easily checks that V op is regular if V is regular.

The fundamental unitary of a compact C�-quantum groupoid Throughout
this section, let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid. We use the
same notation as in the preceding section.

The main result of this paragraph is the following theorem.

Theorem 5.4. There exists a regular C�-pseudo-multiplicative unitary pH, pβ, α, β, V q such
that V |aζψy1 � ∆paq|ζψy1 for all a P A.

We prove this result in several steps. Til the end of this section, we fix a compact
C�-quantum groupoid pB,µ, A, r, φ, s, ψ, δ,R,∆q and use the same notation as in Section 4.

Proposition 5.5. i) There exists a unique unitary V : H
pβbαH Ñ HαbβH such that

V |aζψy1 � ∆paq|ζψy1 for all a P A.
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ii) V paζν < dopζψq � ∆paqpζν < dopζφq for all a, d P A.

iii) V ppβ � βq � pβ � β, V ppβ �

pβq � α �

pβ, V ppβ � pαq � α � pα, V ppα � αq � pα � β.

Proof. i) Let a P A, η P β, ζ P Hµ. Since ψ is a bounded right Haar weight for pAα,βH ,∆q,
�

∆paqpζψ = ζ < ηq
�

�

x∆paqpζψ = ζ < ηq
D

pHαbβHq

�

�

ζ
�

�ζ
�

ψxη|2∆pa
�

aq|ηy2ζψζy

�

�

ζ
�

�η
�

ραpζ
�

ψa
�

aζψqηζ
D

�

�

aζψ = ηζ|aζψ = ηζy
pH

pβ
bαHq

.

Therefore, there exists an isometry V : H
pβbαH Ñ HαbβH such that V |aζψy1 � ∆paq|ζψy1

for all a P A. Since r∆pAq|βy2s � r|βy2As,

V ppβ � βq � rV |Aζψy1βs � r∆pAq|ζψy1βs � r∆pAq|βy2ζψs � r|βy2Aζψs � pβ � β.

In particular, V is surjective and hence a unitary.
ii) By Proposition 4.12, we have for all a, d P A

V paζν < d
op
ζψq � V paδ

�1{2
ζψζµ < d

op
ζψq

� V paδ
�1{2

ζψ = d
op
ζν�1q

� ∆paδ�1{2
qpζψ = d

op
δ
1{2
ζνq

� ∆paqpδ�1{2
αbβδ

�1{2
qpζν�1 < d

op
δ
1{2
ζφq � ∆paqpζν < d

op
ζφq.

iii) The first relation was already proven above. Since r∆pAq|ζψy1As � r|αy1As,

V ppβ �

pβq � rV |pβy1Aζψs � rV |Aζψy1Aζψs � r∆pAq|ζψy1Aζψs � r|αy1Aζψs � α �

pβ

and similarly V ppβ � pαq � α � pα. Finally, by ii), for all b P B and a, d P A

V |a
op
ζψy2dζφbζµ � V

�

drpbqζν < a
op
ζψ

�

� ∆pdrpbqqpζν < a
op
ζφq

� ∆pdq
�

rpbqζν < a
op
ζφ
�

� ∆pdq|aopζφy2ζφbζµ

and hence rV |pαy2αs � rV |Aopζψy2Aζφs � r∆pAq|Aopζφy2ζφs � r∆pAq|βy2ζφs � r|βy2Aζφs �

pα � β.

The strong invariance condition on the coinvolution yields the following important in-
version formula for the unitary V constructed above.

Theorem 5.6. V �

� pJαb
Jµ
βIqV pJαb

Jµ
βIq.

Proof. Put Ṽ :� pJαb
Jµ
βIqV pJαb

Jµ
βIq. Then for all a, b, c, d P A

�

aζψ = b
op
ζν�1

�

�V
�

pc
op
ζν�1 < d

op
ζφq

D

�

�

∆paqpζψ = b
op
ζν�1q

�

�c
op
ζψ = d

op
ζν
D

�

�

ζψ = ζν�1

�

�∆pa�qpcopαbβ1qpζψ = pb
op
q

�

d
op
ζνq

D

�

�

ζν�1

�

�

xζψ|1∆pa
�

qpc
op
αbβ1q|ζψy1pdb

�

q

op
ζν
D

,
�

aζψ = b
op
ζν�1

�

�Ṽ pc
op
ζν�1 < d

op
ζφq

D

�

�

pa�qopζψ = Ibopζν�1

�

�V pc�ζν�1 < Idopζφq
D

�

�

ζψ = Ibopζν�1

�

�

paopαbβ1q∆pc�qpζψ = Idopζνq
D

�

�

ζψ = Iζν�1

�

�

paopαbβ1q∆pc�qpζψ = Ipbopq�dopζνq
D

�

�

Iζν�1

�

�

xζψ|1paopαbβ1q∆pc�q|ζψy1Ipdb�qopζν
D

�

�

ζν�1

�

�Ixζψ|1pa
op
αbβ1q∆pc

�

q|ζψy1Ipdb
�

q

op
ζν
D

.

Now, the claim follows from condition iii) in Definition 4.8.
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Proof of Theorem 5.4. By Lemma 3.9 ii) and Propositions 3.8 iii) and 5.5 iii), left multipli-
cation by pJ

pβ b
Jµ
αIqV

�

pJ
pβ b
Jµ
αIq acts on subspaces of LpHµ,H

pβbαHq below as follows:

r|αy2αs

pJ
pβ
b

Jµ
αIq

ÝÝÝÝÝÝÑ r|βy2Jαs � |βy2 pβJµ
V �

ÝÝÑ r|

pβy1βJµs

pJ
pβ
b

Jµ
αIq

ÝÝÝÝÝÝÑ r|αy1IβJµs � r|αy1αs,

r|αy2βs

pJ
pβ
b

Jµ
αIq

ÝÝÝÝÝÝÑ r|βy2Jβs � r|βy2pαJµs
V �

ÝÝÑ r|αy2pαJµs

pJ
pβ
b

Jµ
αIq

ÝÝÝÝÝÝÑ r|βy2J pαJµs � r|βy2βs,

r|

pβy1 pβs

pJ
pβ
b

Jµ
αIq

ÝÝÝÝÝÝÑ r|αy1I pβs � r|αy1pαJµs
V �

ÝÝÑ r|

pβy1pαJµs

pJ
pβ
b

Jµ
αIq

ÝÝÝÝÝÝÑ r|αy1IpαJµs � r|αy1 pβs.

Now, Theorem 5.6 implies V pα � αq � α � α, V pβ � αq � β � β, V ppβ �

pβq � α �

pβ. These
relations and the relations in Proposition 5.5 iii) are precisely (9).

Let us show that diagram (10) commutes. Let a, d P A and ω P H . Then

V23V12paζψ = dζψ = ωq � V23p∆paqα� pβbα idqpζψ = dζψ = ωq � ∆p2q
paq

�

ζψ = ∆pdqpζψ = ωq
�

,

where ∆p2q
� p∆ � idq �∆ � pid �∆q �∆. On the other hand,

V12V13V23paζψ = dζψ = ωq � V12V13

�

aζψ = ∆pdqpζψ = ωq
�

� V12∆13paq
�

ζψ = ∆pdqpζψ = ωq
�

� ∆p2q
paq

�

ζψ = ∆pdqpζψ = ωqq
�

,

where ∆13paq � Σ23p∆paq
pβ�βbα idqΣ23. Since a and d were arbitrary, we can conclude

V23V12 � V12V13V23.
Finally, V is regular because by Theorem 5.6, Lemma 3.9 ii) and Proposition 3.8 iii),

rxα|1V |αy2s � rxα|1pJ
pβ b
Jµ
αIqV

�

pJ
pβ b
Jµ
αIq|αy2s

� rIxpβ|1V
�

|βy2Js

� rIxζψ|1∆pAq|βy2Js

� rIxζψ|1|βy2AJs � rIβJµ � Jµζ
�

ψAJs � rαα
�

s.

By Theorem 5.3, the regular C�-pseudo-multiplicative unitary pH, pβ, α, β, V q constructed

above yields two Hopf C�-bimodules pApV qα,βH ,∆V q and p

pApV q
pβ,α
H , p∆V q.

Proposition 5.7. pApV q
α,β
H ,∆V q � pA

α,β
H ,∆q.

Proof. We have ApV q � rxα|1V |pβy1s � rxα|1∆pAq|ζψy1s � rAxα|1|ζψy1s � rAραpα
�ζψqs �

rAspBopqs � A and ∆V paq � V pa
pβbα1qV

�

� ∆paq for all a P A.

The Hopf C�-bimodule p pApV q
pβ,α
H , p∆V q will be studied in the next section.

Our first application of the fundamental unitary is to prove that the coinvolution reverses
the comultiplication.

Theorem 5.8. pRα�βRq �∆ � AdΣ �∆ �R.

The proof involves the following formulas:

Lemma 5.9. i) ∆pxξ|1V |ξ
1

y1q � xξ|1V12V13|ξ
1

y1 for all ξ P α, ξ1 P pβ.

ii) Rpxξ|1V |ξ
1

y1q � xJξ1Jµ|1V |JξJµy1 for all ξ P α, ξ1 P pβ.

Proof. i) For all ξ P α, ξ1 P pβ, we have that ∆pxξ|1V |ξ
1

y1q � V ppxξ|1V |ξy1q
pβbα1qV

�

�

xξ|1V
�

23V12V23|ξ
1

y1 � xξ|1V12V13|ξ
1

y1; see also [17, Lemma 4.13].
ii) By Lemma 3.9 and Theorem 5.6, we have that Rpxξ|1V |ξ

1

y1q � Ixξ1|1V
�

|ξy1I �

xJξ1Jµ|1pJαb
Jµ
βIq

�V �

pJαb
Jµ
βIq

�

|JξJµy1 � xJξ1Jµ|1V |JξJµy1 for all ξ P α, ξ1 P pβ

17



Proof of Theorem 5.8. Let ξ P α and ξ1 P pβ. By Lemma 5.9 i),

pAdΣ �pRα�βRq �∆q
�

xξ|1V |ξ
1

y1

�

� pAdΣ �pRα�βRqq
�

xξ|1V12V13|ξ
1

y1

�

� AdΣ

�

pIαb
Jµ
βIq

�

xξ
1

|1V
�

13V
�

12|ξy1pIαb
Jµ
βIq

�

.

By Lemma 3.9 ii), we can rewrite this expression in the form

AdΣ

�

xJξ
1

Jµ|1pJ
pβ b
Jµ
α�αpIαb

Jµ
βIqqV

�

13V
�

12pJαb
Jµ
βIαb

Jµ
βIq

�

|JξJµy1
�

.

Two applications of Lemma 3.9 iii) and Theorem 5.6 and an application of Lemma 5.9 ii)
show that this expression is equal to

AdΣ

�

xJξ
1

Jµ|1V13V12|JξJµy1
�

� xJξ
1

Jµ|1V12V13|JξJµy1

� ∆
�

xJξ
1

Jµ|1V |JξJµy1
�

� ∆pRpxξ|1V |ξ
1

y1qq.

A second fundamental unitary Like in the theory of locally compact quantum
groups, we can associate to a given compact C�-quantum groupoid besides pH, pβ, α, β, V q a
second C�-pseudo-multiplicative unitary pH, pα, β, α,W q as follows.

Theorem 5.10. There exists a regular C�-pseudo-multiplicative unitary pH,α, β, pα,W q

such that W�

|aζφy2 � ∆paq|ζφy2 for all a P A. Moreover,

W � ΣpI
pβb
Jµ
αIqV

�

pIβb
Jµ
αIqΣ � pIαb

Jµ
pβIqV

op
pIαb

Jµ
βIq.

Proof. Let a P A and ξ P H . Since IζψJµ � ζφ and ∆pRpaq�q � ΣpIαb
Jµ
βIq∆paqpIβb

Jµ
αIqΣ,

ΣpIβb
Jµ
αIq

�

V pI
pβb
Jµ
αIq

�Σpξ < aζφq � ΣpIαb
Jµ
βIqV pIaζφJµ = Iξq

� ΣpIαb
Jµ
βIqV pRpaq

�

ζψ = Iξq

� ΣpIαb
Jµ
βIq∆pRpaq

�

qpζψ = Iξq

� ∆paqpIαb
Jµ
βIqΣpζψ = Iξq � ∆paqpξ < ζφq.

Therefore, the unitary W � ΣpI
pβ b
Jµ
αIqV

�

pIβb
Jµ
αIqΣ satisfies W�

|aζφy2 � ∆paq|ζφy2 for

all a P A. Since pH,β, α, pβ, V opq is a regular C�-pseudo-multiplicative unitary, so is
pH,α, β, pα,W q.

The passage to the setting of von Neumann algebras In this paragraph, we
indicate how every compact C�-quantum groupoid can be completed to a measurable quan-
tum groupoid in the sense of Lesieur [9] and Enock [5]. We assume some familiarity with
[9] or [5].

Let µ be a faithful KMS-state on a unital C�-algebra B. Then the state µ̃ on N :�
B2

� LpHµq given by y ÞÑ xζµ|yζµy is the unique normal extension of µ and is faithful
because ζµ is cyclic for πµop

pBopq � N 1. Evidently, the Hilbert space Hµ̃ :� Hµ and the
map Λµ̃ : N Ñ Hµ̃, y ÞÑ yζµ, form a GNS-representation for µ̃.

Lemma 5.11. Let µ be a faithful KMS-state on a unital C�-algebra B and let pr, φq be a µ-
module structure on a unital C�-algebra A. We put N :� B2

� LpHµq, M :� A2

� LpHνq,
and use the notation of Lemma 2.2.

i) r extends uniquely to a normal embedding r̃ : N ÑM .

ii) φ extends uniquely to a normal completely positive map φ̃ : M Ñ N , and ν̃ � µ̃ � φ̃. If
φ is faithful, so is φ̃.
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iii) ζy � r̃pyqζ, ζ�x � φ̃pxqζ�, φ̃pxr̃pyqq � φ̃pxqr̃pyq for all x PM , y P N .

Proof. i) Uniqueness is clear. Put pα :� rAζs. By Lemmas 3.2 and 3.7, Hν � pα=Hµ. Hence,
we can define a �-homomorphism r̃ : N Ñ Lpα=Hµq � LpHνq by x ÞÑ id

pα =x. By Lemma
3.7 i), r̃ extends r, and routine arguments show that r̃ is normal and injective.

ii) φ̃ is uniquely determined by φ̃pxq � ζ�xζ for all x PM , and clearly ν̃pxq � xζν |xζνy �

xζµ|ζ
�xζζµy � pµ̃ � φ̃qpxq for all x P M . If φ is faithful, so is ν and, since µ̃ is faithful and

ν̃ � µ̃ � φ̃, also φ̃ is faithful.
iii) Use Lemma 2.2 iii) and the fact that r̃, φ̃ are normal extensions of r, φ.

Let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid. We keep the notation
introduced before and put

N :� B
2

� LpHµq, N
op :� pB

op
q

2

� N
1

� LpHµq, M :� A
2

� LpHq.

By the previous remarks, the maps µ, r, φ, s, ψ have unique normal extensions

µ̃ : N Ñ C, r̃ : N ÑM, φ̃ : M Ñ N, s̃ : N 1

ÑM, ψ̃ : M Ñ N
1

.

Before we can extend the comultiplication ∆ from A toM , we need to recall the definition
of the fiber product of von Neumann algebras [14] and the underlying relative tensor product
of Hilbert spaces [15]; a reference is also [19, §10]. The relative tensor product of H with
itself, taken with respect to s̃, r̃ and µ̃, is defined as follows. Put

DpHr̃; µ̃q :�
 

η P H
�

�

DC ¡ 0�y P N : }r̃pyqη} ¤ C}yζµ}
(

.

Evidently, an element η P H belongs to DpHr̃; µ̃q if and only if the map Nζµ Ñ H given
by yζµ ÞÑ r̃pyqη extends to a bounded linear map Lpηq : Hµ Ñ H , and Lpηq�Lpη1q P N 1 for
all η, η1 P DpHr̃; µ̃q. The relative tensor product H s̃b

µ̃
r̃H is the separated completion of the

algebraic tensor product H dDpHr̃; µ̃q with respect to the sesquilinear form defined by

xω d η|ω
1

d η
1

y � xω|s̃pLpηq
�

Lpη
1

qqω
1

y for all ω,ω1 P H, η, η1 P DpHr̃; µ̃q.

We denote the image of an element ω d η in H s̃b
µ̃
r̃H by ωs̃br̃η.

Lemma 5.12. i) aopζν P DpHr̃; µ̃q and Lpa
opζνq � aopζφ P β for all a P A.

ii) There exist inverse isomorphisms

Φα,β : HαbβH � Hρα<β Ñ H s̃b
µ̃
r̃H, Ψα,β : H s̃b

µ̃
r̃H Ñ α=ρβ H � HαbβH

such that for all ω P H, a P A, ξ P α, η P DpHr̃, µ̃q, ζ P Hµ

Φα,βpω < a
op
ζφq � ωs̃br̃a

op
ζν , Ψα,βpξζ s̃br̃ηq � ξ = Lpηqζ.

Proof. i) For all a P A, y P N , r̃pyqaopζν � aopr̃pyqζφζµ � aopζφyζµ. The claims follow.
ii) The formulas for Φα,β and Ψα,β define isometries because for all ω, a, ξ, η, ζ as above,

}ω < a
op
ζφ}

2
�

�

ω
�

�ραpζ
�

φ pa
op
q

�

a
op
ζφqω

D

�

�

ω
�

�s̃pLpa
op
ζνq

�

Lpa
op
ζνqqω

D

� }ωs̃br̃a
op
ζν}

2

and

}ξζ s̃br̃η}
2
� xξζ|s̃pLpηq

�

Lpηqqξζy � xζ|ξ
�

ξLpηq
�

Lpηqζy

� xζ|Lpηq
�

ρβpξ
�

ξ
�

qLpηqζy � }ξ = Lpηqζ}
2
.

Moreover, Ψα,β � Φα,β � id because for all a, ξ, ζ as above,

pΨα,β � Φα,βqpξζ < a
op
ζφq � ξ = Lpa

op
ζνqζ � ξ = a

op
ζφζ � ξζ < a

op
ζφ.
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We identify HαbβH with H s̃b
µ̃
r̃H via Φα,β and Ψα,β without further notice.

The fiber product M s̃�
µ̃
r̃M is defined as follows. One has r̃pNq1DpHr̃; µ̃q � DpHr̃; µ̃q,

and for each x, x1 PM 1, there exists a well-defined operator xs̃b
µ̃
r̃x

1

� LpH s̃b
µ̃
r̃Hq such that

pxs̃b
µ̃
r̃x

1

qpωs̃br̃ηq � xωs̃br̃xη for all ω P H , η P DpHr̃; µ̃q. Now,

M s̃�
µ̃
r̃M � pM

1

s̃br̃M
1

q

1

� LpH s̃b
µ̃
r̃Hq.

Lemma 5.13. ∆ extends to a normal �-homomorphism ∆̃ : M ÑM s̃�
µ̃
r̃M .

Proof. Simply define ∆̃ by ∆̃pxq :� V px< idαqV
� for all x PM .

The notion of a measurable quantum groupoid was first defined in [9]; later, the definition
was changed in [5, §6].

Theorem 5.14. pN,M, r̃, s̃, ∆̃, φ̃, ψ̃, µ̃q is a measurable quantum groupoid.

Proof. First, one has to check that pN,M, r̃, s̃, ∆̃q is a Hopf-bimodule; this follows from the
definition of ∆̃ and the fact that V is a C�-pseudo-multiplicative unitary.

Second, one has to check that φ̃ and ψ̃ are left- and right-invariant, respectively. This
follows from the fact that these maps are normal extensions of φ and ψ, which are left- and
right-invariant, respectively.

Finally, one has to check that the modular automorphism groups of ν̃ � µ̃ � φ̃ and
ν̃�1

� µ̃op � ψ̃ commute, but this follows from the fact that ν̃�1
� ν̃δ1{2 .

6 Supplements on C
�-pseudo-multiplicative unitaries

In this section, we interrupt our discussion of compact C�-quantum groupoids and study
several properties C�-pseudo-multiplicative unitaries that shall prove useful later. The
corresponding properties for multiplicative unitaries were introduced and studied in [1].
Throughout this section, let µ be a faithful KMS-state on a unital C�-algebra B.

Fixed and cofixed elements for a C�-pseudo-multiplicative unitary We shall
study elements with the following property:

Definition 6.1. Let pH, β̂, α, β, V q be a C�-pseudo-multiplicative unitary over µ. A fixed

element for V is an element η P pβ X α satisfying V |ηy1 � |ηy1 P LpH,HαbβHq. A cofixed
element for V is an element ξ P αX β satisfying V |ξy2 � |ξy2 P LpH,HαbβHq. We denote
the set of all fixed/cofixed elements for V by FixpV q/CofixpV q.

Til the end of this paragraph, let pH, β̂, α, β, V q be a C�-pseudo-multiplicative unitary
over µ.

Remarks 6.2. i) FixpV q � CofixpV opq and CofixpV q � FixpV opq.

ii) FixpV q�FixpV q and CofixpV q�CofixpV q are contained in B XBop � ZpBq.

iii) Since FixpV q � pβ X α, we have ραpB
op
qFixpV q � FixpV qBop � pβ and ρ

pβpBqFixpV q �
FixpV qB � α. Likewise, ρβpBqCofixpV q � α and ραpB

op
qCofixpV q � β.

Lemma 6.3. i) xξ|2V |ξ
1

y2 � ραpξ
�ξ1q � ρ

pβpξ
�ξ1q for all ξ, ξ1 P CofixpV q, and xη|1V |η

1

y1 �

ρβpη
�η1q � ραpη

�η1q for all η, η1 P FixpV q.

ii) ρ
pβpBqCofixpV q � CofixpV q and ρβpBqFixpV q � FixpV q.

iii) rEE�Es � E for E P tCofixpV q,FixpV qu.

iv) rCofixpV q�CofixpV qs and rFixpV q�FixpV qs are C�-subalgebras of ZpBq.

20



Proof. We only prove the assertions on CofixpV q; the other assertions follow similarly.
i) For all ξ, ξ1 P CofixpV q and ζ P H , xξ|2V |ξ

1

y2ζ � xξ|2|ξ
1

y2ζ � ραpξ
�ξ1qζ and pxξ|2V |ξ

1

y2q
�ζ �

xξ1|2|ξy2ζ � ρ
pβpξ

�ξ1q�ζ.
ii) Let b P B and ξ P CofixpV q. Then ρ

pβpbqξ P ρ
pβpBqβ X ρ

pβpBqα � β X α, and

V |ρ
pβpbqξy2 � V ρ

p

pβ� pβqpbq|ξy2 � ρ
pα� pβqpbqV |ξy2 � ρ

pα� pβqpbq|ξy2 � |ρ
pβpbqξy2 because V ppβ �

pβq � α �

pβ.
iii) Let ξ, ξ1, ξ2 P CofixpV q. Then ραpξ

1�ξ2q � ρ
pβpξ

1�ξ2q by i) and hence V |ξξ1�ξ2y2 �

V |ξy2ρ
pβpξ

1�ξ2q � |ξy2ραpξ
1�ξ2q � |ξξ1�ξ2y2 in LpH,HαbβHq.

iv) Immediate from iii).

Definition 6.4. We call pH, β̂, α, β, V q or briefly V étale if η�η � idK for some η P FixpV q,
and compact if ξ�ξ � idK for some ξ P CofixpV q.

Remarks 6.5. i) By Remark 6.2, V is étale/compact if and only if V op is compact/étale.

ii) If V is compact, then idH P

pApV q; if V is étale, then idH P ApV q. This follows directly
from Lemma 6.3.

The following observation supports the plausibility of the assumptions in condition i) of
Definition 4.8:

Remark 6.6. Let pH, β̂, α, β, V q be a regular C�-pseudo-multiplicative unitary over µ. If

ξ0 P FixpV q and pβ � rApV qξ0s, then by [16, Lemma 5.8],

r∆V pApV qq|ξ0y1ApV qs � rV pApV q
pβbα1qV

�

|ξ0y1ApV qs

� rV |ApV qξ0y1ApV qs � rV |pβy1ApV qs � r|αy1ApV qs.

Likewise, if η0 P CofixpV q and α � r

pApV qη0s, then r

p∆V p
pApV qq|η0y2 pApV qs � r|βy2 pApV qs.

The (co)fixed vectors of the C�-pseudo-multiplicative unitaries introduced in Theorems
5.4 and 5.10 are easily determined:

Proposition 6.7. Let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid.

i) The associated C�-pseudo-multiplicative unitary pH, pβ, α, β, V q is compact and FixpV q �
rrpBqζψs.

ii) The associated C�-pseudo-multiplicative unitary pH,α, β, pα,W q is étale and CofixpW q �

rspBopqζφs.

Proof. i) Evidently, ζψ P FixpV q, and by Lemma 6.3 ii), rrpBqζψs � rρβpBqζψs � FixpV q.

Conversely, if η0 P FixpV q, then η0 P pβ � rAζψs and therefore

η0 � ραpζ
�

φ ζφqη0 � xζφ|2|η0y1ζφ � xζφ|2V |η0y1ζφ

P rxζφ|2∆pAq|ζψy1ζφs

� rxζφ|2∆pAq|ζφy2ζψs � rrpφpAqqζψs � rrpBqζψs.

ii) This follows easily from i) and the relation W � pIαb
Jµ

pβIqV
op
pIαb

Jµ
βIq.

Haar weights and counits obtained from (co)fixed elements Fixed and cofixed
elements for a C�-pseudo-multiplicative unitary yield bounded Haar weights and bounded
counits on the legs as follows:

Theorem 6.8. Let pH, β̂, α, β, V q be a well-behaved C�-pseudo-multiplicative unitary over
µ.

i) Assume that pH, β̂, α, β, V q is étale and that η0 P FixpV q satisfies η�0 η0 � idHµ .
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(a) A bounded left counit pǫ for p

pApV q
pβ,α
H , p∆V q is given by pǫppaq :� η�0 paη0. For all

η P β, ξ P α, we have pǫpxη|2V |ξy2q � η�ξ. In particular, pǫ does not depend on the
choice of η0, pǫp pApV qq � rβ�αs, and rβ�αs is a C�-algebra. If V is regular, then pǫ

is a bounded counit.

(b) A bounded right Haar weight ψ for pApV qα,βH ,∆V q is given by ψpaq :� η�0 aη0.

ii) Assume that pH, β̂, α, β, V q is compact and that ξ0 P CofixpV q satisfies ξ�0 ξ0 � idHµ .

(a) A bounded right counit ǫ for pApV q
α,β
H ,∆q is given by ǫpaq :� ξ�0 aξ0. For all

η P α, ξ P pβ, we have ǫpxη|1V |ξy1q � η�ξ. In particular, ǫ does not depend on the

choice of η0, ǫpApV qq � rα� pβs, and rα� pβs is a C�-algebra. If V is regular, then pǫ

is a bounded counit.

(b) A bounded left Haar weight pφ for p pApV q
pβ,α
H , p∆V q is given by pφppaq :� ξ�0 paξ0.

Proof. We only prove the assertions concerning p pApV q
pβ,α
H , p∆V q, the corresponding assertions

for pApV qα,βH ,∆V q follow by replacing V by V op.
i) (a) Evidently, pǫ is a completely positive contraction. Let η, η1 P β and ξ, ξ1 P α. Then

xη|2V |ξy2η0 � xη|2|η0y1ξ � η0η
�

ξ � η0η
�

0 xη|2V |ξy2η0 � η0pǫpη|2V |ξy2q. (11)

Now, pǫ is a �-homomorphism and pǫp pApV qq � rβ�αs because

η
�

0 xη|2V |ξy2η0η
�

0 xη
1

|2V |ξ
1

y2η0 � η
�

0 xη|2V |ξy2xη
1

|2V |ξ
1

y2η0, pǫpxη|2V |ξy2q � η
�

0 η0η
�

ξ � η
�

ξ.

Since rη�0 αs � B and rη�0
pβs � Bop, the map pǫ is morphism of C�-pµ, µopq-algebras pApV q

pβ,α
H

and rβ�αs
Bop,B
Hµ

. It is a left counit because ppǫ � idq
�

p∆ppaq
�

� xη0|1V
�

p1αbβpaqV |η0y1 �

xη0|1p1αbβpaq|η0y1 � pa for all pa P pApV q.
Assume that V is regular, and consider the following diagram:

H

|η0y2

��

|ξy2 // H
pβbαH

|η0y2

��

V //

p�q

HαbβH

|η0y2

!!B
BB

BB
BB

BB

id // HαbβH==

xη0|2

||
||

||
||

|

xη|2 // H

H
pβbαH

|ξy3 //

x∆V pxη|2V |ξy2q

OO
H

pβbαH pβbαH
V13V23 //

pH
pβbαHqα�αbβH

xη|3 // H
pβbαH

xη0|2

OO

The lower cell commutes by the proof of [17, Lemma 4.13], cell (*) commutes because
V23|η0y2 � |η0y2, and the other cells commute as well. Since η P β and ξ P α were arbitrary,
pǫ is a bounded right counit.

ii) (b) By Remark 6.2 i), rξ�0 pApV qξ0s � rξ�0 ραpB
op
q

pApV qραpB
op
qξ0s � rβ� pApV qβs �

Bop. Hence, the given formula defines a completely positive contraction pφ : pApV q Ñ Bop.
Since ραpb

op
qξ0 � ξ0b

op for all bop P Bop, condition i) of Definition 4.2 holds. Condition ii)

holds because for all pa P pApV q and η, η1 P pβ,

ξ
�

0 xη|1 p∆V ppaq|η
1

y1ξ0 � η
�

xξ0|2V
�

pid αbβpaqV |ξ0y2η
1

� η
�

xξ0|2pid αbβpaq|ξ0y2η
1

� η
�

ρα
�

ξ
�

0 paξ0
�

η
1

.

Balanced C�-pseudo-multiplicative unitaries and C�-pseudo-Kac systems
Weak C�-pseudo-Kac systems were introduced in [16] as a framework to construct reduced
crossed products for coactions of Hopf C�-bimodules. Let us briefly recall the definition.

Definition 6.9 ([16]). A balanced C�-pseudo-multiplicative unitary over µ is a tuple

pH,α, pα, β, pβ, U, V q, where pH,α, pα, β, pβq is a C�-pµ, µ, µop, µopq-module, V : H
pβbαH Ñ

HαbβH is a unitary and U : H Ñ H is a symmetry satisfying the following conditions:

22



i) Uα � pα and Uβ � pβ;

ii) pH, pβ, α, β, V q, pH, pα, pβ, α, qV q, pH,α, β, pα, pV q are well-behaved C�-pseudo-multiplicative

unitaries, where qV and pV are defined by

qV :� Σp1αbβUqV p1
pβbpαUqΣ: H

pαb pβH Ñ H
pβbαH,

pV :� ΣpUαbβ1qV pUβbα1qΣ: HαbβH Ñ Hβb
pαH.

A weak C�-pseudo-Kac system over µ is a balanced C�-pseudo-multiplicative unitary
pH,α, pα, β, pβ, U, V q such that pH,β, α, pβ, V q is well-behaved and r

pApV q, U pApV qUs � 0 �

rApV q, UApV qUs. A weak C�-pseudo-Kac system pH,α, β, pα, pβ, V, Uq is a C�-pseudo-Kac

system if pH, pβ, α, β, V q, pH, pα, pβ, α, qV q, pH,α, β, pα, pV q are regular and
�

Σp1αbβUqV
�3

�

id P LpH
pβbαHq.

Let pH,α, pα, β, pβ, U, V q be a balanced C�-pseudo-multiplicative unitary over µ. Then by
[16, Proposition 3.3],

pApqV q � AdU pApV qq, p∆
qV � Ad

pUb
H

Uq �∆V � AdU , ApqV q � pApV q, ∆
qV �

p∆V ,

AppV q � AdU p pApV qq, ∆
pV � Ad

pUb
H

Uq �
p∆V � AdU , pAppV q � ApV q, p∆

pV � ∆V .
(12)

In particular, qV and pV are well-behaved if V is well-behaved.

Lemma 6.10. If pH,α, pα, β, pβ, U, V q is a balanced C�-pseudo-multiplicative unitary, then
FixpV q � UCofixppV q � CofixpqV q and CofixpV q � FixppV q � UFixpqV q.

Corollary 6.11. Let pH,α, pα, β, pβ, U, V q be a balanced C�-pseudo-multiplicative unitary
over µ, where V is well-behaved.

i) Assume that pH, β̂, α, β, V q is étale and that η0 P FixpV q satisfies η�0 η0 � idHµ .

(a) A bounded counit for p pApV q
pβ,α
H , p∆V q is given by pa ÞÑ η�0 paη0.

(b) A bounded left Haar weight for pApV qα,βH ,∆V q is given by a ÞÑ η�0 U
�aUη0.

ii) Assume that pH, β̂, α, β, V q is proper and ξ0 P CofixpV q satisfies ξ�0 ξ0 � idHµ .

(a) A bounded counit for pApV qα,βH ,∆V q is given by a ÞÑ ξ�0 aξ0.

(b) A bounded right Haar weight for p pApV q
pβ,α
H , p∆V q is given by pa ÞÑ ξ�0 U

�

paUξ0.

Proof. Apply Theorem 6.8 to qV or pV , respectively, and use Remark 6.2 ii) and (12).

7 The dual Hopf C�-bimodule

In the preceding section, we saw that the fundamental unitary associated to a compact C�-
quantum groupoid gives rise to two Hopf C�-bimodules and that one of these two coincides
with the underlying Hopf C�-bimodule of the initial C�-quantum groupoid. In this short
section, we study the other Hopf C�-bimodule, which can be considered as (the underlying
Hopf C�-bimodule of) the generalized Pontrjagin dual of the initial C�-quantum groupoid.

In principle, the dual Hopf C�-bimodules of compact C�-quantum groupoids should
precisely exhaust the class of étale C�-quantum groupoids with compact base, but a precise
definition of étale C�-quantum groupoids is not yet available. However, we can describe
some important ingredients like the underlying Hopf C�-bimodule, the unitary antipode,
and the counits of the dual of a compact C�-quantum groupoid.

Throughout this section, let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid.
We use the notation introduced in the preceding sections.
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The dual Hopf C�-bimodule In Theorem 5.4 and Proposition 5.7, we associated to
the compact C�-quantum groupoid a regular C�-pseudo-multiplicative unitary pH, pβ, α, β, V q.

Now, we determine the C�-algebra of the associated Hopf C�-bimodule p pApV q
pβ,α
H , p∆V q.

Proposition 7.1. i) For each a P A, there exists an operator λpaq P LpHq such that
λpaqΛνpdq � Λν

�

xζφ|2∆pdq|a
opζφy2

�

for all d P A, and λpaq� � JλpRpaqqJ.

ii) xxopζφ|2V |y
opζψy2 � λpyx�q for all x, y P A.

iii) pApV q � rλpAqs.

Proof. By definition, pApV q is the closed linear span of all operators of the form xxopζφ|2V |y
opζψy2,

where x, y P A. But for all x, y, d P A,

xx
op
ζφ|2V |y

op
ζψy2dζν � xx

op
ζφ|2V pdζν < y

op
ζψq

� xx
op
ζφ|2∆pdqpζν < y

op
ζφq � Λν

�

xζφ|2∆pdq|px
op
q

�

y
op
qζφy2

�

.

This calculation proves the existence of the operators λpaq for all a P A and that pApV q �

rλpAqs. Finally, by Theorem 5.6, Lemma 3.9 and Proposition 3.8,

λpyx
�

q

�

�

�

xx
op
ζφ|2V |y

op
ζψy2

�

�

� xy
op
ζψ|2pJαb

Jµ
βIqV pJαb

Jµ
βIq|x

op
ζφy2

� JxIy
op
ζψJµ|2V |Ix

op
ζφJµy2J

� JxRpy
�

q

op
ζφ|2V |Rpx

�

q

op
ζψy2J � JλpRpxq

�

RpyqqJ � JλpRpyx
�

qqJ.

The associated weak C�-pseudo-Kac system Put U :� IJ � JI .

Theorem 7.2. pH,α, pα, β, pβ, U, V q is a weak C�-pseudo-Kac system.

The proof involves the following formula:

Lemma 7.3. IλpaqIΛν�1pdq � Λν�1

�

xζψ|1∆pdq|Rpa
�

q

opζψy1
�

for all a, d P A.

Proof. By Lemma 4.6, we have for all a, d P A

IλpaqIΛν�1pdq � IλpaqΛνpRpdq
�

q

� Ixζφ|2∆pRpdq
�

q|a
op
ζφy2Iζν�1 �

�

xζψ|1∆pdq|Rpa
�

q

op
ζψy1

�

ζν�1 .

Lemma 7.4. pV �W and qV � pJαb
Jµ

pβJqV
op
pJαb

Jµ
pβJq.

Proof. Theorems 5.6 and 5.10 imply qV � pUβb
pαUqW pU

pαb pβUq � pJαb
Jµ

pβJqV
op
pJαb

Jµ
pβJq

and pV � ΣpUαbβ1qpJ
pβ b
Jµ
αIqV

�

pJ
pβ b
Jµ
αIqpUβbα1qΣ � ΣpI

pβb
Jµ
αIqV

�

pIβb
Jµ
αIqΣ �W .

Proof of Theorem 7.2. By Lemma 7.4, pH,α, β, pα, pV q and pH, pα, pβ, α, qV q are regular C�-
pseudo-multiplicative unitaries. Clearly, we have rApV q, UApV qUs � rApV q, JIApV qIJs �

rApV q, JApV qJs � 0. It remains to show that r pApV q, U pApV qUs � 0. But for all x, y, d P A,

IλpxqIλpyqdζν � IλpxqIxζφ|2∆pdq|y
op
ζφy2δ

�1{2
ζν�1

� xζψ|1∆
�

xζφ|2∆pdq|y
op
ζφy2δ

�1{2
�

|Rpx
�

q

op
ζψy1ζν�1

� xζψ|1xζφ|3∆
p2q
pdq|y

op
ζφy3|δ

�1{2
Rpx

�

q

op
ζψy1δ

�1{2
ζν�1

� xζφ|2xζψ|1∆
p2q
pdq|δ

�1{2
Rpx

�

q

op
ζψy1|y

op
ζφy2ζν

� λpyqxζψ|1∆pdq|δ
�1{2

Rpx
�

q

op
ζψy1ζν

� λpyqxζψ|1∆pdδ
�1{2

q|Rpx
�

q

op
ζψy1δ

1{2
ζν

� λpyqIλpxqIdδ
�1{2

ζν�1 � λpyqIλpxqIdζν.

Therefore, r pApV q, U pApV qUs � r

pApV q, IJ pApV qJIs � r

pApV q, I pApV qIs � 0.
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Coinvolution and counit on the dual Hopf C�-bimodule Proposition 7.1 im-
mediately implies:

Corollary 7.5. There exists a �-antiautomorphism pR : pApV q Ñ pApV q, pa ÞÑ Jpa�J.

This �-antiautomorphism is a coinvolution of the Hopf C�-bimodule
�

pApV q
pβ,α
H , p∆V

�

in
the sense that it reverses the comultiplication:

Proposition 7.6. p∆ �

pR � AdΣ �p
pR
pβ�α

pRq � p∆.

Proof. By (12) and Lemma 7.4, we have for all pa P pApV q

p∆V ppaq � qV ppa
pαb pβ1q

qV
�

� pJαb
Jµ

pβJqΣV
�ΣpJ

pαb
Jµ

pβJqppapαb pβ1qpJαb
Jµ

pβJq
�ΣV ΣpJαb

Jµ
pβJq

�

� pAdΣ �p
pR
pβ�α

pRq � p∆V qp
pRppaqq.

The constructions in Section 6 yield a counit on pApV q:

Proposition 7.7. i) The Hopf C�-bimodule p pApV q
pβ,α
H , p∆V q has a bounded counit pǫ, given

by pǫpλpy�xqq � ζ�ψλpy
�xqζψ � Jµζ

�

φx
�yζψJµ for all x, y P A.

ii) pǫp pRppaqq � Jµpǫppaq
�Jµ for all pa P pApV q.

Proof. i) By Proposition 6.7, Theorem 6.8 i), and Corollary 6.11 i), the map pǫ : pApV q Ñ

LpHµq, pa ÞÑ ζ�ψpaζψ, is a bounded counit, and by Theorem 6.8 i) and Proposition 7.1,

pǫpλpy�xqq � pǫ
�

xJxJζφ|2V |JyJζψy2
�

� Jµζ
�

φx
�yζψJµ for all x, y P A.

ii) For all pa P pApV q, we have pǫp pRppaqq � ζ�ψJpa
�Jζψ � Jµpζ

�

ψpaζψq
�Jµ � Jµpǫppaq

�Jµ.

8 Principal compact C
�-quantum groupoids

In this section, we study compact C�-quantum groupoids that are principal. Most impor-
tantly, we show that a principal compact C�-quantum groupoid is essentially determined by
the conditional expectation τ : B Ñ τ pBq � ZpBq and the state µ|τpBq, and that the dual
of a principal compact C�-quantum groupoid is the C�-algebra of compact operators on a
certain C�-module.

Principal compact C�-quantum groupoids Recall that a compact groupoid G is
principal if the map GÑ G0

�G0 given by x ÞÑ prpxq, spxqq is injective or, equivalently, if
CpGq � rr�pCpG0

qqs�pCpG0
qqs. The second condition suggests the following definition:

Definition 8.1. A compact C�-quantum graph pB,µ,A, r, φ, s, ψ, δq is principal if A �

rrpBqspBopqs, and a compact C�-quantum groupoid pB,µ,A, r, φ, s, ψ, δ, R,∆q is principal if
A � rrpBqspBopqs.

To simplify the following discussion, we only consider the case where δ � 1A. Corollary
4.13 shows that this is not a serious restriction.

Let pB,µ,A, r, φ, s, ψ, 1Aq be a principal compact C�-quantum graph. Then there exist
at most one coinvolution R for pB,µ,A, r, φ, s, ψ, 1Aq and at most one comultiplication ∆
for Aα,βH because necessarily Rprpbqspcopqq � spbopqrpcq and ∆prpbqspcopqq � rpbqαbβspc

op
q

for all b, c P B. We shall give conditions for the existence of such a coinvolution and a
comultiplication, and determine when pB,µ, A, r, φ, s, ψ, 1A, R,∆q is a principal compact
C�-quantum groupoid. These conditions involve the completely positive contractions τ �
ψ � r : B Ñ ZpBopq � ZpBq and τ : � φ � s : Bop Ñ ZpBq � ZpBopq introduced in (2).

Theorem 8.2. Let pB,µ, A, r, φ, s, ψ, 1Aq be a principal compact C�-quantum graph. Then
the following two conditions are equivalent:
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i) There exist R, ∆ such that pB,µ,A, r, φ, s, ψ, 1A, R,∆q is a compact C�-quantum
groupoid.

ii) τ pbq � τ :pbopq for all b P B, τ : B Ñ τ pBq is a conditional expectation, µ � τ � µ,
r � τ � s � τ , and τ pbσµ

�i{2
pdqq � τ pdσ

µ

�i{2
pbqq for all b, d P Dompσµ

�i{2
q.

Before we prove this result, let us give an application: every compact C�-quantum
groupoid has an underlying principal compact C�-quantum groupoid. The nontrivial part
of this assertion is that the comultiplication restricts to a morphism of C�-pµ, µopq-algebras.

Corollary 8.3. Let pB,µ, A, r, φ, s, ψ, 1A, R,∆q be a compact C�-quantum groupoid. Put
Ã :� rrpBqspBopqs � A, φ̃ :� φ|Ã, ψ̃ :� ψ|Ã, R̃ :� R|Ã. Then there exists a unique ∆̃ such
that pB,µ, Ã, r, φ̃, s, ψ̃, 1Ã, R̃, ∆̃q is a compact C�-quantum groupoid.

The proof of Theorem 8.2 is divided into several steps. First, note that for all b, c P B,

φpspb
op
qrpcqq � τ

:

pb
op
qc, ψprpbqspc

op
qq � τ pbqc

op
,

νpspb
op
qrpcqq � µpτ

:

pb
op
qcq, ν

�1
prpbqspc

op
qq � µ

op
pτ pbqc

op
q.

(13)

Lemma 8.4. Let pB,µ,A, r, φ, s, ψ, 1Aq be a principal compact C�-quantum graph. There
exists a coinvolution R for pB,µ,A, r, φ, s, ψ, 1Aq if and only if τ pbq � τ :pbopq for all b P B.

Proof. The only if part is Lemma 2.7 ii). So, assume that τ pbq � τ :pbopq for all b P B. Then
there exists an antiunitary I : H Ñ H such that Irpbqspcopqζν�1 � spbopq�rpcq�ζν for all
b, c P B because by (13),

�

�spb
op
q

�

rpcq
�

ζν
�

�

2
� ν

�

sppb
�

bq
op
qrpcc

�

q

�

� ν
�1

�

rpb
�

bqsppcc
�

q

op
q

�

�

�

�rpbqspc
op
qζν�1

�

�

2
.

A short calculation shows that Irpbq�spcopq�I � spbopqrpcq for all b, c P B. Therefore, we
can define a �-homomorphism R : A Ñ A by a ÞÑ Ia�I , and Rprpbqspcopqq � spcopqrpbq for
all b, c P B. Finally, (13) implies that pφ � Rqpaq � ψpaqop for all a P A.

Lemma 8.5. Let pB,µ,A, r, φ, s, ψ, 1Aq be a principal compact C�-quantum graph such that
τ pbq � τ :pbopq for all b P B, τ : B Ñ τ pBq is a conditional expectation, and µ � τ � µ.

i) For all d, e P B, where e is analytic for σµ, there exists an operator Td,e P LpH,HαbβHq

such that for all x P rpBq Y rpBqop and y P spBopq Y spBopqop,

Td,exyζν � xζψ = de
op
ζµ < yζφ, (14)

and for all b, c, b1, c1, d1, e1 P B, where e1 is analytic for σµ,

T
�

d,e

�

rpb
1

qζψ = d
1

e
1op
ζµ < spc

1op
qζφ

�

� rpτ pd
�

d
1

σ
µ

�i{2pe
1

e
�

qqrpb
1

qspc
1op
qζν . (15)

ii) Put T :� tTd,e | d, e P B, e analytic for σµu. Then rT αs � α � α, rT �

pα � αqs � α and
rT βs � β � β, rT �

pβ � βqs � β.

iii) There exists a comultiplication ∆ for Aα,βH .

Proof. i) Let d, e be as in i). Then there exists a Td,e P LpH,HαbβHq such that equations
(14) and (15) hold for all x P rpBq, y P spBopq because

�

rpbqζψ = de
op
ζµ < spc

op
qζφ

�

�rpb
1

qζψd
1

= ζµ < spc
1op
qζφe

1op
D

HαbβH

�

�

ζµ
�

�d
�

pe
op
q

�

ψprpb
�

b
1

qqφpsppc
1

c
�

q

op
qqd

1

e
1op
ζµ
D

�

�

ζµ
�

�τ pb
�

b
1

qτ pc
1

c
�

qd
�

d
1

pe
1

e
�

q

op
ζµ
D

� µ
�

τ pb
�

b
1

qτ pc
1

c
�

qd
�

d
1

σ
µ

�i{2pe
1

e
�

q

�

� µ
�

τ pb
�

b
1

qτ pc
1

c
�

qτ pd
�

d
1

σ
µ

�i{2pe
1

e
�

qq

�

� µ
�

τ pb
�

b
1

τ pd
�

d
1

σ
µ

�i{2
pe

1

e
�

qqqτ pc
1

c
�

q

�

�

�

rpbqspc
op
qζν

�

�rpτ pd
�

d
1

σ
µ

�i{2pe
1

e
�

qqrpb
1

qspc
1op
qζν

D
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for all b, c, b1, c1, d1, e1 P B, where e1 is analytic for σµ. Using Lemma 3.7 iii), one easily
concludes that Td,exyζν � xζψ = deopζµ < yζφ for all x P rpBqop and y P spBopqop.

ii) Let b, c P B and d, e as in i). Then for all f P B,

Td,erpbq
op
spc

op
q

op
ζφf

op
ζµ � Td,erpfbq

op
spc

op
q

op
ζν

� rpfbq
op
ζψ = de

op
ζµ < spc

op
q

op
ζφ

� |spc
op
q

op
rpeq

op
ζφy2rpbq

op
spd

op
q

op
ζφf

op
ζµ.

This relation implies rT βs � β � β, and the remaining assertions follow similarly.
iii) For all b, c, d, e P B, where e is analytic for σµ, we have Td,erpbqspc

op
q � rpbqαbβspc

op
q.

Now, the claim follows from ii).

Proof of Theorem 8.2. i) implies ii) by Proposition 4.10. Conversely, assume that ii) holds.
Then the preceding lemmas imply that there exist a coinvolution R for pB,µ,A, r, φ, s, ψ, 1Aq
and a comultiplication ∆ for Aα,βH . We show that the conditions in Definition 4.8 hold.

First, we check condition 4.8 i). Since ρβ � r and ρα � s,

r∆pAq|αy1s � r|ρβpBqαy1ραpB
op
qs � r|αBy1ραpB

op
qs � r|αy1ρβpBqραpB

op
qs � r|αy1As,

r∆pAq|ζψy1As � r|ρβpBqζψy1ρβpBqAs � r|ρβpBqζφBy1As � r|ρβpBqspB
op
q

op
ζψy1As � r|αy1As.

Similar calculations show that r∆pAq|βy2s � r|βy2As and r∆pAq|ζφy2As � r|βy2As.
Next, φ is a bounded left Haar weight for pAα,βH ,∆q because for all b, c P B,

xζφ|2∆prpbqspc
op
qq|ζφy2 � xζφ|2prpbqαbβspc

op
qq|ζφy2

� rpbqραpζ
�

φ spc
op
qζφq

� rpbqspφpspc
op
qqq � rpbqspτ pcqq � rpbτ pcqq � rpφprpbqspc

op
qqq.

A similar calculation shows that ψ is a bounded right Haar weight for pAα,βH ,∆q.
Finally, we prove that φ, ψ and R satisfy the strong invariance condition 4.8 iii). By

Lemma 4.11, we have for all b, c, d, e P Dompσµ
�i{2q

xζψ|1∆prpbqspc
op
qqpprpdqspe

op
qq

op
αbβ1q|ζψy1 � rpeqspc

op
qrpτ pbσ

µ

�i{2
pdqqq

� R
�

spe
op
qrpcqspτ pdσ

µ

�i{2pbq
�

� R
�

xζψ|1∆prpdqspe
op
qqpprpbqspc

op
qq

op
αbβ1q|ζψy1

�

.

Since Dompσµ
�i{2

q � B is dense, condition 4.8 iii) holds.

The reconstruction of a principal compact C�-quantum groupoid A princi-
pal compact C�-quantum groupoid is completely determined by the conditional expectation
τ : B Ñ τ pBq � ZpBq and can be reconstructed from τ as follows. Assume that

• C is a commutative unital C�-algebra with a faithful state υ,

• B is a unital C�-algebra with a υ-module structure pι, τ q such that ιpCq � ZpBq.

We put µ :� υ � τ and identify C with ιpCq via ι.

Lemma 8.6. τ pbσ
µ

�i{2pdqq � τ pdσ
µ

�i{2pbqq for all b, d P Dompσµ
�i{2q.

Proof. For all c P C, we have σµt pcq � συt pcq � c for all t P R by Lemma 2.2 and hence

υpc
�

τ pbσ
µ

�i{2pdqq � µpc
�

bσ
µ

�i{2pdqq � xΛµpb
�

cq|JΛµpd
�

qy

� xΛµpd
�

q|JΛµpb
�

cqy

� µpdσ
µ

�i{2pc
�

bqq � µpdc
�

σ
µ

�i{2pbqq � υpc
�

τ pdσ
µ

�i{2pbqq.

Since c P C was arbitrary and υ faithful, the claim follows.
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As in Proposition 3.7, we define an isometry ζτ : Hυ Ñ Hµ by Λυpcq ÞÑ Λµpcq, identify
B,Bop with C�-subalgebras of LpHµq via the GNS-representations, and put

γ :� rBζτ s � LpHυ,Hµq, γ
op :� rB

op
ζτ s � LpHυ,Hµq.

Proposition 8.7. There exists a unique principal compact C�-quantum groupoid pB,µ, A,
r, φ, s, ψ, 1A, R,∆q such that A � BγopbγB

op
� L

�

pHµqγopbγpHµq

�

and for all b, c P B,

rpbq � bγopbγ1
op
, φpbγopbγc

op
q � bτ pcq, spc

op
q � 1γopbγc

op
, ψpbγopbγc

op
q � τ pbqc

op
.

Proof. Routine arguments show that there exists a unique principal compact C�-quantum
graph pB,µ,A, r, φ, s, ψ, 1Aq with A, r, s, φ, ψ as above; let us only note that the completely
positive contractions φ : A Ñ B and ψ Ñ Bop are well-defined because they are given by
x ÞÑ xζτ |2x|ζτy2 and x ÞÑ xζτ |1x|ζτy1, respectively. Now, the assertion follows from Theorem
8.2.

Every principal compact C�-quantum groupoid is of the form constructed above:

Proposition 8.8. Let pB,µ,A, r, φ, s, ψ, 1A, R,∆q be a principal compact C�-quantum group-
oid and put τ � ψ � r.

i) C :� τ pBq is a commutative unital C�-algebra, υ :� µ|C is a faithful state on C, pid, τ q
is a υ-module structure on B, and µ � υ � τ .

Denote by ζτ : Hυ Ñ Hτ the isometry cζυ ÞÑ cζτ and put γ :� rBζτ s, γ
op :� rBopζτ s.

ii) There exists a unitary Ξ: Hν Ñ pHµqγopbγpHµq such that for all b, c P B,

Ξ
�

rpbq
op
spc

op
q

op
ζν
�

� b
op
ζτ = ζυ < cζτ and Ξ

�

rpbqspc
op
qζν

�

� bζτ = ζυ < c
op
ζτ .

Moreover, Ξpβ � r|γy1B
op
s and Ξα � r|γopy1Bs.

iii) AdΞ restricts to an isomorphism AÑ BγopbγB
op, rpbqspcopq ÞÑ bγopbγc

op.

Proof. i) This follows directly from Proposition 4.10 and Proposition 4.14.
ii) There exists an isomorphism Ξ: Hν Ñ pHµqγopbγpHµq satisfying the first equation

in ii) because by Proposition 4.14, (13), and i) }rpbqopspcopqopζν}
2
� νprpbb�qsppc�cqopqq �

υpτ pbb�qτ pc�cqq � }bopζτ = ζυ < cζτ }
2 for all b, c P B. From Lemma (3.2) iii), one easily

deduces Trpbqspcopqζν � bζτ = ζυ < copζτ for all b, c P B. Finally, Ξpβ � r|γy1B
op
s and

Ξα � r|γopy1Bs because for all b, c, d P B,

Ξrpbqspcopqζψd
op
ζµ � Ξrpbqspcopdopqζν�1 � bζτ = ζυ < c

op
d
op
ζτ � |bζτy1c

op
d
op
ζµ,

Ξrpbqopspcopqopζψd
op
ζµ � rpbq

op
spc

op
q

op
spd

op
qζν � b

op
ζτ = ζυ < cd

op
ζτ � |b

op
ζτy1cd

op
ζµ.

iii) Straightforward.

The dual Hopf C�-bimodule Let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a principal compact

C�-quantum groupoid and pH, pβ, α, β, V q the associated C�-pseudo-multiplicative unitary

(see Theorem 5.4). We show that the dual Hopf C�-bimodule p

pApV q
pβ,α
H , p∆V q studied in

Section 7 can be identified with the C�-algebra of compact operators on a Hilbert C�-
module over τ pBq. This result is a (reduced) analogue of the result that for every principal
compact groupoid G, the irreducible representations of C�

pGq are labelled by the orbits
G0

{G and that each such representation is by all compact operators [13].
We use the notation of Proposition 8.8 and denote by Kτ � LpHµq the C�-algebra

corresponding to KCpγq= id � Lpγ=Hυq with respect to the natural isomorphism γ=Hυ �

Hµ, ξ = ζ ÞÑ ξζ. Thus, Kτ � rtkb,c | b, c P Bus, where kb,c : Hµ Ñ Hµ is given by
dζµ ÞÑ bτ pc�dqζµ for all b, c P B. Note that Kτ � LppHµqγq.

Lemma 8.9. pKτ q
Bop,B
Hµ

is a C�-pµop, µq-algebra.
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Proof. Clearly, pHµ, B
op, Bq is a C�-pµop, µq-module. We have rρBop

pBqKτ s � Kτ �

rρBpB
op
qKτ s because for all a, b, c, d P B, a1 P Dompσµ

�i{2
q, ρBop

paqkb,cdζµ � abτ pc�dqζµ �

kab,cdζµ and ρBpa
1op
qkb,cdζµ � a1opbτ pc�dqζµ � bσ

µ

�i{2
pa1qτ pc�dqζν � kbσµ

�i{2
pa1q,cdζµ.

The comultiplication p∆V can be described in terms of the isomorphism

Υ: pHµqBop
bBpHµq � B

op
=Hµ <B

�

ÝÑ Hµ, b
op

= ζ < c ÞÑ b
op
cζ.

Note that Υ�KτΥ � pKτ qBop
�BpKτ q because rΥ

�KτΥ|B
op
y1s � rΥ�KτB

op
s � rΥ�BopKτ s �

r|Bopy1Kτ s and similarly rΥ�KτΥ|By2s � r|By1Kτ s.

Theorem 8.10. Let pB,µ,A, r, φ, s, ψ, 1A, R,∆q be a principal compact C�-quantum groupoid

and p

pApV q
pβ,α
H , p∆V q the dual Hopf C�-bimodule.

i) There exists an isomorphism of C�-pµop, µq-algebras j : pKτ q
Bop,B
Hµ

Ñ

pApV q
pβ,α
H , given

by k ÞÑ Ξ�

pid γopbγkqΞ.

ii) p∆V � j � pj � jq � Ad�1

Υ
.

iii) pRpjpkb,cqq � jpkc1,b1q, where c
1

� σ
µ

i{2
pcq� and b1 � σ

µ

i{2
pbq� for all b, c P Dompσµ

i{2
q.

iv) pǫ � j � idKτ .

Proof. i) Let b, c P B be analytic for σµ and put a :� rpbqspcopq. Then the operator λpaq
defined in Proposition 7.1 acts as follows. For all d, e P B,

λpaqrpdqspe
op
qζν � Λν

�

xζφ|2prpdqαbβspe
op
qrpbq

op
spc

op
q

op
q|ζφy2

�

� ρα
�

b
op
ζ
�

φ spe
op
qspc

op
q

op
ζφ
�

rpdqζν � s
�

b
op
φpsppσ

µ

i{2pcqeq
op
qq

�

rpdqζν,

and hence ΞλpaqΞ�

pdζτ = ζυ < eopζτ q � dζτ = ζυ < bopτ pσ
µ

i{2
pcqeqζτ . Assume that e P

Dompσµ
�i{2

q. Then by Proposition 4.10, Lemma 3.7 iii), and σµ-invariance of τ ,

ΞλpaqΞ�

pdζτ = ζυ < σ
µ

�i{2
peqζτ q � dζτ = ζυ < σ

µ

�i{2
pbqτ pσ

µ

i{2
pcqeqζτ

� dζτ = ζυ < σ
µ

�i{2pbqτ pcσ
µ

�i{2peqqζτ .

Therefore, ΞλpaqΞ�

� pid γopbγkb1,c�q, where b
1

� σ
µ

�i{2
pbq, and pApV q � Ξ�

pid γopbγKτ qΞ.

Since υ is faithful and Ξ unitary, the map j : Kτ Ñ pApV q given by k ÞÑ Ξ�

pid γopbγkqΞ is
an isomorphism of C�-algebras.

It remains to show that j is a morphism of C�-pµop, µq-algebras. Evidently, tk � jpkqt for

all k P Kτ and all t P rΞ�

|γpopqy1s. By Proposition 8.8 ii), rΞ�

|γy1B
op
s �

pβ, rΞ�

|γopy1Bs �

α, rxγ|1Ξpβs � rxγ|1|γy1B
op
s � rCBops � Bop, and rxγop|1Ξαs � rxγop|1|γ

op
y1Bs � rCBs �

B. The claim follows.
ii) By definition of p∆V and j, we have for all x P α, y P γ, k P Kτ

p∆V pjpkqqV
�

|xy1Ξ
�

|yy1 � V
�

p1αbβjpkqq|xy1Ξ
�

|yy1 � V
�

|xy1jpkqΞ
�

|yy1 � V
�

|xy1Ξ
�

|yy1k.

Likewise, by definition of j � j and Υ, we have for all u P γop, v P γ, k P Kτ

ppj � jqpΥ�

kΥqqpΞ�

|uy1Bop
bBΞ

�

|vy1qΥ
�

� pΞ�

|uy1Bop
bBΞ

�

|vy1qΥ
�

kΥΥ�

� pΞ�

|uy1Bop
bBΞ

�

|vy1qΥ
�

k.

Now, rV �

|αy1Ξ
�

|γy1s � rpΞ�

|γopy1Bop
bBΞ

�

|γy1qΥ
�

s because for all b, c, d, e P B,

V
�

|rpbq
op
spc

op
q

op
ζψy1Ξ

�

|dζτy1e
op
ζµ � V

�

�

rpbq
op
spc

op
q

op
ζψ = rpdqspe

op
qζν

�

� V
�

�

rpbq
op
ζψ = rpcdqspe

op
qζν

�

� rpbq
op
ζψ = rpcdqspe

op
qζν

� pΞ�

|b
op
ζτ y1Bop

bBΞ
�

|cdζτy1qp1 = ζµ < e
op
q

� pΞ�

|b
op
ζτ y1Bop

bBΞ
�

|cdζτy1qΥ
�

e
op
ζµ.
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Since rV �

|αy1Ξ
�

|γy1Hµs � H , we can conclude p∆V pjpkqq � pj � jqpΥ�kΥq for all k P Kτ .
iii) Let e P Dompσµ

i{2
q and b, c P Dompσµ

i{2
q. Since Jspfopqopζν � σν

op

i{2 pspf
op
q

op
q

�ζν �

spσ
µ

�i{2
pf�qopqopζν for all f P Dompσµ

i{2
q and τ pb�σµ

�i{2
pe�qq � τ pe�σ

µ

�i{2
pb�qq,

pRpjpkb,cqqspe
op
q

op
ζν � Jjpkb,cq

�

Jspe
op
q

op
ζν

� Jjpkc,bqspσ
µ

�i{2pe
�

q

op
q

op
ζν

� Jsppcτ pb
�

σ
µ

�i{2pe
�

qqq

op
q

op
ζν

� spσ
µ

�i{2pc
�

τ pσ
µ

�i{2pb
�

q

�

eqq
op
q

op
ζν � sppc

1

τ pb
1�

eqq
op
q

op
ζν ,

where b1 � σ
µ

i{2pbq
� and c1 � σ

µ

i{2pcq
�. The claim follows.

iv) For all b, c, d P B,

pǫpjpkb,cqqdζµ � ζ
�

ψjpkb,cqζψdζµ � ζ
�

ψjpkb,cqspd
op
q

op
ζν

� ζ
�

ψsppbτ pc
�

dqq
op
q

op
ζν � bτ pc

�

dqζµ � kb,cdζµ.

The C
�-pseudo-Kac system Recall that in Theorem 7.2, we associated to every

compact C�-quantum groupoid a weak C�-pseudo-Kac system.

Theorem 8.11. Let pB,µ,A, r, φ, s, ψ, 1A, R,∆q be a principal compact C�-quantum group-

oid. Then the weak C�-pseudo-Kac system pH,α, pα, β, pβ, U, V q is a C�-pseudo-Kac system.

Proof. The C�-pseudo-multiplicative unitaries pH, pβ, α, β, V q, pH, pα, pβ, α, qV q, pH,α, β, pα, pV q
are regular by Theorems 5.4, 5.10 and Lemma 7.4, and the operator X :� Σp1αbβUqV P

LpH
pβbαHq satisfies X3

� id because for all b, c, d, e P B,

X
3
�

rpbqspc
op
qζψ = rpdqspe

op
qζν

�

� X
2Σp1 = Uq

�

rpbqζψ = rpdqspc
op
qspe

op
qζν

�

� X
2
�

spd
op
qrpecqζν < rpbqζψ

�

� XΣp1 = Uq
�

rpecqζν < spd
op
qrpbqζφ

�

� X
�

rpdqspb
op
qζψ = rpecqζν

�

� Σp1 = Uq
�

rpdqζψ = spb
op
qrpecqζν

�

� rpbqsppecq
op
qζν < rpdqζψ

� rpbqspc
op
qζψe

op
= rpdqζν � rpbqspc

op
qζψ = rpdqspe

op
qζν .

9 Compact and étale groupoids

Prototypical examples of compact C�-quantum groupoids are the function algebra of a
compact groupoid and the reduced groupoid C�-algebra of an étale groupoid with compact
space of units. In this section, we construct these examples, determine the associated dual
Hopf C�-bimodules, and show that the associated weak C�-pseudo-Kac systems are C�-
pseudo Kac systems. We shall use some results from [17] and [16] which we recall first.

Preliminaries on locally compact groupoids Let us fix some notation and termi-
nology related to locally compact groupoids; for details, see [13] or [11].

Throughout this section, let G be a locally compact, Hausdorff, second countable groupoid.
We denote its unit space by G0, its range map by rG, its source map by sG, and put
Gu :� r�1

G ptuuq, Gu :� s�1

G puq for each u P G0.
Let λ be a left Haar system on G and denote by λ�1 the associated right Haar system.

Let µG be a probability measure on G0 with full support and define measures νG, ν
�1

G on G
by

»

G

f dνG :�

»

G0

»

Gu

fpxq dλ
u
pxq dµGpuq,

»

G

fdν
�1

G �

»

G0

»

Gu

fpxqdλ
�1

u pxq dµGpuq
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for all f P CcpGq. Thus, ν�1

G � i
�

νG, where i : G Ñ G is given by x ÞÑ x�1. We assume
that µ is quasi-invariant in the sense that νG and ν�1

G are equivalent, and denote by D :�
dνG{dν

�1

G the Radon-Nikodym derivative.
In the following applications, we shall always assume that the unit space G0 is compact

and that the Radon-Nikodym derivative D is continuous.

The C�-pseudo-Kac system of a locally compact groupoid In [17] and [16], we
associated to G a C�-pseudo-multiplicative unitary and a C�-pseudo-Kac system as follows.

Denote by µ the trace on CpG0
q given by f ÞÑ

³

G0 fdµG. Put K :� L2
pG, νGq and define

representations r, s : CpG0
q Ñ LpKq such that for all x P G, ξ P CcpGq, and f P CpG

0
q,

�

rpfqξ
�

pxq :� f
�

rGpxq
�

ξpxq,
�

spfqξ
�

pxq :� f
�

sGpxq
�

ξpxq.

We define Hilbert C�-CpG0
q-modules L2

pG,λq and L2
pG,λ�1

q as the respective completions
of the pre-C�-module CcpGq, where for all ξ, ξ1 P CcpGq, u P G

0, f P CpG0
q, x P G,

xξ
1

|ξypuq �

»

Gu

ξ1pxqξpxqdλ
u
pxq, pξfqpxq � ξpxqfprGpxqq in case of L2

pG,λq,

xξ
1

|ξypuq �

»

Gu

ξ1pxqξpxqdλ
�1

u pxq, pξfqpxq � ξpxqfpsGpxqq in case of L2
pG,λ

�1
q.

There exist isometric embeddings j : L2
pG,λq Ñ LpHµ,Kq and ĵ : L2

pG, λ�1
q Ñ L

�

Hµ,K
�

such that for all ξ P CcpGq, ζ P Hµ, x P G,

�

jpξqζ
�

pxq � ξpxqζprGpxqq,
�

ĵpξqζ
�

pxq � ξpxqDpxq
�1{2

ζpsGpxqq. (16)

Put ρ :� jpL2
pG,λqq and σ :� ĵpL2

pG,λ�1
qq. Then pK,σ, ρ, ρq is a C�-pµop, µ, µopq-module,

and j and ĵ are unitary maps of Hilbert C�-modules over CpG0
q.

Define measures ν2s,r on G2
s,r :� tpx, yq P G � G | sGpxq � rGpyqu and ν2r,r on G2

r,r :�
tpx, yq P G2

| rGpxq � rGpyqu by
»

G2
s,r

f dν
2

s,r :�

»

G0

»

Gu

»

GsGpxq

fpx, yq dλ
sGpxq

pyq dλ
u
pxq dµGpuq,

»

G2
r,r

g dν
2

r,r :�

»

G0

»

Gu

»

Gu

gpx, yq dλ
u
pyq dλ

u
pxq dµGpuq

for all f P CcpG
2
s,rq, g P CcpG

2
r,rq. Then there exist isomorphisms

Φσ,ρ : KσbρK Ñ L
2
pG

2

s,r, ν
2

s,rq, Φρ,ρ : KρbρK Ñ L
2
pG

2

r,r, ν
2

r,rq

such that for all η, ξ P CcpGq, ζ P CcpG
0
q, px, yq P G2

s,r, px
1, y1q P G2

r,r,

Φσ,ρ
�

ĵpηq= ζ < jpξq
�

px, yq � ηpxqDpxq
�1{2

ζpsGpxqqξpyq,

Φρ,ρ
�

jpηq= ζ < jpξq
�

px
1

, y
1

q � ηpx
1

qζprGpx
1

qqξpy
1

q.

From now on, we identifyKσbρK with L2
pG2

s,r, ν
2
s,rq via Φσ,ρ andKρbρK with L2

pG2
r,r, ν

2
r,rq

via Φρ,ρ without further notice.

Theorem 9.1 ([17],[16]). There exists a C�-pseudo-Kac system pK, ρ, σ, ρ, σ, UG, VGq such
that for all ω P CcpG

2
s,rq, px, yq P G

2
r,r, ξ P CcpGq, z P G,

pVGωqpx, yq � ωpx, x
�1
yq, pUGξqpzq � ξpz

�1
qDpzq

�1{2
.

Proposition 9.2. i) If G is r-discrete and 1G0 P CpGq denotes the characteristic func-
tion of the unit space, then jp1G0 q � ĵp1G0q P FixpVGq and pK,σ, ρ, ρ, VGq is compact.

ii) If G is compact, then jp1Gq P CofixpVGq and pK,σ, ρ, ρ, VGq is étale.
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Proof. Straightforward.

The concrete Hopf C�-bimodules
�

pApVGq
σ,ρ
K , p∆VG

�

and
�

ApVGq
ρ,ρ
K ,∆VG

�

can be described
as follows. Denote by m : C0pGq Ñ LpL2

pG, νGqq the representation given by multiplication
operators. Recall that for each g P CcpGq, there exists an operator Lpgq P LpKq such that

�

Lpgqf
�

pyq �

»

GrGpyq

gpxqDpxq
�1{2

fpx
�1
yqdλ

rGpyq
pxq for all f P CCpGq, y P G,

and that Lpgq� � Lpg�q, where g�pxq � gpx�1
q for all x P G. The reduced groupoid

C�-algebra C�

r pGq is the closed linear span of all operators Lpgq, where g P CcpGq [13].

Theorem 9.3 ([17]). i) pApVGq � mpC0pGqq and
�

p∆VGpmpfqqω
�

px, yq � fpxyqωpx, yq

for each f P C0pGq, ω P L2
pG2

s,r, ν
2
s,rq, px, yq P G

2
s,r.

ii) ApVGq � C�

r pGq, and for each g P CcpGq, ω P L2
pG2

r,r, ν
2
r,rq, px, yq P G

2
r,r,

�

∆VGpLpgqqω
�

px, yq �

»

GrGpxq

gpzqDpzq
�1{2

ωpz
�1
x, z

�1
yqdλ

rGpxq
pzq.

The function algebra of a compact groupoid Let G be a locally compact groupoid
as before but assume that G is compact. Then the following assertions are evident:

Lemma 9.4. i) There exists a compact C�-quantum graph pCpG0
q, µ, CpGq, r, φ, s, ψ,D�1

q

with coinvolution R such that

prpfqqpxq � fprGpxqq, pspfqqpxq � fpsGpxqq for all f P CpG0
q, x P G,

pφpgqqpuq �

»

Gu

gpyqdλ
u
pyq, pψpgqqpuq �

»

Gu

gpyqdλ
�1

u pyq for all g P CpGq, u P G0
,

and pRpgqqpxq � gpx�1
q for all g P CpGq, x P G. The states ν � µ �φ and ν�1

� µ �ψ

are given by νpgq �
³

G
gdνG and ν�1

pgq �
³

G
gdν�1

G for all g P CpGq.

ii) If we identify H � Hν with K � L2
pG, νq via fζν � f for all f P CpGq, then

jpfq � fζφ and ĵpfq � fζψ for all f P CpGq, and pH, pα, β, pβ, αq � pK, ρ, ρ, σ, σq.

With respect to the canonical identification H � Hν � L2
pG, νq � K, the representation

m : CpGq Ñ LpKq � LpHq corresponds to the GNS-representation for ν. We identify CpGq
with mpCpGqq � LpKq � LpHq via m.

Theorem 9.5. i) pCpG0
q, µ, CpGq, r, φ, s, ψ,D�1, p∆VG , Rq is a compact C�-quantum group-

oid.

ii) The associated C�-pseudo-multiplicative unitary pH,α, β, pα,W q equals pK,σ, ρ, ρ, VGq.

iii) The associated weak C�-pseudo-Kac system pH,α, pα, β, pβ, U, V q is a C�-pseudo-Kac
system.

iv) AdU defines an isomorphism between the dual Hopf C�-bimodule p pApV q
pβ,α
H , p∆V q and

pC�

r pGq
ρ,ρ
K ,∆VGq.

Proof. i) Put ∆ :� p∆VG . By Theorems 9.1, 9.3, [17, Theorem 4.14], and Lemma 9.4,

pCpGq
α,β
H ,∆q � p

pApVGq
σ,ρ
K , p∆VGq is a Hopf C�-bimodule and r∆pCpGqq|αy1s � r|αy1CpGqs,

r∆pCpGqq|βy2s � r|βy2CpGqs.
By Lemma 9.4 iii) and Proposition 9.2 ii), ζφ � jp1Gq P CofixpVGq. Remark 6.6 shows

that r∆pCpGqq|ζφy2CpGqs � r|βy2CpGqs. Moreover, ζψ � Uζφ P FixpqVGq by Lemma 6.10,

CpGq � pApVGq � ApqVGq by equation (12), and now a second application of Remark 6.6
shows that r∆pCpGqq|ζψy1CpGqs � r|αy1CpGqs.

By Theorem 6.8 and Corollary 6.11, φ : a ÞÑ ζ�φ aζφ and ψ : a ÞÑ ζ�φUaUζφ are a bounded

left and a bounded right Haar weight for pCpGqα,βH ,∆q, respectively.
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Finally, we show that the strong invariance condition iii) in Definition 4.8 holds. For all
f, g P CpGq, the operator xζψ|1∆pfqpg

op
αbβ1q|ζψy1 is given by pointwise multiplication by

the function

Hf,g : GÑ C, y ÞÑ

»

GrGpyq

fpxyqgpxqdλ
�1

rGpyqpxq,

and by right-invariance of λ�1,

�

RpHg,fq

�

pyq � Hg,f py
�1
q �

»

G
rGpy�1

q

gpxy
�1
qfpxqdλ

�1

rGpy�1
q

pxq

�

»

GrGpyq

gpx
1

qfpx
1

yqdλ
�1

rGpyqpx
1

q � Hf,gpyq for all y P G.

ii) With respect to the identificationsHαbβH � KσbρK � L2
pG2

s,r, ν
2
s,rq andHβb

pαH �

KρbρK � L2
pG2

r,r, ν
2
r,rq,

�

W
�

|jpgqy2f
�

px, yq �
�

∆pgq|ζφy2f
�

px, yq � fpxqgpxyq

for all px, yq P G2
s,r and f, g P CpGq and hence pW�ωqpx, yq � ωpx, xyq � pV �

Gωqpx, yq for all
ω P L2

pG2
s,r, ν

2
s,rq.

iii) Since CpGq is commutative, Jξ � ξ, and pUξqpxq � pIJξqpxq � ξpx�1
qDpxq�1{2

�

pUGξqpxq for all ξ P L2
pG, νGq and x P G. By Theorem 9.1, pK, ρ, σ, ρ, σ, UG, VGq is a

C�-pseudo-Kac system, and since VG � W �

pV by ii) and Lemma 7.4, we can use [16,

Proposition 5.5] to conclude that pH,α, pα, β, pβ, U, V q is a C�-pseudo-Kac system.

iv) This assertion follows from the relation pV � VG (see above), equation (12), and
Theorem 9.3.

The groupoid C�-algebra of an étale groupoid Let G be a locally compact
groupoid as above but assume that G is r-discrete and that λ is the family of counting
measures. Since G0

� G is closed and open, we can embed CpG0
q in CpGq by extending

each function by 0 outside of G0. Thus, 1G0 gets identified with the characteristic function
of G0. Denote by r, s : CpG0

q Ñ CpGq the transpose of the range and the source map rG
and sG, respectively.

Lemma 9.6. i) There exists a compact C�-quantum graph pCpG0
q, µ, C�

r pGq, ι, φ, ι, φ, 1q
with coinvolution R such that

ιpfq � Lpfq for each f P CpG0
q,

�

φpLpgqq
�

puq � gpuq for each g P CcpGq, u P G
0
,

RLpfq � Lpf
:

q, where f:pxq � fpx
�1
q for all x P G, f P CcpGq.

The state ν � µ � φ is given by νpaq � x1G0 |a1G0y for all a P C�

r pGq, and its modular
automorphism group is given by σνt pLpfqq � LpDitfq for all f P CcpGq, t P R.

ii) There exists an isomorphism Ξ: Hν Ñ K, Lpfqζν ÞÑ fD�1{2, and ΞLpfqopζν � f ,

ΞLpfqζφ � ĵpfq, ΞLpfqopζφ � jpfq for all f P CcpGq. In particular, Ξpα � Ξpβ � σ

and Ξα � Ξβ � ρ.

Proof. i) The �-homomorphism ι clearly is well-defined. Denote by ζ : L2
pG0, µGq Ñ

L2
pG, νGq the embedding that extends each function outside of G0 by 0. Then for each

g P CcpGq, the operator ζ�Lpgqζ � LpL2
pG0, µGqq is given by pointwise multiplication by

the function g|G0 , and we can define φ : C�

r pGq Ñ CpG0
q � LpL2

pG0, µGqq by a ÞÑ ζ�aζ.
Clearly, ι � φ : C�

r pGq Ñ ιpCpG0
qq is a conditional expectation. Since ζζµ � 1G0 , the state
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µ � φ is given by νpaq � µ
�

ζ�aζ
�

� x1G0 |a1G0y for all a P C�

r pGq. By [13, §II.5], this is a
KMS-state with modular automorphism group as stated above — indeed, for all f P CcpGq,

νpLpfq
�

Lpfqq �

»

G0

»

Gu

fpx�1
qfpx

�1
qdλ

u
pxqdµGpuq

�

»

G

fpxqfpxqDpxq
�1
dνGpxq � νpLpD

�1{2
fqLpD

�1{2
fq

�

q.

Finally, σνt � ι � ι and φ � σνt � φ for all t P R because D|G0 � 1G0 .
ii) First, observe that for all f P CcpGq and x P G

�

Lpfq1G0

�

pxq � fpxqD
�1{2

pxq (17)

and hence }Lpfqζν}
2

H � νpLpfq�Lpfqq � xLpfq1G0 |Lpfq1G0y � }fD�1{2
}

2

K . The existence
of Ξ follows. The remaining assertions hold because for all f P CcpGq, g P CpG

0
q,

ΞLpfqopζν � Ξσν
�i{2pLpfqqζν � ΞLpD1{2

fqζν � f,

ΞLpfqζφgζµ � ΞLpfqLpgqζν � ΞLpfspgqqζν � fspgqD
�1{2

� ĵpfqg,

ΞLpfqopζφgζµ � ΞLpgqLpfqopζν � ΞrpgqLpD1{2
fqζν � rpgqf � jpfqg.

From now on, we identify H � Hν with K via Ξ without further notice.

Lemma 9.7.
�

Lpfqopg
�

pxq �
³

GsGpxq gpxyqfpy
�1
qdλsGpxq

pyq for all f, g P CcpGq, x P G.

Proof. Let f, g P CcpGq. Then

Lpfq
op
g � ΞLpfqopLpgD1{2

qζν � ΞLpD1{2
gqσ

ν
�i{2pLpfqqζν

� ΞLpD1{2
gqLpD

1{2
fqζν � ΞLphqζν � hD

�1{2
,

where for all x P G,

hpxq �

»

GrGpxq

D
1{2
pzqgpzqD

1{2
pz

�1
xqfpz

�1
xqdλ

rGpxq
pzq

� D
1{2
pxq

»

GsGpxq

gpxyqfpy
�1
qdλ

sGpxq
pyq.

Theorem 9.8. i) pCpG0
q, µ, C�

r pGq, ι, φ, ι, φ, 1, R,∆VGq is a compact C�-quantum groupoid.

ii) The associated C�-pseudo-multiplicative unitary is VG.

iii) The associated weak C�-pseudo-Kac system is a C�-pseudo-Kac system.

iv) The dual Hopf C�-bimodule is pCpGqσ,ρK , p∆VGq.

Proof. i) Put ∆ :� ∆VG . By Theorems 9.1, 9.3, [17, Theorem 4.14], and Lemma 9.6,
pC�

r pGq
α,β
H ,∆q � pC�

r pGq
ρ,ρ
K ,∆VGq is a Hopf C�-bimodule and r∆pC�

r pGqq|αy1s � r|αy1C
�

r pGqs,
r∆pC�

r pGqq|βy2s � r|βy2C
�

r pGqs.
By Lemma 9.6 and Proposition 9.2, 1

C�

r pGq
ζφ � Lp1G0qζφ � jp1G0 q � ĵp1G0q P FixpVGq.

Remark 6.6 shows that r∆pC�

r pGqq|ζφy1C
�

r pGqs � r|αy1C
�

r pGqs. Moreover, ζφ P CofixppVGq

by Lemma 6.10, C�

r pGq � ApVGq � pAppVGq by equation (12), and now a second application
of Remark 6.6 shows that r∆pC�

r pGqq|ζφy2C
�

r pGqs � r|βy2C
�

r pGqs.
The map φ : a ÞÑ ζ�φaζφ is a bounded left and a bounded right Haar weight for pC�

r pGq
α,β
H ,∆q

by Theorem 6.8 and Corollary 6.11.
Finally, let us prove that the strong invariance condition iii) in Definition 4.8 holds. Let

f, g, ξ P CcpGq. By the previous Lemma,

�

pLpg
op
qαbβ1q|ζψy1ξ

�

px, yq � ξpyqgpxq for all px, yq P G2

r,r

34



and hence

�

xζψ|1∆pLpfqqpLpg
op
qαbβ1q|ζψy1ξ

�

pyq �

»

GrGpyq

fpzqD
�1{2

pzqgpz
�1
qξpz

�1
yqd

rGpyq
pzq

�

�

Lphqξ
�

pyq,

where hpzq � fpzqgpz�1
q for all z P G. Switching f, g, we find

�

xζψ|1∆pLpgqqpLpf
op
qαbβ1q|ζψy1

�

� Lph
:

q � RpLphqq.

Since f, g were arbitrary, condition iii) in Definition 4.8 holds.
ii) By Lemma 9.6, we have for all f, g P CcpGq, px, yq P G

2
r,r,

�

V pLpfqζψ = Lpgqζνq
�

px, yq �
�

∆pLpfqqpζψ = Lpgqζνq
�

px, yq

�

»

GrGpxq

fpzqD
�1{2

pzq
�

ζψ = Lpgqζν
�

pz
�1
x, z

�1
yqdλ

rGpxq
pzq

�

»

GrGpxq

fpzqD
�1{2

pzq1G0 pz
�1
xqgpz

�1
yqD

�1{2
pz

�1
yqdλ

rGpxq
pzq

� fpxqD
�1{2

pxqgpx
�1
yqD

�1{2
px

�1
yq

� pĵpfq= gD
�1{2

qpx, x
�1
yq �

�

Lpfqζψ = Lpgqζν
�

px, x
�1
yq.

iii), iv) The proof is similar to the proof of Theorem 9.5 iii), iv).
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35



[12] G. K. Pedersen. C�-algebras and their automorphism groups, volume 14 of London
Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], London, 1979.

[13] J. Renault. A groupoid approach to C�-algebras, volume 793 of Lecture Notes in Math-
ematics. Springer, Berlin, 1980.

[14] J.-L. Sauvageot. Produits tensoriels de Z-modules et applications. In Operator algebras
and their connections with topology and ergodic theory (Buşteni, 1983), volume 1132 of
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