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Abstract
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1 Introduction

Background The relative tensor product of Hilbert modules over von Neumann algebras was
introduced by Connes in an unpublished manuscript [4, 10, 20] and later used by Sauvageot to
define a fiber product of von Neumann algebras relative to a common (commutative) von Neu-
mann subalgebra [21]. These constructions and Haagerups theory of operator-valued weights on
von Neumann algebras [12, 13] form the basis for the theory ofmeasured quantum groupoids
developed by Enock, Lesieur and Vallin [8, 9, 18, 30, 31].
In this article, we introduce a new notion of a bimodule in thesetting ofC∗-algebras, construct
relative tensor products of such bimodules, and define a fiberproduct ofC∗-algebras repre-
sented on such bimodules. These constructions form the basis for a series of articles on quantum
groupoids in the setting ofC∗-algebras, individually addressing fundamental unitaries [29], ax-
iomatics of the compact case [25], and coactions of quantum groupoids onC∗-algebras [28].
Moreover, our previous approach to quantum groupoids in thesetting ofC∗-algebras [27] em-
beds functorially into this new framework [26], and the latter overcomes the serious restrictions
of the former one.
Already in the definition of a quantum groupoid, the relativetensor product and a fiber product
appear as follows. Roughly, such an object consists of the following ingredients: an algebra
B, thought of as the functions on the unit space, an algebraA, thought of as functions on the
total space, a homomorphismr : B→ A and an antihomomorphisms: B→ A corresponding
to the range and the source map, and a comultiplication∆ : B→ A∗

B
A corresponding to the

multiplication of the quantum groupoid. Here,A∗
B

A is a fiber product whose precise definition

depends on the class of the algebras involved. In the settingof operator algebras,A acts naturally
on some bimoduleH and productA∗

B
A is a certain subalgebra of operators acting on a relative

tensor productH⊗
B

H. This relative tensor product is important also because it forms the domain

or range of the fundamental unitary of the quantum groupoid.

Overview Let us now sketch the problems and constructions studied in this article.
The first problem is the construction of a tensor productH ⊗

B
K of modulesH,K over some

algebraB. In the algebraic setting,H⊗
B

K is simply a quotient of the full tensor productH⊗K.

In the setting of von Neumann algebras,H andK are Hilbert spaces, and Connes explained that
the right tensor product is not a completion of the algebraicone but something more complicated.
If B is commutative and of the formB= L∞(X,µ), then the modulesH,K can be disintegrated
into two measurable fields of Hilbert spaces in the formH =

∫ ⊕
X Hxdµ(x) andK =

∫ ⊕
X Kxdµ(x),

andH ⊗
B

K is obtained by taking tensor products of the fibers and integrating again:H⊗
B

K =
∫ ⊕

X Hx⊗Kxdµ(x). For the situation whereB is aC∗-algebra, we propose an approach that is based
on the internal tensor product of HilbertC∗-modules and essentially consists of an algebraic
reformulation of Connes’ fusion. Central to this approach is a new notion of a bimodule in the
setting ofC∗-algebras.
The second problem is the construction of a fiber productA∗

B
C of two algebrasA,C relative to

a subalgebraB. If B is central inA and the oppositeBop is central inC, this fiber product is

2



just a relative tensor product. In the algebraic setting, itcoincides with the tensor product of
modules; in the setting of operator algebras, it can be obtained via disintegration and a fiberwise
tensor product again. This approach was studied by Sauvageot for Neumann algebras [21], and
by Blanchard [1] forC∗-algebras.
The case where the subalgebraB(op) is no longer central inA or C is more difficult. In the al-
gebraic setting, the fiber product was introduced by Takeuchi [24] and is, roughly, the largest
subalgebra of the relative tensor productA⊗

B
C where componentwise multiplication is still well

defined. In the setting of von Neumann algebras, Sauvageot’sdefinition of the fiber product
carries over to the general case and takes the formA∗

B
C = (A′⊗

B
C′)′, whereA andC are rep-

resented on Hilbert spacesH andK, respectively, andA′⊗
B

C′ acts on Connes’ relative tensor

productH⊗
B

K. Here, it is important to note thatA′⊗
B

C′ is a completion of an algebraic tensor

product spanned by elementary tensors, but in general,A∗
B

C is not. Similarly, in the setting of

C∗-algebras, one can not start from some algebraic tensor product and define the fiber product to
be some completion; rather, a new idea is needed. We propose such a new fiber product forC∗-
algebras represented on the new class of modules mentioned above. Unfortunately, several im-
portant questions concerning this construction remain open, but the applications in [25, 28, 29]
already prove its usefulness.

Plan This article is organized as follows.
The introduction ends with a short summary on terminology and some background on Hilbert
C∗-modules.
Section 2 is devoted to the relative tensor product in the setting ofC∗-algebras. It starts with some
motivation, then presents a new notion of modules and bimodules in the setting ofC∗-algebras,
and finally gives the construction and its formal propertieslike functoriality, associativity and
unitality.
Section 3 introduces a fiber product ofC∗-algebras. It starts with an overview and then proceeds
to C∗-algebras represented on the class of modules and bimodulesintroduced in Section 2. The
fiber product is first defined and studied for such representedC∗-algebras, including a discussion
of functoriality, slice maps, lack of associativity, and unitality. A natural extension to non-
representedC∗-algebras is indicated at the end.
Section 4 relates our constructions for the setting ofC∗-algebras to the corresponding construc-
tions for the setting of von Neumann algebras. Adapting our constructions to von Neumann
algebras, one recovers Connes fusion and Sauvageot’s fiber product; moreover, the construc-
tions are related by functors going from theC∗-level to theW∗-level. The section ends with a
categorical interpretation of Sauvageot’s fiber product.
Section 5 shows that for a commutative baseB=C0(X), the relative tensor product of the new
class of modules corresponds to the fiberwise tensor productof continuous Hilbert bundles over
X, and the fiber product of representedC∗-algebras is related to the relative tensor product of
continuousC0(X)-algebras studied by Blanchard.
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Preliminaries and notation Given a categoryC, we writeA,B ∈ C to indicate thatA,B are
objects ofC, and denote byC(A,B) the associated set of morphisms.
Given a subsetY of a normed spaceX, we denote by[Y]⊂ X the closed linear span ofY.
All sesquilinear maps like inner products on Hilbert spacesare assumed to be conjugate-linear
in the first component and linear in the second one.
Given a Hilbert spaceH and an elementξ∈H, we define ket-bra operators|ξ〉 : C→H, λ 7→ λξ,
and〈ξ|= |ξ〉∗ : H→ C, ξ′ 7→ 〈ξ|ξ′〉.
We shall make extensive use of (right) HilbertC∗-modules; a standard reference is [16].
Let A andB beC∗-algebras. Given HilbertC∗-modulesE andF overB, we denote byL(E,F)
the space of all adjointable operators fromE toF . LetE andF be HilbertC∗-modules overAand
B, respectively, and letπ : A→ L(F) be a∗-homomorphism. Then the internal tensor product
E⊗π F is a HilbertC∗-module overB [16, §4] and the closed linear span of elementsη⊗π ξ,
whereη ∈ E andξ ∈ F are arbitrary, and〈η⊗π ξ|η′⊗π ξ′〉 = 〈ξ|π(〈η|η′〉)ξ′〉 and(η⊗π ξ)b=
η⊗π ξb for all η,η′ ∈ E, ξ,ξ′ ∈ F, b∈B. We denote the internal tensor product by “=” and drop
the indexπ if the representation is understood; thus,E =F = E =π F = E⊗π F.
We define aflipped internal tensor product Fπ<E as follows. We equip the algebraic tensor
productF ⊙E with the structure maps〈ξ⊙η|ξ′⊙η′〉 := 〈ξ|π(〈η|η′〉)ξ′〉, (ξ⊙η)b := ξb⊙η,
form the separated completion, and obtain a HilbertC∗-B-moduleFπ<E which is the closed
linear span of elementsξπ<η, whereη ∈ E and ξ ∈ F are arbitrary, and〈ξπ<η|ξ′π<η′〉 =
〈ξ|π(〈η|η′〉)ξ′〉 and(ξπ<η)b= ξbπ<η for all η,η′ ∈ E, ξ,ξ′ ∈ F, b∈ B. As above, we usually
drop the indexπ and simply write “<” instead of “π<”. Evidently, there exists a unitaryΣ : F =

E
∼=
−→ E <F, η= ξ 7→ ξ< η.

Let E1,E2 be Hilbert C∗-modules overA, let F1, F2 be Hilbert C∗-modules overB with ∗-
homomorphismsπi : A→ L(Fi) for i = 1,2, and letS∈ L(E1,E2), T ∈ L(F1,F2) such that
Tπ1(a) = π2(a)T for all a∈ A. Then there exists a unique operatorS=T ∈ L(E1=F1,E2 =F2)
such that(S=T)(η=ξ) =Sη=Tξ for all η∈E1, ξ∈ F1, and(S=T)∗ =S∗=T∗ [7, Proposition
1.34].

2 The relative tensor product in the setting ofC∗-algebras

2.1 Motivation

The aim of this section is to construct a relative tensor product of suitably defined left and right
modules over a generalC∗-algebraB such that i) the construction shares the main properties of
the ordinary tensor product of bimodules over rings like functoriality and associativity and ii) the
modules admit representations ofC∗-algebras that do not commute with the module structures.
The latter condition will be needed to construct fiber products ofC∗-algebras; see Section 3.
The internal tensor product of HilbertC∗-modules meets condition i) but not ii) becauseC∗-
algebras represented on such modules necessarily commute with the right module structure. An
approach to quantum groupoids based on the internal tensor product was developed in [27] but
remained restricted to very special cases.
What we are looking for is an analogue of Connes’ fusion of correspondences. Here,B is a von
Neumann algebra, and left and right modules are Hilbert spaces equipped with suitable repre-
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sentation or antirepresentation ofB, respectively. The relative tensor product of a right module
H and a left moduleK is then constructed as follows. Choose a normal, semi-finite, faithful
(n.s.f.) weightµ on B, construct aB-valued inner product〈 · | · 〉µ on the dense subspaceH0⊆ H
of all bounded vectors, and defineH⊗

µ
K to be the separated completion of the algebraic tensor

productH0⊙K with respect to the sesquilinear form given by〈ξ⊙η|ξ′⊙η′〉 = 〈η|〈ξ|ξ′〉µη′〉.
The definition of bounded vectors involves the GNS-spaceH := Hµ for µ which — by Tomita-
Takesaki theory — is bimodule overB, and each bounded vectorξ ∈ H0 gives rise to a map
L(ξ) ∈ L(HB,HB) of right B-modules such that〈ξ|ξ′〉µ = L(ξ)∗L(ξ′) ∈ B⊆ L(H).

Example. Assume thatB= L∞(X,µ) for some nice measure space(X,µ), and denote the weight
on B given by integration byµ as well. ThenH = L2(X,µ), and we can disintegrateH andK
into measurable fields(Hx)x and(Kx)x of Hilbert spaces overX such thatH ∼=

∫ ⊕
X Hxdµ(x) and

K ∼=
∫ ⊕

X Kxdµ(x). Each vectorξ of H or K corresponds to a measurable sectionx 7→ ξ(x) with
square-integrable norm function|ξ| : x 7→ ‖ξx‖, and is bounded with respect toµ if and only if
this norm function is essentially bounded. Then for allξ,ξ′ ∈ H0, x∈ X, η,η′ ∈ K,

〈ξ|ξ′〉µ(x) = 〈ξ(x)|ξ′(x)〉Hx, 〈ξ⊙η|ξ′⊙η′〉=
∫

X
〈ξ(x)|ξ′(x)〉〈η(x)|η′(x)〉dµ(x),

andH⊗
µ

K ∼=
∫ ⊕

X Hx⊗Kxdµ(x). Note that the sesquilinear form above need not extend toH⊙K

because the integrand need not be inL1(X,µ) for arbitraryξ,ξ′ ∈H andη,η′ ∈ K.

For our purpose, the following algebraic description ofH ⊗
µ

K is useful. This relative tensor

product can be identified with the separated completion of algebraic tensor product

L(HB,HB)⊙H⊙L(BH,BK) (1)

with respect to the sesquilinear form〈S⊙ζ⊙T|S′⊙ζ′⊙T ′〉= 〈ζ|S∗S′T∗T ′ζ′〉= 〈ζ|T∗T ′S∗S′ζ′〉,
whereL(HB,HB) andL(BH,BK) are all bounded maps of right or leftB-modules, respectively.
We adapt this definition to the setting ofC∗-algebras, making the following modifications:

(A) The construction above depends on the choice of some n.s.f. weightµ or, more precisely,
the triple(Hµ,πµ(B),πµ(B)′), but any otherµ yields a triple which is unitarily equivalent.
In the setting ofC∗-algebras, such a canonical triple does not exist but has to be chosen.

(B) The module structure ofH andK can equivalently be described in terms of (anti)repre-
sentations ofB or in terms of the spacesL(HB,HB) and L(BH,BK). In the setting of
C∗-algebras, this equivalence breaks down, and we shall make suitable closed subspaces
of intertwiners the primary object. In the commutative case, a representation corresponds
to a measurable field of Hilbert spaces, and the subspaces fix acontinuous structure.

(C) If H andK are bimodules, then so isH⊗
µ

K. Here, a bimodule structure onH is given by

the additional choice of a representation of some von Neumann algebraA that commutes
with the antirepresentation ofB or, equivalently, satisfiesAL(HB,HB) = L(HB,HB). If
we pass toC∗-algebras, then commutation is too weak, and we shall adopt the second
condition, whereL(HB,HB) is replaced by the subspace of intertwiners mentioned above.
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2.2 Modules and bimodules overC∗-bases

Observation (A) leads us to adopt the following terminology.

Definition 2.1. A C∗-baseb = (K,B,B†) consists of a Hilbert spaceH and commuting non-
degenerate C∗-algebrasB,B† ⊆ L(K), respectively. Theoppositeof b is the C∗-baseb† :=
(K,B†,B). A C∗-base(H,A,A†) is equivalentto b if AdV(A) = B and AdV(A

†) = B† for
some unitary V∈ L(H,K).

Clearly, the Hilbert spaceC and twice the algebraC≡L(C) form a trivialC∗-baset= (C,C,C).

Example 2.2. Let µ be a proper, faithful KMS-weight on aC∗-algebraA [15] with GNS-space
Hµ, GNS-representationπµ : A→L(Hµ), modular conjugationJµ : Hµ→Hµ, and opposite GNS-
representationπµop : Aop→ L(Hµ), a 7→ Jµπµ(a∗)Jµ. Then(Hµ,πµ(A),πµop(Aop)) is aC∗-base.
Its opposite is equivalent to theC∗-base associated to the opposite weightµop on Aop. Indeed,
Hµ can be considered as the GNS-space forµop via the opposite GNS-mapΛµop : Nµop→ Hµ,
aop 7→ JµΛµ(a∗), and thenJµopπµop(Aop)Jµop = πµ(A).

Let b= (K,B,B†) be aC∗-base. We defineC∗-modules overb as indicated in comment (B).

Definition 2.3. A C∗-b-moduleHα = (H,α) is a Hilbert space H with a closed subspaceα ⊆
L(K,H) satisfying[αK] = H, [αB] = α, [α∗α] =B. A semi-morphismbetween C∗-b-modules
Hα and Kβ is an operator T∈ L(H,K) satisfying Tα⊆ β. If additionally T∗β⊆ α, we call T a
morphism. We denote the set of all (semi-)morphisms byL(s)(Hα,Kβ).

Evidently, the class of allC∗-a-modules forms a category with respect to all semi-morphisms,
and aC∗-category in the sense of [11] with respect to all morphisms.

Lemma 2.4. i) Let H,K be Hilbert spaces and I⊆ L(H,K) such that[IH ] = K. Then there
exists a unique normal, unital∗-homomorphismρI : (I∗I)′→ (II ∗)′ such thatρI (x)S= Sx
for all x ∈ (I∗I)′, S∈ I.

ii) Let H,K,L be Hilbert spaces and I⊆ L(H,K), J⊆L(K,L) such that[IH ] = K, [JK] = L,
and J∗JI ⊆ I. ThenρI ((I∗I)′)⊆ (J∗J)′ andρJ ◦ρI = ρJI .

Proof. i) Uniqueness is evident. Letx ∈ (I∗I)′ and S1, . . . ,Sn ∈ I , ξ1, . . . ,ξn ∈ H. Sincex∗x
commutes with eachS∗i Sj , the matrix(S∗i Sjx∗x)i, j ∈Mn(L(H)) is dominated by‖x∗x‖(S∗i Sj)i, j ,
and

‖∑
i

Sixξi‖
2 = ∑

i, j

〈ξi |S
∗
i Sjx

∗xξ j〉 ≤ ‖x‖
2∑

i, j

〈ξi |S
∗
i Sjξ j〉= ‖x‖

2‖∑
i

Siξi‖
2.

Hence, there exists an operatorρI(x) ∈ L(K) as claimed. One easily verifies that the assignment
x 7→ ρI(x) is a∗-homomorphism. It is normal because[IH ] = K and for allS,T ∈ I , ξ,η ∈ K,
the functionalx 7→ 〈Sξ|ρI (x)Tη〉= 〈ξ|xS∗Tη〉 is normal.
ii) Let x∈ (I∗I)′. ThenρI(x) ∈ J∗J becauseS∗TρI(x)R= S∗TRx= ρI (x)S∗TR for all S,T ∈ J,
R∈ I , andρJI(x) = ρJ(ρI(x)) becauseρJI(x)TR= TRx= ρJ(ρI(x))T Rfor all T ∈ J, R∈ I .

Lemma 2.5. Let Hα be a C∗-b-module.
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i) α is a Hilbert C∗-B-module with inner product(ξ,ξ′) 7→ ξ∗ξ′.

ii) There exist isomorphismsα=K→ H, ξ= ζ 7→ ξζ, andK< α→ H, ζ< ξ 7→ ξζ.

iii) There exists a unique normal, unital and faithful representationρα : B′→L(H) such that
ρα(x)(ξζ) = ξxζ for all x ∈B′, ξ ∈ α, ζ ∈ K.

iv) Let Kβ be a C∗-b-module and T∈ Ls(Hα,Kβ). Then Tρα(x) = ρβ(x)T for all x∈B′. If
additionally T∈ L(Hα,Kβ), then left multiplication by T defines an operator inLB(α,β),
again denoted by T.

Proof. Assertions i) and ii) are obvious, and iii) follows from the preceding lemma. To prove
iv), let x∈B′,ξ ∈ α,ζ ∈ K. ThenTξ ∈ β andTρα(x)ξζ = Tξxζ = ρβ(x)Tξζ.

Example 2.6. Let Z be a locally compact Hausdorff space,µ a Radon measure onZ of full
support, andH = (Hz)z a continuous bundle of Hilbert spaces onZ with full support. Then the
Hilbert spaceK= L2(Z,µ) together with theC∗-algebrasB=B† =C0(Z)⊆ L(K) forms aC∗-
base. LetH =

∫ ⊕
Z Hzdµ(z) andα = m(Γ0(H )), where for each sectionξ ∈ Γ0(H ), the operator

m(ξ) ∈ L(K,H) is given by pointwise multiplication,m(ξ) f = (ξ(z) f (z))z∈Z. ThenHα is aC∗-
b-module andρα : B′ = L∞(Z,µ)→ L(H) is given by pointwise multiplication of sections by
functions. EveryC∗-b-module arises in this way from a continuous bundle; see Section 5.

Let alsoa= (H,A,A†) be aC∗-base. We defineC∗-(a†,b)-bimodules as indicated in (C).

Definition 2.7. A C∗-(a†,b)-module is a triple αHβ = (H,α,β), where H is a Hilbert space,
(H,α) a C∗-a†-module,(H,β) a C∗-b-module, and[ρα(A)β] = β, [ρβ(B

†)α] = α. The set of
(semi-)morphismsbetween C∗-(a†,b)-modulesαHβ and γKδ is L(s)(αHβ, γKδ) := L(s)(Hα,Kγ)∩
L(s)(Hβ,Kδ).

Remark 2.8. By Lemma 2.5,[ρα(A),ρβ(B
†)] = 0 for everyC∗-(a†,b)-moduleαHβ.

Again, the class of allC∗-(a†,b)-modules forms a category with respect to all semi-morphisms,
and aC∗-category with respect to all morphisms.

Examples 2.9. i) HA is aC∗-a-module,ρA(x) = x for all x∈ A′, andA†HA is aC∗-(a†,a)-
module because[ρA†(A)A] = [AA] =A and[ρA(A

†)A†] = A†.

ii) Let Hβ be aC∗-b-module, lett = (C,C,C) be the trivialC∗-base, and letα = L(C,H).
ThenαHβ is aC∗-(t,b)-module.

iii) Let (Hi)i be a family ofC∗-(a†,b)-modules, whereHi = (Hi ,αi ,βi) for eachi. Denote by
⊞iαi ⊆ L

(
H,⊕iHi

)
the norm-closed linear span of all operators of the formζ 7→ (ξiζ)i ,

where(ξi)i is in the algebraic direct sum
⊕alg

i αi , and similarly define⊞iβi ⊆L
(
K,⊕iHi

)
.

Then the triple⊞iHi :=
(
⊕i Hi,⊞iαi ,⊞iβi

)
is aC∗-(a†,b)-module, for eachj, the canon-

ical inclusionsι j : H j →⊕iHi and projectionπ j : ⊕i Hi → H j are morphismsH j →⊞iHi

and⊞iHi→H j , and with respect to these maps,⊞iHi is the direct sum of the family(Hi)i .

The following example shows how bimodules arise from conditional expectations.
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Example 2.10. Let B be aC∗-algebra with a KMS-stateµ and associatedC∗-baseb (Example
2.2), letA be a unitalC∗-algebra containingB such that 1A ∈ B, and letφ : A→ B be a faithful
conditional expectation such thatν := µ◦ φ is a KMS-state andφ ◦ σν

t = σµ
t ◦ φ for all t ∈ R.

Fix a GNS-constructionπν : A→ L(Hν) for ν with modular conjugationJν : Hν → Hν, and
defineπop

ν : Aop→ L(Hν) by a 7→ Jνπν(a∗)Jν. Then the inclusionB →֒ A extends to an isometry
ζ : K= Hµ →֒Hν = H, and we obtain aC∗-(b†,b)-moduleαHβ, whereH = Hν, α = [Jνπν(A)ζ],
β = [πν(A)ζ], andρα ◦πµop = πop

ν , ρβ ◦πµ = πν. Moreover,πν(A)+πop
ν ((A∩B′)op) ⊆ L(Hα),

πνop(Aop)+πν(A∩B′)⊆ L(Hβ). For details, see [25, §2–3].

2.3 The relative tensor product

The concepts introduced above allow us to adapt the algebraic formulation of Connes’ fusion to
the setting ofC∗-algebras as follows. Letb = (K,B,B†) be aC∗-base,Hβ aC∗-b-module, and
Kγ aC∗-b†-module. Then therelative tensor productof Hβ andKγ is the Hilbert space

Hβ⊗
b

γK := β=K< γ,

which is spanned by elementsξ=ζ<η, whereξ∈ β, ζ∈K, η ∈ γ, the inner product being given
by 〈ξ=ζ<η|ξ′=ζ′<η′〉= 〈ζ|ξ∗ξ′η∗η′ζ′〉= 〈ζ|η∗η′ξ∗ξ′ζ′〉 for all ξ,ξ′ ∈ β, ζ,ζ′ ∈ K, η,η′ ∈ γ.

Examples 2.11. i) If b is the trivialC∗-baset= (C,C,C), thenβ = L(C,H), γ = L(C,K),
andHβ⊗

b
γK ∼= H⊗K via ξ= ζ< η 7→ ξζ⊗η1= ξ1⊗ηζ.

ii) Let Z be a locally compact Hausdorff space,µ a Radon measure onZ of full support,
H = (Hz)z andK = (Kz)z continuous bundles of Hilbert spaces onZ with full support,
andHα,Kβ the associatedC∗-b-modules as defined in Example 2.6. One easily checks
that then we have an isomorphism

Hβ⊗
b

γK→
∫ ⊕

Z
Hz⊗Kzdµ(z), m(ξ)= ζ<m(η) 7→ (ξ(z)ζ(z)⊗η(z))z∈Z.

Let us list some easy observations and a few definitions.

i) The isomorphisms in Lemma 2.5 ii), applied toHβ andKγ, respectively, yield the following
identifications which we shall use without further notice:

β=ργ K ∼= Hβ⊗
b

γK ∼= Hρβ<γ, ξ= ηζ≡ ξ= ζ< η≡ ξζ< η.

ii) For eachξ ∈ β andη ∈ γ, there exist bounded linear operators

|ξ〉1 : K→ β=ργ K = Hβ⊗
b

γK, ω 7→ ξ= ω, |η〉2 : H→ Hρβ<γ = Hβ⊗
b

γK, ω 7→ ω< η,

whose adjoints〈ξ|1 := |ξ〉∗1 and〈η|2 := |η〉∗2 are given by

〈ξ|1 : ξ′= ω 7→ ργ(ξ∗ξ′)ω, 〈η|2 : ω< η′ 7→ ρβ(η∗η′)ω.

We put|β〉1 := {|ξ〉1 |ξ ∈ β} ⊆ L(K,Hβ⊗
b

γK) and similarly define〈β|1, |γ〉2, 〈γ|2.
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iii) For all S∈ ρβ(B
†)′ andT ∈ ργ(B)′, we have operators

S< id ∈ L(Hρβ<γ) = L(Hβ⊗
b

γK), id=T ∈ L(β=ργ K) = L(Hβ⊗
b

γK).

If these operators commute, we letS⊗
b

T := (S< id)(id=T) = (id=T)(S< id). The

commutativity condition holds in each of the following cases:

(a) S∈ Ls(Hβ); then(S⊗
b

T)(ξ= ω) = Sξ=Tω for eachξ ∈ β,ω ∈ K;

(b) T ∈ Ls(Kγ); then(S⊗
b

T)(ω< η) = Sω<Tη for eachω ∈ H,η ∈ γ;

(c) (B†)′ = B′′; then for all ξ,ξ′ ∈ β and η,η′ ∈ γ, the elementsη∗Tη′ ∈ B′ and
ξ∗Sξ′ ∈ (B†)′ commute, and ifζ,ζ′ ∈ K andω = ξ = ζ < η, ω′ = ξ′= ζ′< η′, then
〈ω|(id=T)(S< id)ω′〉 = 〈ζ|(η∗Tη′)(ξ∗Sξ′)ζ′〉 = 〈ζ|(ξ∗Sξ′)(η∗Tη′)ζ′〉 = 〈ω|(S<

id)(id=T)ω′〉.

Let a = (H,A,A†) andc = (L,C,C†) be furtherC∗-bases. Then the relative tensor product of
bimodules over(a†,b) and(b†,c) is a bimodule over(a†,c):

Proposition 2.12. Let H = αHβ be a C∗-(a†,b)-module,K = γKδ a C∗-(b†,c)-module, and

α⊳ γ := [|γ〉2α]⊆ L(H,Hβ⊗
b

γK), β⊲δ := [|β〉1δ]⊆ L(L,Hβ⊗
b

γK). (2)

ThenH ⊗
b

K := (α⊳γ)(Hβ⊗
b

γK)(β⊲δ) is a C∗-(a†,c)-module and

ρ(α⊳γ)(x) = ρα(x)< id for all x ∈ (A†)′, ρ(β⊲δ)(y) = id=ρδ(y) for all y ∈ C′. (3)

Proof. (Hβ⊗
b

γK)(α⊳γ) is aC∗-a†-module because[α∗〈γ|2|γ〉2α] = [α∗ρβ(B
†)α] =A†, [|γ〉2αA†] =

[|γ〉2α], and[|γ〉2αH] = [|γ〉2H] = Hβ⊗
b

γK. Likewise,(Hβ⊗
b

γK)(β⊲δ) is aC∗-c-module.

For allx∈ (A†)′, ζ ∈ H, θ ∈ α, η ∈ γ, we have|η〉2θ ∈ α⊳ γ and hence

ρ(α⊳γ)(x)(θζ< η) = ρ(α⊳γ)(x)|η〉2θζ = |η〉2θxζ = ρα(x)θζ< η = (ρα(x)< id)(θζ< η).

The first equation in (3) follows, and a similar agument proves the second one.
Finally, (α⊳γ)(Hβ⊗

b
γK)(β⊲δ) is a C∗-(a†,c)-module because[ρ(α⊳γ)(A)|β〉1δ] = [|ρα(A)β〉1δ] =

[|β〉1δ] and[ρ(β⊲δ)(C
†)|γ〉2α] = [|γ〉2α].

In the situation above, we callH ⊗
b

K therelative tensor productof H andK . Note the follow-

ing commutative diagram of Hilbert spaces and closed spacesof operators between them:

H α
))TTTTTT

α⊳γ ..

Kβ
ssgggggggg γ

++WWWWWWWW Lδ
uujjjjjj

β⊲δpp

H |γ〉2
**TTTTTT K|β〉1

ttjjjjjj

Hβ⊗
b

γK

9



Given aC∗-b-moduleH = Hβ and aC∗-(b†,c)-moduleK = γKδ, we abbreviateHβ⊗
b

γKδ :=

(Hβ⊗
b

γK)β⊲δ. Likewise, we writeαHβ⊗
b

γK for (Hβ⊗
b

γK)α⊳γ andαHβ⊗
b

γKδ for α⊳γ(Hβ⊗
b

γK)β⊲δ.

The relative tensor product is functorial, associative, unital, and compatible with direct sums in
the following sense:

Proposition 2.13. Let H = αHβ, H 1 = α1H
1
β1
,H 2 = α2H

2
β2

be C∗-(a†,b)-modules,K = γKδ,

K 1 = γ1K
1
δ1

, K 2 = γ2K
2
δ2

C∗-(b†,c)-modules, andL = εLφ a C∗-(c†,d)-module.

i) S⊗
b

T ∈ L
(
H 1⊗

b

K 1,H 2⊗
b

K 2
)

for all S∈ L(H 1,H 2), T ∈ L(K 1,K 2).

ii) The composition of the isomorphisms(Hβ⊗
b

γKδ)⊗
c

εL∼= (Hβ⊗
b

γK)ρ(β⊲δ)<ε∼= β=ργ Kρδ<ε

andβ=ργ Kρδ<ε∼= β=ρ(γ⊳ε) (Kδ⊗
c

εL)∼= Hβ⊗
b

(γKδ⊗
c

εL) is an isomorphism of C∗-(a†,c)-

modules aa,b,c,d(L ,K ,H ) : (H ⊗
b

K )⊗
c

L →H ⊗
b

(K ⊗
c

L).

iii) Put U := B†KB. Then there exist isomorphisms

ra,b(H ) : H ⊗
b

U→H , ξ= ζ<b† 7→ ξb†ζ = ρβ(b
†)ξζ,

lb,c(K ) : U⊗
b

K →K , b= ζ< η 7→ ηbζ = ργ(b)ηζ.

iv) Let (H i)i be a family of C∗-(a†,b)-modules and(K j) j a family of C∗-(b†,c)-modules.
For each i, j, denote byιi

H
: H i → ⊞i′H

i′ , ι j
K : K j → ⊞ j ′K

j ′ and πi
H

: ⊞i′ H
i′ → H i ,

π j
K : ⊞ j ′ K

j ′ → K j the canonical inclusions and projections, respectively. Then there
exist inverse isomorphisms⊞i, j(H

i ⊗
b

K j) ⇆ (⊞iH
i)⊗

b

(⊞ j K
j), given by(ωi, j )i, j 7→

∑i, j(ιi
H
⊗
b

ι j
K )(ωi, j ) and

(
(πi

H
⊗
b

π j
K )(ω)

)
i, j ← [ ω, respectively.

Proof. i) If S,T are as above andH i = αi H
i
βi

, K j = γ j K
j

δ j
for i, j = 1,2, then(S⊗

b

T)|γ1〉2α1 =

|Tγ1〉2Sα1 ⊆ |γ2〉2α2 and similarly(S⊗
b

T)|β1〉1δ1 ⊆ |β2〉1δ2, (S⊗
b

T)∗|γ2〉2α2 ⊆ |γ1〉2α1, (S⊗
b

T)∗|β2〉1δ2⊆ |β1〉1δ1.
ii) Straightforward.
iii) ra,b(H ) · (α ⊳B†) = [ρβ(B

†)α] = α and ra,b(H ) · (β ⊲B) = [βB] = β. For lb,c(K ), the
arguments are similar.
iv) Straightforward.

Remark 2.14. The relative tensor product of modules and morphisms can be considered as
the composition in a bicategory as follows. Recall that a bicategoryB consists of a class of
objects obB, a categoryB(A,B) for eachA,B∈ obB whose objects and morphisms are called
1-cellsand2-cells, respectively, a functorcA,B,C : B(B,C)×B(A,B)→ B(A,C) (“composition”)
for eachA,B,C ∈ obB, an object 1A ∈ B(A,A) (“identity”) for eachA∈ obB, an isomorphism
aA,B,C,D( f ,g,h) : cA,B,D(cB,C,D(h,g), f )→ cA,C,D(h,cA,B,C(g, f )) in B(A,D) (“associativity”) for

each triple of 1-cellsA
f
−→ B

g
−→C

h
−→ D in B, and isomorphismslA( f ) : cA,A,B( f ,1A)→ f and
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rB( f ) : cA,B,B(1B, f )→ f in B(A,B) for each 1-cellA
f
−→ B in B, subject to several axioms [17].

Tedious but straightforward calculations show that there exists a bicategoryC∗-bimod such that

i) the objects are allC∗-bases andC∗-bimod(a,b) is the category of allC∗-(a†,b)-modules
with morphisms (not semi-morphisms) for allC∗-basesa,b;

ii) the functorca,b,c is given by(γKδ,αHβ) 7→ αHβ⊗
b

γKδ and(T,S) 7→S⊗
b

T, respectively, and

the identity 1a is A†HA for all C∗-basesa, b, c, d;

iii) a, r, l are as in Proposition 2.13.

3 The spatial fiber product of C∗-algebras

3.1 Background

We now use the relative tensor product to construct a fiber product ofC∗-algebras that are rep-
resented onC∗-modules overC∗-bases. To motivate our approach, let us first review several
related constructions. In each case, the task is to construct a relative tensor product or “fiber
product” of two algebrasA andC with respect to a common subalgebraB.
First, assume that we are working in the category of unital commutative rings. Then the fiber
product is just the push-out of the diagram formed byA,B,C. Explicitly, it is the algebraic
tensor productA⊙

B
C, whereA andC are considered as modules overB, and the multiplication

is defined componentwise. In the category of commutativeC∗-algebras, the push-out is the
maximal completion of the algebraic tensor productA⊙

B
C and, as usual in the setting ofC∗-

algebras, also other interesting completions exist [1]. For example, ifB=C0(X) for some locally
compact Hausdorff space and ifA andC are represented on Hilbert spacesH andK, respectively,
thenH andK can be disintegrated overX with respect to some measureµ (see Subsection 2.1),
and the algebraA⊙

B
C has a natural representationπ on the relative tensor productH ⊗

µ
K =

∫ ⊕
X Hx⊗Kxdµ(x), leading to a minimal completionπ(A⊙

B
C). In the setting of von Neumann

algebras,H andK are intrinsic, and the desired fiber product isπ(A⊙
B

C)′′ ⊆ L(H⊗
µ

K). Note

that all of these constructions do not depend on commutativity of A andC and make sense as
long asB is central inA and inC.
Next, consider the case whereA,B,C are non-commutative,B is a subalgebra ofA, and the
oppositeBop is a subalgebra ofC. Then one can considerA andC as modules overB via right
multiplication, and form the algebraic tensor productA⊙

B
C, but componentwise multiplication

is well defined only on the subspaceA×
B

C ⊆ A⊙
B

C which consists of all elements∑i ai ⊙ ci

satisfying∑i bai⊙ci =∑i ai⊙bopci for all b∈B. This subspace was first considered by Takeuchi
and provides the right notion of a fiber product for the algebraic theory of quantum groupoids
[2, 32]. In the setting ofC∗-algebras, the Takeuchi productA×

B
C may be 0 even when we expect

a nontrivial fiber product on the level ofC∗-algebras; therefore, the latter can not be obtained
as the completion of the former. In the setting of von Neumannalgebras, a fiber product can
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be constructed as follows [21]. IfA andC act on Hilbert spacesH andK, respectively, one can
form the Connes fusionH⊗

µ
K with respect to some weightµ on B and the actions ofB on H

andBop onK which — by functoriality — carries a representationπ : A′⊙C′→ L(H⊗
µ

K), and

the desired fiber product isA∗
µ
C= π(A′⊙C′)′. A categorical interpretation of this construction

is given in 4.3.
We now modify the last construction to define a fiber product for C∗-algebrasA andC as follows.

(A) We assume thatA andC are represented on aC∗-b-moduleHβ and aC∗-b†-moduleKγ,
respectively, whereb = (K,B,B†) is aC∗-base, such thatρβ(B) and ργ(B

†) take the
places ofB andBop, respectively.

(B) On the relative tensor productHβ⊗
b

γK, we defineC∗-algebras Ind|γ〉2(A) and Ind|β〉1(C)

which, roughly, take the places ofπ(A′⊙ idK)
′ andπ(idH⊙C′)′.

(C) The fiber product is then the intersectionAβ∗
b

γB= Ind|γ〉2(A)∩ Ind|β〉1(C)⊆ L(Hβ⊗
b

γK).

3.2 C∗-algebras represented onC∗-modules

Let b= (K,B,B†) be aC∗-base. As indicated in step (A), we adopt the following terminology.

Definition 3.1. A C∗-B†-algebra(A,ρ), briefly written Aρ, is a C∗-algebra A with a∗-homo-
morphismρ : B†→ M(A). A morphismof C∗-B†-algebras Aρ and Bσ is a ∗-homomorphism
π : A→ B satisfyingσ(x)π(a) = π(ρ(x)a) for all x ∈B†,a∈ A. We denote the category of all
C∗-B†-algebras byC∗

B†.
A (nondegenerate)C∗-b-algebrais a pair Aα

H = (Hα,A), where Hα is a C∗-b-module, A⊆ L(H)
a (nondegenerate) C∗-algebra, andρα(B

†)A⊆ A. A (semi-)morphism between C∗-b-algebras

Aα
H , Bβ

K is a ∗-homomorphismπ : A→ B satisfyingβ = [Lπ
(s)(Hα,Kβ)α], whereLπ

(s)(Hα,Kβ) :=
{T ∈ L(s)(Hα,Kβ) | ∀a∈ A : Ta= π(a)T}. We denote the category of all C∗-b-algebras together

with all (semi-)morphisms byC∗
b
(s).

We first give some examples ofC∗-b-algebras and then study the relation betweenC∗
B† andC∗

b
.

Examples 3.2. i) If H is a Hilbert space andA⊆ L(H) a C∗-algebra, thenAα
H is aC∗-t-

algebra, wheret= (C,C,C) denotes the trivialC∗-base andα = L(C,H).

ii) Let Aα
H be a nondegenerateC∗-b-algebra. If we identifyM(A) with a C∗-subalgebra of

L(H) in the canonical way,M(A)α
H becomes aC∗-b-algebra.

iii) Let (Ai)i be a family ofC∗-b-algebras, whereAi = (Hi ,Ai) for eachi. Then thec0-sum⊕
i Ai and thel∞-product∏i Ai are naturally represented on the underlying Hilbert space

of ⊞iHi , and we obtainC∗-b-algebras⊞iAi :=
(
⊞i Hi ,

⊕
i Ai

)
and∏i Ai :=

(
⊞i Hi ,∏i Ai

)
.

For eachj, the canonical mapsA j →
⊕

i Ai → ∏i Ai → A j are evidently morphisms of
C∗-b-algebrasA j →⊞iAi →∏i Ai → A j .

The following example is a continuation of Example 2.10.
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Example 3.3. Let B be aC∗-algebra with a KMS-stateµ and associatedC∗-baseb, and letA be
aC∗-algebra containingB with a conditional expectationφ : A→ B as in Example 2.10. With
the notation introduced before,πν(A)

β
H is a nondegenerateC∗-b-algebra becauseρβ(B)πν(A) =

πν(B)πν(A)⊆ πν(A), and similarly,(πop
ν (Aop))α

H is a nondegenerateC∗-b†-algebra [25, §2–3].

The categoriesC∗s
b

andC∗
B† are related by a pair of adjoint functors, as we shall see now.

Lemma 3.4. Let π be a semi-morphism of C∗-b-algebras AαH and Bβ
K . Thenπ is normal and

π(aρα(x)) = π(a)ρβ(x) for all x ∈B†, a∈ A.

Proof. Let T,T ′ ∈ Lπ
s (Hα,Kβ), ξ,ξ′ ∈ α, ζ,ζ′ ∈ K, a ∈ A, x ∈B†. Then〈Tξζ|π(a)T ′ξ′ζ′〉 =

〈ξζ|aT∗T ′ξ′ζ′〉 andπ(aρα(x))Tξζ = Taρα(x)ξζ = π(a)Tξxζ = π(a)ρβ(x)Tξζ becauseTξ ∈ β.
Now, the assertions follow sinceK = [Lπ

s (Hα,Kβ)αK].

The preceding lemma shows that there exists a forgetful functor

Ub : C∗sb → C∗
B†,

{
Aα

H 7→ Aρα for each objectAα
H ,

π 7→ π for each morphismπ.

We shall see that this functor has a partial adjoint that associates to aC∗-B†-algebra a universal
representation on aC∗-b-module. For the discussion, we fix aC∗-B†-algebraCσ.

Definition 3.5. A representation ofCσ in C∗s
b

is a pair (A ,φ), whereA = Aα
H ∈ C∗s

b
and φ ∈

C∗
B†(Cσ,UA). Denote byRepb(Cσ) the category of all such representations, where themor-

phismsbetween objects(A ,φ) and(B ,ψ) are all π ∈C∗s
b
(A ,B) satisfyingψ = Uπ◦φ.

Note thatRepb(Cσ) is just the comma category(Cσ ↓ Ub) [19]. Unfortunately, we have no gen-
eral method like the GNS-construction to produce representations ofCσ in in C∗s

b
. In particular,

we have no good criteria to decide whether there are any and, if so, whether there exists a faithful
one. However, we now show that if there are any representations, then there also is a universal
one. The proof involves the following direct product construction.

Example 3.6. Let (Ai ,φi) ∈Repb(Cσ) for all i, whereAi = (Hi ,Ai), and defineφ : C→∏i Ai by
c 7→ (φi(c))i . Then∏i(Ai ,φi) := (∏i Ai ,φ) ∈ Repb(Cσ), and the canonical mapsA j →∏i Ai →
A j are morphisms between(A j ,φ j) and(∏i Ai ,φ) for each j.

Proposition 3.7. If the categoryRepb(Cσ) is non-empty, then it has an initial object.

Proof. Assume thatRepb(Cσ) is non-empty. We first use a cardinality argument to show that
Repb(Cσ) has an initial set of objects, and then apply the direct product construction to this set
to obtain an initial object.
Given a topological vector spaceX and a cardinal numberc, let us callX c-separableif X has
a linearly dense subset of cardinalityc. Choose a cardinal numberd such thatB andC×K

ared-separable, and lete := |N|∑ndn. Then the isomorphism classes ofe-separable Hilbert
C∗-B-modules form a set, and hence there exists a setR of objects inRepb(Cσ) such that each
(Aα

H ,φ) ∈ Repb(Cσ) with e-separableα is isomorphic to some element ofR . Let (Aα
H ,φ) =

⊞R∈R R. We show that(φ(C)α
H ,φ) is initial in Repb(Cσ).
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Let (Bβ
K ,ψ) ∈ Repb(Cσ). We show that there exists a morphismπ ∈ C∗s

b
(φ(C)α

H ,B
β
K) such that

ψ = π ◦ φ, and uniqueness of such aπ is evident. Letξ ∈ β be given. SinceB andC×K

ared-separable, we can inductively choose subspacesβ0 ⊆ β1 ⊆ ·· · ⊆ β and cardinal numbers
d0,d1, . . . such thatξ ∈ β0, [β∗0β0] =B, d0≤ 2d+1, β0 is d0-separable and for alln≥ 0,

βnB⊆ βn+1, ψ(C)βnK⊆ [βn+1K], dn+1≤ |N|ddn, βn+1 is dn+1-separable.

Let β̃ := [
⋃

nβn] ⊆ β and K̃ := [β̃K] ⊆ K. By construction,[β̃∗β̃] = B, β̃B ⊆ β̃, ψ(C)K̃ ⊆ K̃,

so that(ψ(C)|K̃)
β̃
K̃

is in C∗
b
. Define ψ̃ : C→ ψ(C)|K̃ by c 7→ ψ(c)|K̃ . Then (ψ̃(C)β̃

K̃
, ψ̃) is in

Repb(Cσ). Sinceβ̃ is e-separable,(ψ̃(C)β̃
K̃
, ψ̃) is isomorphic to some element ofR . Hence, there

exists a surjectioñT : H → K̃ such thatT̃α = β̃, and the composition with the inclusioñK→ K
gives an operatorT ∈ Ls(Hα,Kβ) such thatψ(c)T = Tφ(c) for all c∈C. Sinceξ ∈ β̃ = Tα and
ξ ∈ β was arbitrary, we can conclude the existence ofπ as desired.

Evidently, every morphismΦ betweenC∗-B†-algebrasCσ andDτ yields a functor

Φ∗ : Repb(Dτ)→ Repb(Cσ),

{
(Aα

H ,φ) 7→ (Aα
H ,φ◦Φ) for each object(Aα

H ,φ),
π 7→ π for each morphismπ.

Denote byC∗r
B† the full subcategory ofC∗

B† consisting of all objectsCσ for which Rep(Cσ) is
non-empty.

Theorem 3.8. There exist a functorRb : C∗r
B† → C∗s

b
and natural transformationsη : idC∗r

B†
→

UbRb andε : RbUb→ idC∗s
b

such that for every Cσ,Dτ ∈ C∗r
B†, Φ ∈ C∗r

B†(Cσ,Dτ), Aα
H ∈ C∗s

b
,

• Rb(Cσ) ∈ Repb(Cσ) is an initial object andRb(Φ) is the unique morphism fromRb(Cσ)
to Φ∗(Rb(Dτ)),

• ηCσ = φ if Rb(Cσ) = (Bβ
K ,φ), andεAα

H
is the unique morphism fromRbUb(Aα

H) to (Aα
H , idA).

Moreover,Rb is left adjoint toUb andη, ε are the unit and counit of the adjunction, respectively.

Proof. This follows from Proposition 3.7 and [19, §IV Theorem 2].

We next considerC∗-algebras represented onC∗-bimodules. Leta= (H,A,A†) be aC∗-base.

Definition 3.9. A C∗-(A,B†)-algebrais a triple (A,ρ,σ), briefly written Aρ,σ, where Aρ is a C∗-
A-algebra, Aσ a C∗-B†-algebra, and[ρ(A),σ(B†)] = 0. A morphismof C∗-(A,B†)-algebras
is a morphism of the underlying C∗-A-algebras and C∗-B†-algebras. We denote the category of
all C∗-(A,B†)-algebras byC∗

(A,B†)
.

A (nondegenerate)C∗-(a†,b)-algebrais a pair Aα,β
H = (αHβ,A), where αHβ is a C∗-(a†,b)-

module, AαH a (nondegenerate) C∗-a†-algebra, and AβH a C∗-b-algebra. A (semi-)morphism of

C∗-(a†,b)-algebras Aα,βH and Bγ,δ
K is a∗-homomorphismπ : A→B satisfyingγ= [Lπ

(s)(αHβ, γKδ)α]
andδ = [Lπ

(s)(αHβ, γKδ)β], whereLπ
(s)(αHβ, γKδ) := {T ∈L(s)(αHβ, γKδ) | ∀a∈ A : Ta= π(a)T}.

We denote the category of all C∗-(a†,b)-algebras together with all (semi-)morphisms byC∗(s)
(a†,b)

.
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Remark 3.10. Note that the condition on a (semi-)morphism betweenC∗-(a†,b)-algebras above
is stronger than just being a (semi-)morphism of the underlyingC∗-a†-algebras andC∗-b-algebras.

Examples 3.2 ii) and iii) naturally extend toC∗-(a†,b)-algebras, and the categoriesC∗
(A,B†)

and
C∗s
(a†,b)

are again related by a pair of adjoint functors.

Theorem 3.11. There exists a functorU(a†,b) : C∗s
(a†,b)

→ C∗
(A,B†)

, given by Aα,βH 7→ Aρα,ρβ on
objects andπ 7→ π on morphisms. Denote byC∗r

(A,B†)
the full subcategory ofC∗

(A,B†)
consist-

ing of all objects Cσ,ρ for which the comma category(Cσ,ρ ↓ U(a†,b)) is non-empty. Then the
corestriction ofU(a†,b) to C∗r

(A,B†)
has a left adjointR(a†,b) : C∗r

(A,B†)
→ C∗s

(a†,b)
.

Proof. The proof proceeds as in the case ofC∗-b-algebras with straightforward modifications, so
we only indicate the necessary changes for the second half ofthe proof of Proposition 3.7. Given
aC∗-(A,B†)-algebraCσ,τ and aC∗-(a†,b)-algebraBγ,δ

K with a morphismψ : Cσ,τ→ Bργ,ρδ , one

constructs̃γ ⊆ γ and δ̃ ⊆ δ for given ξ ∈ γ, η ∈ δ as follows. One first fixes a cardinal number
d such thatA,A†,H,B,B†,H ared-separable, and then inductively chooses cardinal numbers
d0,d1, . . . and closed subspacesγ0⊆ γ1⊆ ·· · ⊆ γ andδ0⊆ δ1⊆ ·· · ⊆ δ such that

ξ ∈ γ0, η ∈ δ0, [γ∗0γ0] =A†, [δ∗0δ0] =B, d0≤ 2d+1, γ0,δ0 ared0-separable,

ρδ(B
†)γn+ γnA

†⊆ γn+1, ργ(A)γn+δnB⊆ δn+1, ψ(C)γnH+ψ(C)δnK⊆ [γn+1H]∩ [δn+1K],

dn+1≤ |N|d
2dn, γn+1,δn+1 aredn+1-separable

for all n≥ 0, and finally lets̃γ := [
⋃

nγn], δ̃ := [
⋃

nδn], K̃ := [γ̃H] = [δ̃K].

Remark 3.12. Let Cρ,σ be aC∗-(A,B†)-algebra,Aα,β
H = R(a†,b)(Cρ,σ), andφ = ηCρ,σ : Cρ,σ →

Aρα,ρβ the morphism given by the unit of the adjunction above. Then(Aα,φ) ∈ Repa†(Cρ) and

(Aβ,φ) ∈Repb(Cσ), whence we have semi-morphismsRa†(Cσ)→ Aα
H andRb(Cρ)→ Aβ

H .

3.3 The spatial fiber product for C∗-algebras represented onC∗-modules

Our definition of the fiber product ofC∗-algebras represented onC∗-modules — more precisely,
step (B) in the introduction — involves the following construction.
Let H andK be Hilbert spaces,I ⊆ L(H,K) a subspace andA⊆ L(H) aC∗-algebra such that
[IH ] = K, [I∗K] = H, [II ∗I ] = I , I∗IA⊆ A. We define a newC∗-algebra

IndI (A) := {T ∈ L(K) | TI+T∗I ⊆ [IA]} ⊆ L(K).

Definition 3.13. The I-strong-∗, I -strong, andI -weak topologyon L(K) are the topologies
induced by the families of semi-norms T7→ ‖Tξ‖+ ‖T∗ξ‖ (ξ ∈ I), T 7→ ‖Tξ‖ (ξ ∈ I), and
T 7→ ‖ξ∗Tξ′‖ (ξ,ξ′ ∈ I), respectively. Given a subset X⊆ L(K), denote by[X]I the closure of
spanX with respect to the I-strong-∗ topology.

Evidently, the multiplication inL(K) is separately continuous with respect to the topologies
introduced above, and the involutionT 7→ T∗ is continuous with respect to theI -strong-∗ and
the I -weak topology. DefineρI : (I∗I)′→ L(K) as in Lemma 2.4.
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Lemma 3.14. i) [I∗ IndI (A)I ]⊆ A andIndI (A) = [IAI∗]I .

ii) IndI(M(A))⊆M(IndI (A)).

iii) IndI(A)⊆ L(K) is nondegenerate if and only if A⊆ L(H) is nondegenerate.

iv) If A⊆ L(H) is nondegenerate, then A′ ⊆ (I∗I)′ and IndI (A)⊆ ρI (A′)′.

Proof. i) We have[I∗ IndI(A)I ]⊆ [I∗IA]⊆Aby definition and[IAI∗]I ⊆ IndI(A) because[IAI∗]I I ⊆
[IAI∗I ] ⊆ [IA]. To see that[IAI∗]I ⊇ IndI (A), choose a bounded approximate unit(uν)ν for
theC∗-algebra[II ∗] and observe that for eachT ∈ IndI(A), the net(uνTuν)ν lies in the space
[II ∗ IndI(A)II ∗] ⊆ [IAI∗] and converges toT in the I -strong-∗ topology because limν T(∗)uνξ =
T(∗)ξ ∈ [IA] for all ξ ∈ I and limν uνω = ω for all ω ∈ [IA].
ii) If S∈ IndI (M(A)), T ∈ IndI(A), thenST∈ IndI (A) becauseSTI⊆ [SIA] ⊆ [IM(A)A] = [IA]
andT∗S∗I ⊆ [TIM(A)]⊆ [IAM(A)] = [IA].
iii) If Ind I (A) ⊆ L(K) is nondegenerate, then[AH]⊇ [I∗ IndI (A)IH ] = [I∗ IndI(A)K] = [I∗K] =
H. Conversely, ifA is nondegenerate, then[IAI∗] and hence also IndI (A) is nondegenerate.
iv) Assume thatA is nondegenerate. ThenI∗I ⊆ M(A) ⊆ L(H) and henceA′ ⊆ (I∗I)′. For
all x ∈ IndI (A), y ∈ A′, S,T ∈ I , we haveS∗xρI (y)T = S∗xTy= yS∗xT = S∗ρI (y)xT because
S∗xT ∈ A, and since[IH ] = K, we can conclude thatxρI (y) = ρI (y)x.

Let b = (K,B,B†) be aC∗-base,Aβ
H a C∗-b-algebra, andBγ

K a C∗-b†-algebra. We apply the
construction above toA, B and |γ〉2 ⊆ L(H,Hβ⊗

b
γK), |β〉1 ⊆ L(K,Hβ⊗

b
γK), respectively, and

define thefiber productof Aβ
H andBγ

K to be theC∗-algebra

Aβ∗
b

γB := Ind|γ〉2(A)∩ Ind|β〉1(B)

= {T ∈ L(Hβ⊗
b

γK) | T|γ〉2+T∗|γ〉2⊆ [|γ〉2A],T|β〉1+T∗|β〉1⊆ [|β〉1B]}.

The spaces of operators involved are visualized as arrows inthe following diagram:

H

A
��

|γ〉2
// Hβ⊗

b
γK

Aβ∗
b
γB

��

K
|β〉1

oo

B
��

H
|γ〉2

// Hβ⊗
b

γK K
|β〉1

oo

Even in very special situations, it seems to be difficult to give a more explicit description of the
fiber product. The main drawback of the definition above is that apart from special situations,
we do not know how to produce elements of the fiber product.
Let a= (H,A,A†) andc= (L,C,C†) be furtherC∗-bases.

Proposition 3.15.LetA =Aα,β
H be a C∗-(a†,b)-algebra andB =Bγ,δ

K a C∗-(b†,c)-algebra. Then
A ∗

b
B := (αHβ⊗

b
γKδ,Aβ∗

b
γB) is a C∗-(a†,c)-algebra.
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Proof. The productX := ρ(α⊳γ)(A
†)(Aβ∗

b
γB) is contained inAβ∗

b
γB because

X|β〉1⊆ [|ρα(A)β〉1B] = [|β〉1B], X∗|β〉1 = (Aβ∗
b

γB)|ρα(A)β〉1 ⊆ [|β〉1B],

X|γ〉2⊆ [|γ〉2ρα(A)A]⊆ [|γ〉2A], X∗|γ〉2 = (Aβ∗
b

γB)|γ〉2ρα(A)⊆ [|γ〉2A]

by equation (3). A similar argument shows thatρ(β⊲δ)(C
†)(Aβ∗

b
γB)⊆ Aβ∗

b
γB.

In the situation above, we callA ∗
b

B thefiber productof A andB . Forgettingα or δ, we obtain a

C∗-c-algebraAβ∗
b

γBδ := Aβ
H ∗

b
Bγ,δ

H := (Hβ⊗
b

γKδ,Aβ∗
b

γB) and aC∗-a†-algebraαAβ∗
b

γB=Aα,β
H ∗

b
Bγ

K .

Denote byA′ ⊆ L(H) andB′ ⊆ L(K) the commutants ofA andB, respectively, and let

A(β) := A∩L(Hβ), B(γ) := B∩L(Kγ), X := (A(β)⊗
b

id)+ (id⊗
b

B(γ)),

Ms(A
(β)⊗

b

B(γ)) := {T ∈ L(Hβ⊗
b

γK) | TX,XT⊆ A(β)⊗
b

B(γ)}.

Lemma 3.16. i) 〈β|1(Aβ∗
b

γB)|β〉1⊆B, 〈γ|2(Aβ∗
b

γB)|γ〉2⊆A, and M(A)β∗
b

γM(B)⊆M(Aβ∗
b

γB).

ii) A(β)⊗
b

B(γ) ⊆ Aβ∗
b

γB.

iii) If [A(β)β] = β and [B(γ)γ] = γ, then Aβ∗
b

γB is nondegenerate and Ms(A(β)⊗
b

B(γ))⊆ Aβ∗
b

γB.

iv) If ρβ(B
†)⊆ A, thenidH⊗

b

B(γ) ⊆ Aβ∗
b

γB. If ργ(B)⊆ B, then A(β)⊗
b

idK ⊆ Aβ∗
b

γB.

v) id(Hβ⊗
b

γK) ∈ Aβ∗
b

γB if and only ifρβ(B
†)⊆ A andργ(B)⊆ B.

vi) If Aα,β
H is a C∗-(a†,b)-algebra and Bγ,δK a C∗-(b†,c)-algebra such thatρα(A)+ρβ(B

†)⊆A
andργ(B)+ρδ(C

†)⊆ B, thenρ(α⊳γ)(A)+ρ(β⊲δ)(C
†)⊆ Aβ∗

b
γB.

vii) If Aβ∗
b

γB is nondegenerate, then the C∗-algebra[β∗Aβ]∩ [γ∗Bγ]⊆ L(K) is nondegenerate.

viii) If A and B are nondegenerate, then A′ ⊆ ρβ(B
†)′, B′ ⊆ ργ(B)′, and Aβ∗

b
γB⊆ ρ|γ〉2(A

′)∩

ρ|β〉1(B
′) = (A′⊗

b

idK)
′∩ (idH⊗

b

B′)′.

Proof. i) Immediate from Lemma 3.14.
ii) Use (A(β)⊗

b

B(γ))|β〉1⊆ [|A(β)β〉1B(γ)]⊆ [|β〉1B], (A(β)⊗
b

B(γ))|γ〉2 ⊆ [|B(γ)γ〉1A(β)]⊆ [|γ〉2A].

iii) Assume [A(β)β] = β and [B(γ)γ] = γ. ThenA(β)⊗
b

B(γ) ⊆ Aβ∗
b

γB is nondegenerate and for

eachT ∈ Ms(A(β)⊗
b

B(γ)), we haveT|β〉1 ⊆ [T(A(β)⊗
b

id)|β〉1] ⊆ [(A(β) ⊗
b

B(γ))|β〉1] ⊆ [|β〉1B]

and similarlyT∗|β〉1⊆ [|β〉1B], T|γ〉2+T∗|γ〉2⊆ [|γ〉2A].
iv) If ργ(B) ⊆ B, then (A(β)⊗

b

idK)|γ〉2 = |γ〉2A(β) and [(A(β) ⊗
b

idK)|β〉1] ⊆ |β〉1 = [|βB〉1] =

[|β〉1ργ(B)] ⊆ [|β〉1B]. The second assertion follows similarly.
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v) If id (Hβ⊗
b

γK) ∈Aβ∗
b

γB, thenρβ(B
†) = [〈γ|2|γ〉2]⊆ A, ργ(B) = [〈β|1|β〉1]⊆B by i). Conversely,

if the last two inclusions hold, then|γ〉2 = [|γB†〉2] = [|γ〉2ρβ(B
†)]⊆ [|γ〉2A] and similarly|β〉1⊆

[|β〉1B], whence id(Hβ⊗
b

γK) ∈ Aβ∗
b

γB.

vi) Immediate from iv).
vii) The C∗-algebraC := [β∗Aβ]∩ [γ∗Bγ] containsβ∗〈γ|2(Aβ∗

b
γB)|γ〉2β = γ∗〈β|1(Aβ∗

b
γB)|β〉1γ. If

Aβ∗
b

γB is nondegenerate, we therefore must have[CK]⊇ [β∗〈γ|2(Aβ∗
b

γB)(Hβ⊗
b

γK)] = K.

viii) Immediate from Lemma 3.14.

Even in the case of a trivialC∗-base, we have no explicit description of the fiber product.

Examples 3.17.Let H andK be Hilbert spaces,β = L(C,H), γ = L(C,K), b = t the trivial
C∗-base(C,C,C), and identifyHβ⊗

b
γK with H⊗K as in Example 2.11.

i) Let A⊆ L(H) andB⊆ L(K) be nondegenerateC∗-algebras. ThenA(β) = A, B(γ) = B,
and by Lemma 3.16,Aβ∗

b
γB contains the minimal tensor productA⊗B⊆ L(H⊗K) and

Ms(A⊗B) = {T ∈ L(H⊗K) | T(∗)(1⊗B),T(∗)(A⊗1)⊆ A⊗B}. If A or B is non-unital,
then idH⊗K 6∈ Aβ∗

b
γB by Lemma 3.16 and soM(A⊗B) 6⊆ Aβ∗

b
γB. In Example 5.3 iii), we

shall see that alsoAβ∗
b

γB* M(A⊗B) is possible.

ii) Assume thatH = K = l2(N) and identifyβ = γ = L(C,H) with H. Then the flipΣ : H⊗
H → H⊗H, ξ⊗η 7→ η⊗ ξ, is not contained inL(H)β∗

b
γL(H). Indeed, let(ξν)ν be an

orthonormal basis forH and letη ∈H be non-zero. Then〈ξν|1Σ|η〉1 = |η〉〈ξν| for eachν
and hence∑ν〈ξν|1Σ|η〉1 does not converge in norm. On the other hand, one easily verifies
that∑ν〈ξν|1Sconverges in norm for eachS∈ [|H〉1L(H)]. Hence,Σ|η〉1 6∈ [|H〉1L(H)].

3.4 Functoriality and slice maps

We first show that the fiber product constructed above is functorial, and then consider various
slice maps. The results concerning functoriality were stated in slightly different form in [25,
28, 29] with proofs referring to unpublished material. We use the opportunity to rectify this
situation. As before, leta= (H,A,A†),b= (K,B,B†),c= (L,C,C†) beC∗-bases.

Lemma 3.18. Let π be a (semi-)morphism of C∗-b-algebras AβH and Cλ
L, let γKδ be a C∗-(b†,c)-

module, and let I:= Lπ
(s)(Hβ,Lλ)⊗

b

id⊆ L(Hβ⊗
b

γK,Lλ⊗
b

γK).

i) X := (Hβ⊗
b

γKδ,(I∗I)′) andY := (Lλ⊗
b

γKδ,(II ∗)′) are nondegenerate C∗-c-algebras.

ii) There exists a uniqueρI ∈Mor(s)(X ,Y ) such thatρI(x)S= Sx for all x∈ (I∗I)′,S∈ I.

iii) There exists a unique linear contraction jπ : [|γ〉2A]→ [|γ〉2C] given by|η〉2a 7→ |η〉2π(a).

iv) Ind|γ〉2(A)⊆ (I∗I)′ andρI (x)|η〉2 = jπ(x|η〉2) for all x ∈ Ind|γ〉2(A), η ∈ γ.
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v) Let Bγ
K be a C∗-b†-algebra. Then Aβ∗

b
γB⊆ (I∗I)′ andρI (Aβ∗

b
γB)⊆Cλ ∗

b
γB.

Proof. i) Clearly, (I∗I)′ and (II ∗)′ are nondegenerateC∗-algebras, andX and Y are C∗-c-
algebras becauseρ(β⊲δ)(C

†) = id β⊗
b

γρδ(C
†)⊆ (I∗I)′ andρ(λ⊲δ)(C

†) = idλ⊗
b

γρδ(C
†)⊆ (II ∗)′.

ii) There exists a unique∗-homomorphismρI : (I∗I)′→ (II ∗)′ satisfying the formula above by
Lemma 2.4, and this is a (semi-)morphism because[I(β⊲δ)] = [λ⊲δ] by assumption onπ.
iii) Let η1, . . . ,ηn∈ γ anda1, . . . ,an∈A. Then‖∑ j |η j〉2π(a j)‖

2 = ‖∑i, j π(a∗i )ρλ(η∗i η j)π(a j)‖≤
‖∑i, j a

∗
i ρβ(η∗i η j)a j‖= ‖∑ j |η j〉2a j‖

2 by Lemma 3.4. The claim follows.
iv) The first assertion follows from Lemma 3.14 and the relation I∗I ⊆A′⊗

b

id= ρ|γ〉2(A
′), and the

second one from the fact that for allx∈ Ind|γ〉2(A),η ∈ γ,S∈ Lπ
(s)(Hβ,Lλ), we haveρI (x)|η〉2S=

ρI (x)(S⊗
b

id)|η〉2 = (S⊗
b

id)x|η〉2 = jπ(x|η〉2)S.

v) First,Aβ∗
b

γB⊆ (I∗I)′ by Lemma 3.16. The second assertion follows from the relations

ρI (Aβ∗
b

γB)|γ〉2 ⊆ ρI (Ind|γ〉2(A))|γ〉2 ⊆ jπ([|γ〉2A]) = [|γ〉2C],

ρI(Aβ∗
b

γB)|λ〉1 = ρI (Aβ∗
b

γB)[I |β〉1]⊆ [I(Aβ∗
b

γB)|β〉1]⊆ [I |β〉1B] = [|λ〉1B].

Theorem 3.19.Let φ be a (semi-)morphism of C∗-(a,b)-algebrasA = Aα,β
H andC =Cκ,λ

L , and

ψ a (semi-)morphism of C∗-(b†,c)-algebrasB = Bγ,δ
K andD = Dµ,ν

M . Then there exists a unique
(semi-)morphism of C∗-(a,c)-algebrasφ∗ψ from A ∗

b
B to C ∗

b
D such that

(φ∗ψ)(x)R= Rx for all x∈ Aβ∗
b

γB and R∈ IMJH +JLIK ,

where IX = L
φ
(s)(Hβ,Lλ)⊗

b

idX and JY = idY⊗
b

L
ψ
(s)(Kγ,Mµ) for X ∈ {K,M},Y ∈ {H,L}.

Proof. By Lemma 3.18, we can defineφ∗ψ to be the restriction ofρIM ◦ρJH or of ρJL ◦ρIK to
Aβ∗

b
γB. Uniqueness follows from the fact that[IMJH(Hβ⊗

b
γK)] = [JLIK(Hβ⊗

b
γK)] = Lλ⊗

b
µM.

Remark 3.20. Let Aβ
H , Cλ

L beC∗-b-algebras,Bγ
K , Dµ

M C∗-b†-algebras, andφ ∈Mor(Aβ
H ,M(C)λ

L),
ψ∈Mor(Bγ

K ,M(D)
µ
M) such that[φ(A)C] =C, [ψ(B)D] =D. Then there exists a∗-homomorphism

φ∗
b

ψ : Aβ∗
b

γB→M(C)λ∗
b

µM(D) →֒M(Cλ ∗
b

µD), but in general, we do not know whether this is

nondegenerate.

Next, we briefly discuss two kinds of slice maps on fiber products. For applications and further
details, see [29]. The first class of slice maps arises from a completely positive map on one
factor and takes values in operators on a certain KSGNS-construction, that is, an internal tensor
product with respect to a completely positive linear map [16, §4–§5].

Proposition 3.21. Let Aβ
H be a C∗-b-algebra, Kγ a C∗-b†-module, L a Hilbert space,φ : [A+

ρβ(B
†)]→ L(L) a c.p. map, andθ = φ◦ρβ : B†→ L(L). Then there exists a unique c.p. map

φ∗ id : Ind|γ〉2(A)→ L(Lθ<γ) such that for allζ,ζ′ ∈ L,η,η′ ∈ γ,x∈ Ind|γ〉2(A),

〈ζ< η|(φ∗ id)(x)(ζ′< η′)〉= 〈ζ|φ(〈η|2x|η′〉2)ζ′〉. (4)

If Bγ
K is a C∗-b†-algebra, then(φ∗ id)(Aβ∗

b
γB)⊆ (φ(A)′θ<(B′∩L(Kγ))

′ ⊆ L(Lθ<γ).

19



Proof. Let x= (xi j )i, j ∈Mn(Ind|γ〉2(A)) be positive,ζ1, . . . ,ζn ∈ L, η1, . . . ,ηn ∈ γ, wheren∈N,
and d = diag(|η1〉2, . . . , |ηn〉2). Then 0≤ (〈ηi |2xi j |η j〉2)i, j = d∗xd ≤ ‖x‖d∗d and hence 0≤
(φ(〈ηi |2xi j |η j〉2))i, j ≤ ‖x‖φ(d∗d) and

0≤∑
i, j

〈ζi |φ(〈ηi |2xi j |η j〉2)ζ j〉 ≤ ‖x‖∑
i, j

〈ζi < ηi|ζ j < η j〉.

Hence, there exists a mapφ∗ id as claimed. The verification of the assertion concerningBγ
K is

straightforward.

Remark 3.22. If Cλ
L is aC∗-b†-algebra andφ|A is a semi-morphism ofC∗-b†-algebras, then the

mapφ∗ id extends the fiber productφ∗ id defined in Theorem 3.19.

Second, we show that the fiber product is functorial with respect to the following class of maps.
A spatially implementedmap ofC∗-b-algebrasAβ

H andCλ
L is a mapφ : A→ C admitting se-

quences(Sn)n and(Tn)n in L(Lλ,Hβ) such that

i) ∑
n

S∗nSn and∑
n

T∗n Tn converge in norm, ii) φ(a) = ∑
n

S∗naTn for all a∈ A. (5)

Note that condition i) implies norm-convergence of the sum in ii). Evidently, such a map is
linear, extends to a normal map̄φ : A′→C′, its norm is bounded by‖∑n S∗nSn‖

1/2‖∑nT∗n Tn‖
1/2,

and the composition of spatially implemented maps is spatially implemented again.

Proposition 3.23. Let φ be a spatially implemented map of C∗-b-algebras AβH and Cλ
L , and let

Bγ,δ
K be a C∗-(b†,c)-algebra. Then there exists a spatially implemented map from Aβ

H ∗
b

Bγ,δ
K to

Cλ
H ∗

b
Bγ,δ

K such that〈η|2(φ∗ id)(x)|η′〉2 = φ(〈η|2x|η′〉2) for all x ∈ Aβ∗
b

γB, η,η′ ∈ γ.

Proof. Uniqueness is clear. Fix sequences(Sn)n, (Tn)n as in (5) and let̃Sn := Sn⊗
b

idK , T̃n :=

Tn⊗
b

idK for all n. ThenS̃n, T̃n∈L(Lλ⊗
b

γKδ,Hβ⊗
b

γKδ) for all n, we have‖∑n S̃∗nS̃n‖= ‖∑nS∗nSn‖,

‖∑n T̃∗n T̃n‖ = ‖∑n T∗n Tn‖, and the mapφ∗ id : Aβ∗
b

γB→ L(Lλ⊗
b

γK) given byx 7→ ∑n T̃∗n xS̃n has

the desired properties. Indeed, letx ∈ Aβ∗
b

γB, η,η′ ∈ γ. ThenS̃n|η〉2 = |η〉2Sn and T̃n|η′〉2 =

|η′〉2Tn for all n, and hence〈η|2(φ ∗ id)(x)|η′〉2 = φ(〈η|2x|η′〉2). It remains to show that(φ ∗
id)(x)∈Cλ∗

b
γB. Consider the expression(φ∗ id)(x)|η′〉2 =∑n S̃∗nx|η′〉2Tn. This sum converges in

norm and each summand lies in[|γ〉2L(H)] becausex|η′〉2∈ [|γ〉2A] and[S̃∗n|γ〉2] = [|γ〉2S∗n]. Since
〈η′′|2(φ∗ id)(x)|η′〉2 ∈C for eachη′′ ∈ γ, we can conclude that the sum lies in[|γ〉2C]. Finally,
consider the expression(φ∗ id)(x)|ξ〉1 = ∑n S̃nxT̃n|ξ〉1, whereξ ∈ λ. Again, the sum converges
in norm and each summand lies in[|λ〉1B] becauseS̃∗nxT̃n|ξ〉1 = S̃∗nx|Tnξ〉1 ∈ S̃∗n(Aβ∗

b
γB)|β〉1 ⊆

[S̃∗n|β〉1B]⊆ [|λ〉1B].

Remarks 3.24. i) The mapφ∗ id constructed above is a “slice map” in the case whereCλ
L =

L(K)BK andSn,Tn ∈ β ⊆ L(KB,Hβ) for all n. Then, we can identifyCλ∗
b

γB with a C∗-

subalgebra ofL(K), andφ∗ id is just the mapAβ∗
b

γB→ B given byx 7→ ∑n〈Sn|1X|Tn〉1.
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ii) Assume that the extensioñφ : [A+ ρβ(B
†)]→ C given by x 7→ ∑n S∗nxTn is completely

positive. Here, we use the notation of the proof above. Then the mapφ̃∗ id constructed
in Proposition 3.21 extends the mapφ ∗ id of Proposition 3.23 because thenθ = ρλ and
hence〈η|2(φ̃∗ id)(x)|η′〉2 = φ̃(〈η|2x|η′〉2) for all x∈ Aβ∗

b
γB andη,η′ ∈ γ.

Of course, slice maps of the form id∗φ can be constructed in a similar way.

3.5 Further categorical properties

The fiber product ofC∗-algebras is neither associative, unital, nor compatible with infinite sums.

Non-associativity Let A = Aα,β
H be aC∗-(a†,b)-algebra,B = Bγ,δ

K a C∗-(b†,c)-algebra, and
C =Cε,φ

L aC∗-(c†,d)-algebra. Then we can form the fiber products(A ∗
b

B)∗
c

C andA ∗
b
(B ∗

c
C ).

The following example shows that theseC∗-algebras neednot be identified by the canonical
isomorphismaa,b,c,d(εLφ, γKδ,αHβ) of Proposition 2.13. A similar phenomenon occurs in the
purely algebraic setting with the Takeuchi×R-product [24].

Example 3.25.Let a= b= c= d be the trivialC∗-base,H = l2(N), α =L(C,H), A = B = C =
L(H)α,α

H . Identify Hα⊗
b

αKα⊗
c

αL∼= α⊗H⊗α with H⊗H⊗H via |ξ〉=ζ< |η〉 ≡ ξ⊗ζ⊗η, fix

an orthonormal basis(en)n∈N of H, and defineT ∈ L(H⊗3) by

T(ek⊗el ⊗em) =

{
ek⊗el ⊗em for all k, l ,m∈N s.t. m≤ k+ l ,

el ⊗ek⊗em for all k, l ,m∈N s.t. m> k+ l .

We show thatT belongs to the underlyingC∗-algebra of(A ∗
b

B)∗
c

C , but not ofA ∗
b
(B ∗

c
C ).

For eachξ ∈ H andω ∈ H⊗2, define|ξ〉1, |ξ〉3 ∈ L(H⊗2,H⊗3) and|ω〉12 ∈ L(H,H⊗3) by υ 7→
ξ⊗υ, υ 7→ υ⊗ξ, andζ 7→ ω⊗ζ, respectively. Then for allk, l ,m∈N,

T|ek⊗el 〉12 = |ek⊗el〉12Pl+k+ |el ⊗ek〉12(id−Pl+k), wherePl+k := ∑
m≤k+l

|em〉〈em|,

T|em〉3 = |em〉3(id+Σm), whereΣm := ∑
k,l

k+l<m

|el ⊗ek−ek⊗el〉〈ek⊗el |,

and therefore,

T|H⊗2〉12∈ [|H⊗2〉12L(H)], T|α〉3 ∈ [|α3〉(id+K (H)⊗K (H))]⊆ [|α〉3(L(H)α∗
b

αL(H))].

SinceT = T∗, we can conclude thatT belongs to(L(H)α∗
b

αL(H)α)∗
b

αL(H). However,

T|e0〉1 = |e0〉1Q+∑
l

|el 〉1Ql , whereQ= ∑
m≤l

|el ⊗em〉〈el ⊗em|

andQl = ∑
m>l

|e0⊗em〉〈el ⊗em|,
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and|e0〉1Q∈ [|α〉1L(H⊗H)], but∑l |el 〉1Ql 6∈ [|α〉1L(H⊗H)] because the sum

∑
l

Q∗l Ql = ∑
l

∑
m>l

|el ⊗em〉〈el ⊗em|

does not converge in norm. Hence,T|e0〉1 6∈ [|α〉1L(H⊗H)] andT 6∈L(H)α∗
b
(αL(H)α∗

b
αL(H)).

Unitality A unit for the fiber product relative tob would be aC∗-(b†,b)-algebraU = U
B†,B
K

such that for allC∗-(a†,b)-algebrasA = Aα,β
H and allC∗-(b†,c)-algebrasB = Bγ,δ

K , we have
A = Adr(A ∗

b
U) andB = Adl (U ∗

b
B), wherer = ra,b(αHβ) and l = lb,c(γKδ) (see Proposition

2.13). The relationsr|β〉1 = β, r|B†〉2 = ρβ(B
†), l |γ〉2 = γ, l |B〉1 = ργ(B) imply

Adr(Aβ ∗
b
B†U) = Indβ(U)∩ Indρβ(B†)(A), Adl (UB ∗

b
γB) = Indργ(B)(B)∩ Indγ(U). (6)

If B† andB are unital, then Indρβ(B†)(A) = A and Indργ(B)(B) = B, and then theC∗-(b†,b)-

algebraL(K)B
†,B

K
is a unit for the fiber product on the full subcategories of allAα,β

H andBγ,δ
K

satisfyingA⊆ Indβ(L(K)) andB⊆ Indγ(L(K)).

Remarks 3.26. i) If A⊆ Indα(L(H)) andB⊆ Indγ(L(L)), thenAβ∗
b

γB⊆ Ind(α⊳γ)(L(H))∩

Ind(β⊲δ)(L(K)).

ii) Indβ(B
†) = L(Hβ), and ifB† is unital, then Adr(Aβ ∗

b
B†B†) = A∩L(Hβ) = A(β).

iii) Ad r(BB∗
b
B†B†) = L(KB)∩L(KB†) = M(B)∩M(B†).

Compatibility with sums and products The fiber product is compatible with finite sums
in the following sense. Let(A i)i be a finite family ofC∗-(a†,b)-algebras and(B j) j a finite
family of C∗-(b†,c)-algebras. For eachi, j, denote byιi

A : A i → ⊞i′A
i′ , ι j

B : B j → ⊞ j ′B
j ′ and

πi
A : ⊞i′ A

i′→A i , π j
B : ⊞ j ′B

j ′→B j the canonical inclusions and projections, respectively. One
easily verifies that there exist inverse isomorphisms⊞i, j A

i ∗
b

B j
⇆ (⊞iA

i) ∗
b
(⊞ j B

j), given by

(xi, j )i, j 7→ ∑i, j(ιi
A ∗

b
ι j
B)(xi, j ) and

(
(πi

A ∗
b

π j
B)(y)

)
i, j ← [ y, respectively. However, the fiber product

is neither compatible with infinite sums nor infinite products:

Examples 3.27.Let t= (C,C,C) be the trivialC∗-base.

i) For eachi, j ∈ N, let A i and B j be theC∗-t-algebraCC
C

. Identify the Hilbert space⊕
i, j CC⊗

t
CC with l2(N×N) in the canonical way. Then

⊕
i, j A i∗

t
B j corresponds to

C0(N×N), represented onl2(N×N) by multiplication operators, but(
⊕

i A i)∗
t
(
⊕

j B j)∼=

C0(N)∗
t
C0(N) is strictly larger and contains, for example, the characteristic function of the

diagonal{(x,x) | x∈N} (see Example 5.3).
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ii) Let H = l2(N), α = L(C,H), and letA and B j be theC∗-t-algebraK (H)α
H for all j.

Identify Hα⊗
t

αH with H⊗H as in Example 2.11 i), choose an orthonormal basis(ek)k∈N

of H, and puty j := |ej ⊗ e0〉〈e0⊗ e0| ∈ K (H ⊗H) for each j ∈ N. Theny := (y j) j ∈

∏ j A∗
t
B j becausey j ∈ K (H)⊗K (H) ⊂ A∗

t
B j for all j ∈ N, but with respect to the

canonical identification
⊕

j H ⊗H ∼= H ⊗
(⊕

j⊗H
)
, we havey 6∈ A∗

t
(∏ j B j) because

y|e0〉1 corresponds to the family(|ej〉1|e0〉〈e0|) j ∈ ∏ j L(H,H⊗H) ⊆ L(
⊕

j H,
⊕

j H ⊗
H) which is not contained in the space[|α〉1L(

⊕
j H)].

3.6 A fiber product of non-representedC∗-algebras

The spatial fiber product ofC∗-algebras represented onC∗-modules yields a fiber product of
non-representedC∗-algebras as follows.
Let b = (K,B,B†) be aC∗-base. In Subsection 3.2, we constructed a functorRb : C∗r

B† →

C∗s
b

that associates to eachC∗-B†-algebra a universal representation in form of aC∗-b-algebra.
Replacingb by b†, we obtain a functorRb† : C∗rB → C∗s

b
, and composition of these with the

spatial fiber product gives a fiber product of non-represented C∗-algebras in form of a functor

C∗r
B†×C∗rB

Rb×R
b†

−−−−−→ C∗sb ×C∗s
b†→ C∗, (Cσ,Dτ) 7→ Rb(Cσ)∗

b
Rb†(Dτ),

whereC∗ denotes the category ofC∗-algebras and∗-homomorphisms. In categorical terms, this
is the right Kan extension of the spatial fiber product onC∗s

b
×C∗s

b† along the product of the
forgetful functorsUb×Ub† : C∗s

b
×C∗s

b†→ C∗r
B†×C∗rB [19, §X].

Given furtherC∗-basesa= (H,A,A†) andc= (L,C,C†), we similarly obtain a functor

C∗r(A,B†)×C∗r(B,C†)

R
(a†,b)×R

(b†,c)
−−−−−−−−→ C∗s(a†,b)×C∗s(b†,c)→ C∗s(a†,c)

U
(a†,c)
−−−→ C∗r(A,C†),

and, using Remark 3.12, a natural transformation between the compositions in the square

C∗r
(A,B†)

×C∗r
(B,C†)

//

��

C∗r
(A,C†)

��qy lllllllll

lllllllll

C∗r
B†×C∗r

B
// C∗,

,

where the vertical maps are the forgetful functors.

4 Relation to the setting of von Neumann algebras

Throughout this section, letN be a von Neumann algebra with a n.s.f. weightµ, denote by
Nµ,Hµ,πµ,Jµ the usual objects of Tomita-Takesaki theory [23], and definethe antirepresentation
πop

µ : N→ L(Hµ) by x 7→ Jµπµ(x∗)Jµ.

23



4.1 Adaptation to von Neumann algebras

The definitions and constructions presented in Sections 2 and 3 can be adapted to a variety
of other settings. We now briefly explain what happens when wepass to the setting of von
Neumann algebras. Instead of aC∗-base, we start with the tripleb= (K,B,B†), whereK= Hµ,
B = πµ(N), andB† = Jµπµ(N)Jµ. Next, we defineW∗-b-modules,W∗-(b†,b)-modules, their
relative tensor product,W∗-b-algebras, and the fiber product by just replacing the norm closure
[ · ] by the closure with respect to the weak operator topology[ · ]w everywhere in Sections 2 and
3. We then recover Connes’ fusion of Hilbert bimodules overN and Sauvageot’s fiber product:

Modules Let H be some Hilbert space. If(H,ρ) is a rightN-module, then the space

α = L((K,πop
µ ),(H,ρ)) := {T ∈ L(K,H) : Tπop

µ (x) = ρ(x)T for all x∈ N}

satisfies[αK] = H, [α∗α]w = B,αB ⊆ α, andρα ◦ πop
µ (see Lemma 2.4) coincides with

ρ. Conversely, ifα⊆ L(K,H) is a weakly closed subspace satisfying the three preceding
equations, then(H,ρα ◦πop

µ ) is a rightN-module andα = L((K,πop
µ ),(H,ρα ◦πop

µ )) [22].
We thus obtain a bijective correspondence between rightN-modules andW∗-b-modules.
This correspondence is an isomorphism of categories since for every other rightN-module
(K,σ), an operatorT ∈L(H,K) intertwinesρ andσ if and only if Tα is contained inβ :=
L((K,πop

µ ),(K,σ)). ForW∗-b-modules, the notions of morphisms and semi-morphisms
coincide.

Algebras Let H,ρ,α be as above and letA⊆ L(H) be a von Neumann algebra. Thenρ(N)⊆ A
if and only if ρα(B)A⊆ A. Thus,W∗-b-algebras correspond with von Neumann alge-
bras equipped with a normal unital embedding ofN. Moreover, letK,σ,β be as above,
let B ⊆ L(K) be a von Neumann algebra, assumeρ(N) ⊆ A and σ(N) ⊆ B, and let
π : A→ B be a∗-homomorphism satisfyingπ ◦ ρ = σ. Thenπ is normal if and only if
[Lπ(Hα,Kβ)α]w = β. Indeed, the “if” part is straightforward (see Lemma 3.4), and the
“only if” part follows easily from the fact that every normal∗-homomorphism is the com-
position of an amplification, reduction, and unitary transformation [5, §4.4].

Bimodules Let (H,ρ) be a leftN-module,(H,σ) a rightN-module,α = L((K,πµ),(H,ρ)) and
β = L((K,πop

µ ),(H,σ)). Then(H,ρ,σ) is anN-bimodule if and only ifρ(N)β = β and
σ(N)α = α, and thus we obtain an isomorphism between the category ofN-bimodules
and the category ofW∗-(b†,b)-modules.

Fusion The preceding considerations and formula (1) show that the relative tensor product of
W∗-(b†,b)-modules corresponds to Connes’ fusion ofN-bimodules.

Fiber product Let (H,ρ) be a rightN-module,(K,σ) a leftN-module,α=L((K,πop
µ ),(H,ρ)),

β = L((K,πµ),(K,σ)), and letA⊆ L(H) andB⊆ L(K) be von Neumann algebras satis-
fying ρ(N)⊆ H andσ(N)⊆ K. One easily verifies the equivalence of the following con-
ditions for eachx∈ L(Hβ⊗

b
γK): i) x|α〉1⊆ [|α〉1B]w, ii) 〈α|1x|α〉1⊆ B, iii) x∈ (idH⊗

b

B′)′.

Consequently, the fiber product ofA andB, considered as aW∗-b-algebra and aW∗-b†-
algebra, coincides with the fiber product(idH⊗

b

B′)′∩(A′⊗
b

idK)
′= (A′⊗

b

B′)′ of Sauvageot.
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4.2 Relation to Connes’ fusion and Sauvageot’s fiber product

Let b= (K,B,B†) be aC∗-base such thatK= Hµ, B′′ = πµ(N), (B†)′′ = πop
µ (N) =B′.

Denote byC∗-mod(b†,b) the category of allC∗-(b†,b)-modules with all semi-morphisms, and by
W∗-bimod(N,Nop) the category of allN-bimodules, respectively. Lemmas 2.4 and 2.5 imply:

Proposition 4.1. There exists a faithful functorF : C∗-mod(b†,b)→W∗-bimod(N,Nop), given by

αHβ 7→ (H,ρα ◦πµ,ρβ ◦πop
µ ) on objects and T7→ T on morphisms.

The categoriesC∗-mod(b†,b) andW∗-bimod(N,Nop) carry the structure of a monoidal category
[19], and we now show that the functorF above is monoidal. LetHβ be aC∗-b-module,Kγ a
C∗-b†-module, and let

ρ = ρβ ◦πop
µ , X = L((K,πop

µ ),(H,ρ)), σ = ργ ◦πµ, Y = L((K,πµ),(K,σ)).

Given subspacesX0⊆ X andY0⊆Y, we define a sesquilinear form〈 · | · 〉 on the algebraic tensor
productX0⊙K⊙Y0 such that for allξ,ξ′ ∈ X0,ζ,ζ′ ∈ K,η,η′ ∈Y0,

〈ξ⊙ζ⊙η|ξ′⊙ζ′⊙η′〉= 〈ζ|(ξ∗ξ′)(η∗η′)η′〉= 〈ζ|(η∗η′)(ξ∗ξ′)η′〉

Denote byX0=K<Y0 the Hilbert space obtained by forming the separated completion.

Lemma 4.2. Let X0 ⊆ X and Y0 ⊆Y be subspaces satisfying[X0K] = H and [Y0K] = K. Then
the natural map X0 =K<Y0→ X =K<Y is an isomorphism.

Proof. Injectivity is clear. The natural mapX0 =K<Y0 → X =K<Y0 is surjective because
both spaces coincide with the separated completion of the algebraic tensor productH⊙Y0 with
respect to the sesquilinear inner form given by〈ω⊙η|ω′⊙η′〉= 〈ω|ρβ(η∗η′)ω′〉, and a similar
argument shows that the natural mapX =K<Y0→ X =K<Y is surjective.

We conclude that Connes’ original definition of the relativetensor productHρ⊗
µ

σK via bounded

vectors coincides with the algebraic one given in (1) and with the relative tensor productHβ⊗
b

γK.

Theorem 4.3. There exists a natural isomorphism between the compositions in the square

C∗-mod(b†,b)×C∗-mod(b†,b)

−⊗
b

−
//

F×F
��

C∗-mod(b†,b)

nv ffffffffffffffffff

ffffffffffffffffff

F
��

W∗-bimod(N,Nop)×W∗-bimod(N,Nop) −⊗
µ
−

// W∗-bimod(N,Nop),

given for each object(αHβ, γKδ) ∈ C∗-mod(b†,b)×C∗-mod(b†,b) by the natural map

Hβ⊗
b

γK = β=K< γ→ X =K<Y = Hρ⊗
µ

σK. (7)

With respect to this isomorphism, the functorF : C∗-mod(b†,b)→W∗-bimod(N,Nop) is monoidal.
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Proof. Lemma 4.2 implies that the map (7) is an isomorphism. Evidently, this map is natural
with respect toαHβ andγKδ. The verification of the assertion concerningF is now tedious but
straightforward.

Denote byC∗s,nd
(b†,b)

the category of allC∗-(b†,b)-algebrasAα,β
H satisfyingρα(B)+ ρβ(B

†) ⊆ A
together with all semi-morphisms, and byW∗

(N,Nop) the category of all von Neumann alge-

brasA equipped with a normal, unital embedding and anti-embedding ι(op)
A : N→ A such that

[ιA(N), ιop
A (N)] = 0, together with all morphisms preserving these (anti-)embeddings. Lemma

3.4 implies:

Proposition 4.4. There exists a faithful functorG : C∗s,nd
(b†,b)

→W∗
(N,Nop), given by(αHβ,A) 7→

(A′′,ρα ◦πµ,ρβ ◦πop
µ ) on objects andφ 7→ φ′′ on morphisms, whereφ′′ denotes the normal exten-

sion ofφ.

By Lemma 3.16,A ∗
b

B ∈ C∗s,nd
(b†,b)

for all A ,B ∈ C∗s,nd
(b†,b)

, but C∗s,nd
(b†,b)

is not a monoidal category

with respect to the fiber product because the latter is not associative (see Subsection 3.5).

Proposition 4.5. There exists a natural transformation

C∗s,nd
(b†,b)

×C∗s,nd
(b†,b)

−∗
b

−
//

G×G
��

C∗s,nd
(b†,b)

G
��px iiiiiiiiiiiiii

iiiiiiiiiiiiii

W∗
(N,Nop)×W∗

(N,Nop) −∗
µ
−

// W∗
(N,Nop),

given for each object Aα,βH and Bγ,δ
K by conjugation with the isomorphism(7).

Proof. Immediate from Theorem 4.3 and Lemma 3.16.

4.3 A categorical interpretation of the fiber product of von Neumann algebras

We keep the notation introduced above, denote byHilb the category of Hilbert spaces and
bounded linear operators, and call a subcategory ofW∗-mod(N,Nop) a∗-subcategoryif it is closed
with respect to the involutionT 7→ T∗ of morphisms.

Definition 4.6. Acategory overW∗-mod(N,Nop) is a categoryC equipped with a functorUC : C→
W∗-mod(N,Nop) such thatUCC is a∗-subcategory ofW∗-mod(N,Nop). Let(C,UC) be such a cat-
egory. We loosely refer toC as a category overW∗-mod(N,Nop) without mentioningUC explicitly,
and denote byHC the composition ofUC with the forgetful functorW∗-mod(N,Nop)→ Hilb . We
call an object G∈C separatingif [HCC(G,X)(HCG)] = HCX for each X∈ C.
We denote byCat(N,Nop) the category of all categories overW∗-mod(N,Nop) having a separating
object, where the morphisms between objects(C,UC) and (D,UD) are all functorsF : C→ D
satisfyingUDF = UC.
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Example 4.7. For eachA∈W∗
(N,Nop), denote byW∗-modA the category of all normal, unital

representationsπ : A→ L(H) for which π◦ ιA andπ◦ ιop
A are faithful, and all intertwiners. This

is a category overW∗-mod(N,Nop), whereUA : W∗-modA→W∗-mod(N,Nop) is given by(L,π) 7→
(L,π ◦ ιA,π ◦ ιop

A ) on objects andT 7→ T on morphisms. The only non-trivial thing to check is
thatW∗-modA has a separating object; by [3, Lemma 2.10] or [23, IX Theorem1.2 iv)], one can
take the GNS-representation for a n.s.f. weight onA.
For each morphismφ : A→ B in W∗

(N,Nop), we obtain a functorφ∗ : W∗-modB→W∗-modA,
given by(L,π) 7→ (L,π◦φ) on objects andT 7→ T on morphisms.

Remark 4.8. In the definition above,Cat(N,Nop)(C,D) need not be a set, and this may cause
problems. There are several possible solutions: we can fix a “universe” to work in, or replace
the categoryW∗-mod(N,Nop) by a small subcategory and require categories overW∗-mod(N,Nop)

to be small, too. It is clear how to modify the preceding example in that case.

Proposition 4.9. There exists a contravariant functorMod : W∗
(N,Nop) → Cat(N,Nop) given by

A 7→Mod(A) := (W∗-modA,UA) on objects andφ 7→Mod(φ) := φ∗ on morphisms.

For each categoryC ∈ Cat(N,Nop), choose a separating objectGC. Fix C ∈ Cat(N,Nop), let U =
UC, H = HC G = GC, (H,ρ,σ) = UG, and defineEnd(C) := H(C(G,G))′ ⊆ L(H). Then
ρ(N)+σ(N)⊆ End(C) becauseH(C(G,G)) ⊆ (ρ(N)+σ(N))′, and we can considerEnd(C)
as an element ofW∗

(N,Nop) with respect toρ andσ.

Lemma 4.10. There exists a morphismηC : C→ Mod(End(C)) in Cat(N,Nop), given by X7→
(UX,ρX) on objects and T7→ HT on morphisms, whereρX = ρHC(G,X) for each X∈ C. In
particular, ρX(End(C))⊆ H(C(X,X))′ for each X∈C.

Proof. Let X ∈ C and(K,φ,ψ) = UX. Lemma 2.4, applied toI := HC(G,X) ⊆ L(HG,HX),
gives a normal representationρI : (I∗I)′→ L(K). SinceI∗I ⊆ HC(G,X) by assumption onC,
we haveEnd(C)⊆ (I∗I)′ and can defineρX = ρI |End(C). Each element ofI intertwinesρ with φ
andσ with ψ, whenceUX = (K,ρI ◦ρ,ρI ◦σ) = UEnd(C)(ηCX).
Next, letY ∈C, T ∈C(X,Y), J :=HC(G,Y). ThenH(T)ρI (S) = ρJ(S)H(T) for all S∈End(G)
becauseH(T)I ∈ J, and thereforeH(T) is a morphism from(HX,ρX) to (HY,ρY). By definition,
HEnd(C)(ηC(T)) = HT.

Remark 4.11. If G′ ∈ C is another separating object, thenρG′ : H(C(G,G))′→ H(C(G′,G′))′

is an isomorphism with inverseρHC(G′,G).

We eventually show that the assignmentC→ End(C) extends to a functorEnd : Cat(N,Nop)→
W∗

(N,Nop) that is adjoint toMod. The key is a more careful analysis of functors from a cat-
egoryC ∈ Cat(N,Nop) to categories of the formMod(A), whereA ∈W∗

(N,Nop). Such functors
themselves can be considered as objects of a category as follows.
For all C,D ∈ Cat(N,Nop), the elements ofCat(N,Nop)(C,D) are the objects of a category, where
the morphisms are all natural transformations with the usual composition.
Similarly, for all A,B∈ Cat(N,Nop), the morphisms inW∗

(N,Nop)(A,B) can be considered as ob-
jects of a category, where the morphisms betweenφ,ψ are allb ∈ B satisfyingbφ(a) = ψ(a)b
for all a∈ A, and where composition is given by multiplication.
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Proposition 4.12. Let A∈W∗
(N,Nop) and C ∈ Cat(N,Nop). Then there exists an isomorphism

ΦC,A : Cat(N,Nop)(C,Mod(A))→W∗
(N,Nop)(A,End(C)) with inverseΨC,A := Φ−1

C,A such that

i) ΦC,A(F) is defined byFGC = (HCGC,ΦC,A(F)) for each functorF : C→ Mod(A) and
ΦC,A(α) = αGC for each natural transformationα in Cat(N,Nop)(C,Mod(A)),

ii) ΨC,A(π)=Mod(π)◦ηC : C→Mod(End(C))→Mod(A) for each objectπ andΨC,A(S)=
(ρX(S))X∈C for each morphism S inW∗

(N,Nop)(A,End(C)).

Explicitly, ΨC,A(π) is given byX 7→ (HCX,ρX ◦π) on objects andT 7→ HCT on morphisms.
The proof of Proposition 4.12 involves the following result.

Lemma 4.13.WriteUCGC = (HCGC,ρ,σ). Then the assignmentsα 7→αGC and(ρX(S))X∈C← [

S are inverse bijections between all natural transformations α of HC (or ηC) and all elements
S∈ End(GC) (or S∈ End(GC)∩ (ρ(N)+σ(N))′, respectively).

Proof. A family of morphisms(αX : HCX→HCX)X∈C is a natural transformation ofHC if and
only if αXT = TαX for all X ∈ C and T ∈ HC(GC,X), that is, if αX = ρX(αGC) and αGC ∈
End(C). Such a family is a natural transformation ofηC if and only if additionally, αX =
ρX(αGC) is a morphism ofUCX for eachX ∈ C or, equivalently, ifαGC ∈ (ρ(N)+σ(N))′.

Proof of Proposition 4.12.Lemma 4.13 implies thatΨ := ΨC,A is well defined by ii). Let us
show thatΦ :=ΦC,A is well defined by i). For eachF as above, the imageHMod(A)(F(C(GC,GC)))=
HC(C(GC,GC)) consists of intertwiners forΦ(F) and hence(Φ(F))(A) ⊆ HC(C(GC,GC))

′ =
End(C). Likewise, for eachα as above,αGC intertwinesHC(C(GC,GC)) and henceαGC ∈
End(C). Finally, Φ(α◦β) = αGC ◦βGC = Φ(α)Φ(β) for all composableα,β.
Next,Φ◦Ψ = id because for eachπ as above,Ψ(π)(GC) = (HCGC,ρGC ◦π) so thatΦ(Ψ(π)) =
ρGC ◦π = π, and for eachSas above, the component of(ρX(S))X∈C at X = GC is ρGC(S) = S.
Finally, we proveΨ ◦Φ = id. Let F be as above and defineφX by FX = (HCX,φX) for each
X ∈C. ThenΦ(F) = φGC , and for eacha∈ A, the family(φX(a))X∈C is a natural transformation
of HMod(A) ◦F = HC and coincides by Lemma 4.13 with(ρX(φGC(a)))X∈C. Therefore,FX =
(HCX,φX) = (HCX,ρX ◦Φ(F)) = Ψ(Φ(F))(X) for eachX ∈ C. On morphisms,Ψ(Φ(F)) and
F coincide anyway. For eachα as above,Ψ(Φ(α)) = (ρX(αGC))X∈C = α by Lemma 4.13.

Corollary 4.14. i) Let A∈W∗
(N,Nop) and consideridA as an object ofC := Mod(A). Then

ΦC,A(idC) : A→ End(Mod(A)) is an isomorphism inW∗
(N,Nop) with inverseεA := ρidA.

ii) Let A,B∈W∗
(N,Nop). The the isomorphismMod(A,B) :=ΨMod(B),A◦(ε−1

B )∗ : W∗
(N,Nop)(A,B)→

W∗
(N,Nop)(A,End(Mod(B)))→ Cat(N,Nop)(Mod(B),Mod(A)) is given byφ 7→ Mod(φ)

on objects and b7→ (π(b))(L,π) on morphisms.

iii) Let C,D∈Cat(N,Nop). Then the functorEnd(C,D) :=ΦC,End(D)◦(ηD)∗ : Cat(N,Nop)(C,D)→
Cat(N,Nop)(C,Mod(End(D)))→W∗

(N,Nop)(End(D),End(C)) is given byF 7→ ρFGC on
objects andα 7→ HD(αGC) on morphisms.
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Proof. Assertions i) and iii) follow immediately from the definitions and Proposition 4.12. Let
us prove ii). For each objectφ, we haveGMod(B) = (HMod(B),ε−1

B ) andΦMod(B),A(Mod(φ)) =
ε−1

B ◦ φ, whenceΨMod(B),A(ε−1
B ◦ φ) = Mod(φ), and for each morphismb, the family α :=

(π(b))(L,π) is a natural transformation andΦMod(B),A(α) = αGMod(B) = ε−1
B (b).

The relative tensor product onW∗-mod(N,Nop) induces a product onCat(N,Nop) as follows. Let
C,D ∈ Cat(N,Nop). ThenC×D and the functor

UC×D = (−⊗
µ
−)◦ (UC×UD) : C×D→W∗-mod(N,Nop),

form a category overW∗-mod(N,Nop) with separating object(GC,GD). Thus, we obtain a monoidal
structure onCat(N,Nop), given by(C,D) 7→C×D on objects and(F,G) 7→ F×G on morphisms.

Corollary 4.15. For all A,B,C∈W∗
(N,Nop), there exists an isomorphism

Ξ : W∗
(N,Nop)(A,B∗

µ
C)→ Cat(N,Nop)(Mod(B)×Mod(C),Mod(A))

such that for each objectπ, the functorΞ(π) is given by((L,τ),(M,υ)) 7→ (L⊗
µ

M,(τ∗
µ
υ)◦π) and

(S,T) 7→S⊗
µ

T, and for each morphism x: π1→ π2, the transformationΞ(b) : Ξ(π1)→ Ξ(π2) is

given byΞ(b)((L,τ),(M,υ)) = (τ∗
µ

υ)(x).

Proof. Let B := Mod(B), C := Mod(C), D := B×C. ThenG := (GB,GC) is separating and

ρG : End(D)→ HD(D(G,G))′ = (End(B)′⊗
µ

End(C)′)′ = End(B)∗
µ
End(C)∼= B∗

µ
C

is an isomorphism by Remark 4.11. Moreover, ifX = (L,τ) ∈ B, Y = (M,υ) ∈ C, thenρ(X,Y) =
(τ∗

µ
υ) ◦ρG by Lemma 2.4 becauseτ∗

µ
υ = ρJ, whereJ = HB(B(GB,X))⊗

µ
HC(C(GC,Y)), and

J ·HD(D(GD,G))⊆HD(D(GD,(X,Y))). Now, the assertion follows from Proposition 4.12.

The categoriesW∗
(N,Nop) andCat(N,Nop) are enriched over the monoidal categoryCat of small

categories [14], or, equivalently, are 2-categories, meaning that the morphisms between fixed
objects are themselves objects of a small category, as explained before Proposition 4.12, and
that the composition of morphisms between fixed objects extends to a functor, where

B
ψ1

((

ψ2

66⇓c C ◦ A
φ1

((

φ2

66⇓b B = A

ψ1◦φ1

**

ψ2◦φ2

44⇓ψ2(b)c C in W∗
(N,Nop), (8)

C
G1

))

G2

55⇓β D ◦ B
F1

))

F2

55⇓α C = B

G1◦F1

++

G2◦F2

44⇓βF2◦G1α D in Cat(N,Nop). (9)

Recall that a contravariant functor between enriched categoriesC,D consists of an assignment
F : obC→ obD and, for each pair of objectsX,Y ∈ C, a functorF(X,Y) : C(X,Y)→ D(FY,FX)
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that is compatible with composition in a natural sense. We now show that the assignments
Mod,End defined above are functors in this sense and that the isomorphisms in Proposition
4.12 form part of an adjunction betweenMod andEnd. For background on enriched categories,
see [14].

Theorem 4.16. The assignmentsMod, End define contravariant functorsMod : W∗
(N,Nop)→

Cat(N,Nop) and End : Cat(N,Nop) → W∗
(N,Nop) of enriched categories, and the isomorphisms

(ΦC,A)C,A define an adjunction whose unit is(ηC)C∈Cat(N,Nop)
and counit is(εA)A∈W∗(N,Nop)

.

Proof. We first show thatMod and End are functors of enriched categories. By Corollary
4.14, it suffices to prove this forEnd. Consider a diagram as in (9) and leta = End(B,C)(α),
b= End(C,D)(β), c= End(B,D)(βF2 ◦G1α). We have to show that then the cells

End(C)

End(B,C)(F1)
,,

⇓a

End(B,C)(F2)

22 End(B) ◦ End(D)

End(C,D)(G1)
,,

⇓b

End(C,D)(G2)

22 End(C) and End(D)

End(B,D)(G1F1)
,,

End(B,D)(G2F2)

33⇓c End(B)

are equal. By definition,a= HC(αGB), b= HD(βGC), and by Lemma 4.13,

c= HD(βF2GB ·G1(αGB)) = ρF2GB(HD(βGC)) ·HC(αGB) = End(F2)(b) ·a.

It remains to show that for all morphismsφ : A→ B in W∗
(N,Nop) andF : C→ D in Cat(N,Nop),

the diagram

Cat(N,Nop)(D,Mod(B))
ΦD,B

//

��

W∗
(N,Nop)(B,End(D))

��

Cat(N,Nop)(C,Mod(A))
ΦC,A

// W∗
(N,Nop)(A,End(C))

commutes, where the vertical maps are induced byF andMod(A,B)(φ) on the left andφ and
End(C,D)(F) on the right, respectively, or, more precisely, that for each objectG and each mor-
phismα in Cat(N,Nop)(D,Mod(B)),

End(C,D)(F)◦ΦD,B(G)◦φ = ΦC,A(Mod(A,B)(φ)◦G◦F), End(C,D)(F)(α) = Mod(A,B)(φ)(αF).

The second equation holds because of Lemma 4.13 and the relation

End(C,D)(F)(αGC) = ρFGC(αGD) = αFGC = Mod(A,B)(φ)(αFGC)

first one holds because by Corollary 4.14,

End(C,D)(F)◦ΦD,B(G)◦φ = ρFGC ◦ΦD,B(G)◦φ,

(Mod(A,B)(φ)◦G◦F)(GC) = (HCGC,ρFGC ◦ΦD,B(G)◦φ).
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5 The special case of a commutative base

Let Z be a locally compact Hausdorff space with a Radon measureµ of full support, and iden-
tify C0(Z) with multiplication operators onL(L2(Z,µ)). Then the relative tensor product and
the fiber product over theC∗-baseb = (L2(Z,µ),C0(Z),C0(Z)) can be related to the fiberwise
product of bundles as follows.

Modules and their relative tensor product Denote byModb, ModC0(Z), BdlZ the categories
of all C∗-b-modules with all morphisms, of all HilbertC∗-modules overC0(Z), and of all con-
tinuous Hilbert bundles overZ; for the precise definition of the latter, see [6]. Each of these
categories carries a monoidal structure, where the product

• of E,F ∈ModC0(Z) is the separated completion ofE⊙F with respect to the inner product
〈ξ⊙η|ξ′⊙η′〉= 〈ξ|ξ′〉〈η|η′〉, denoted byE ⊗

C0(Z)
F,

• of E ,F ∈ BdlZ is the fibrewise tensor product ofE andF ,

• of Hβ,Kγ ∈ Modb is (Hβ⊗
b

γK,β ⊲⊳ γ), whereβ ⊲⊳ γ := [|γ〉2β] = [|β〉1γ]; here, note that

βHβ, γKγ areC∗-(b,b)-modules.

There exist equivalences of monoidal categoriesModC0(Z)

B
⇄
Γ0

BdlZ andModC0(Z)

F
⇄
U

Modb such

that for eachE ∈ModC0(Z), F ∈ BdlZ, Hβ ∈Modb,

• BE =
⊔

z∈Z Ez is andΓ0(BE) = {(ξz)z | ξ ∈ E}, whereEz is the completion ofE with
respect to the inner product(ξ,η) 7→ 〈ξ|η〉(z), andξ 7→ ξz denotes the quotient mapE→
Ez,

• the operations on the space of sectionsΓ0(F ) ∈ModC0(Z) are defined fiberwise,

• FE = (E⊗C0(Z) L2(Z,µ), l(E)), wherel(ξ)η = ξ⊗C0(Z) η for eachξ ∈ E,η ∈ L2(Z,µ),

• UHβ = β ∈ModC0(Z).

The first equivalence is explained in [6], and the second one is easily verified. Compare also
Examples 2.6 and 2.11 ii).

Algebras Denote byC∗C0(Z)
the category of all continuousC0(Z)-algebras with full support [],

where the morphisms betweenA,B∈C∗C0(Z)
are allC0(Z)-linear nondegenerate∗-homomorphisms

π : A→M(B), and byC̃∗
b

the category of allC∗-b-algebrasAβ
H satisfying[ρβ(C0(Z))A] = A and

[Aβ] = β, where the morphisms betweenAβ
H , Bγ

K ∈ C̃∗b are all π ∈ C∗b(A
β
H ,M(B)γ

K) satisfying

[π(A)B] = B. Then there exists a functor̃C∗b→ C∗C0(Z)
, given byAβ

H 7→ (A,ρα) andπ 7→ π, and

this functor has a full and faithful left adjoint which embeds C∗C0(Z)
into C̃∗b [28, Theorem 6.6].
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The fiber product of commutative C∗-b-algebras We finally discuss the fiber product of
commutativeC∗-b-algebras and start with preliminaries. LetZ be a locally compact space,E
a Hilbert C∗-module overC0(Z), andBE =

⊔
z∈Z Ez the corresponding Hilbert bundle. The

topology onBE is generated by all open sets of the formUV,η,ε = {ζ|z∈V,ζ ∈ Ez,‖ηz−ζ‖Ez <
ε}, whereV ⊆ Z is open,η ∈ E, ε > 0. Denote byq:

⊔
z∈Z L(Ez)→ Z the natural projection

and define for eachη,η′ ∈ E maps

ωη,η′ :
⊔
z∈Z

L(Ez)→ C, T 7→ 〈ηq(T)|Tη′q(T)〉, υ(∗)
η : :

⊔
z∈Z

L(Ez)→
⊔
z∈Z

Ez, T 7→ T(∗)ηq(T).

Theweak topology (strong-*-topology)on
⊔

z∈Z L(Ez) is the weakest one that makesq and all

maps of the formωη,η′ (of the formυ(∗)
η ) continuous.

Let A be a commutativeC∗-algebra,π : C0(Z)→ M(A) a ∗-homomorphism, andχ ∈ Â. Then

we identifyE⊗φ∗ A⊗χ C with Ez, wherez∈ Z corresponds toχ◦π ∈ Ĉ0(Z), via η⊗π a⊗χ λ 7→
λχ(a)ηz. A mapT : Â→

⊔
z∈Z L(Ez) is weakly vanishing (strong-∗-vanishing) at infinityif for

all η,η′ ∈ E, the mapωη,η′ ◦T (the mapsχ 7→ ‖υ(∗)
η (T(χ))‖) vanish at infinity.

Lemma 5.1. Let Aβ
H be a C∗-b-algebra, Kγ a C∗-b†-module, x∈ L(Hβ⊗

b
γK). Assume that

A is commutative,[ρβ(C0(Z))A] = A, and〈γ|2x|γ〉2 ⊆ A. Define Fx : Â→
⊔

z∈Z L(γz) by χ 7→
(χ∗ id)(x). Then:

i) Fx is weakly continuous, weakly vanishing at infinity.

ii) x ∈ Ind|γ〉2(A) if and only if Fx is strong-∗ continuous, strong-∗-vanishing at infinity.

Proof. First, note that for allη,η′ ∈ γ andχ ∈ Â,

χ(〈η|2x|η′〉2) = 〈1(χ◦ρβ)<η|(χ∗ id)(x)(1(χ◦ρβ)<η′)〉= 〈η(χ◦ρβ)|Fx(χ)η′(χ◦ρβ)
〉.

i) For eachη′,η ∈ γ, the mapχ 7→ 〈η(χ◦ρβ)|Fx(χ)η′(χ◦ρβ)
〉 equals〈η|2x|η′〉2 ∈ A.

ii) Assume thatFx is strong-∗ continuous vanishing at infinity and letη ∈ γ. Then the mapχ 7→
Fx(χ)η(χ◦ρβ) lies in Γ0(γ=ρβ A). Hence, there exists anω ∈ γ=ρβ A such thatFx(χ)η(χ◦ρβ) = ωχ

for all χ ∈ Â. We identify γ =ρβ A with [|γ〉2A] ⊆ L(H,Hβ⊗
b

γK) in the canonical manner and

find thatx|η〉2 = ω becauseχ(〈η′|2x|η〉2) = 〈η′(χ◦ρβ)
|ω(χ◦ρβ)〉= χ(〈η′|2ω) for all χ ∈ Â, η′ ∈ γ.

Sinceη ∈ γ was arbitrary, we can concludex|γ〉2 ⊆ [|γ〉2A]. A similar argument, applied tox∗

instead ofx, shows thatx∗|γ〉2 ⊆ [|γ〉2A], and thereforex∈ Ind|γ〉2(A). Reversing the arguments,
we obtain the reverse implication.

Let X be a locally compact Hausdorff space with a continuous surjection p: X→ Z and a family
of Radon measuresφ = (φz)z∈Z such that (i) suppφz = Xz := p−1(z) for eachz∈ Z and (ii)
the mapφ∗( f ) : z 7→

∫
Xz

f dφz is continuous for eachf ∈ Cc(X). Define a Radon measureνX

on X such that
∫

X f dνX =
∫

Z φ∗( f )dµ for all f ∈Cc(X). Then there exists a mapjX : Cc(X)→
L(L2(Z,µ),L2(X,νX)) such thatjX( f )h= f p∗(h) and jX( f )∗g= φ∗( f g) for all f ,g∈Cc(X),h∈
Cc(Z). Similarly, letY be a locally compact Hausdorff space with a continuous mapq: Y→ Z
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and a family of measuresψ = (ψz)z∈Z satisfying the same conditions asX, p,φ, and define a
Radon measureνY onY and an embeddingjY : Cc(Y)→ L(L2(Z,µ),L2(Y,νY)) as above. Let

H := L2(X,νX), β := [ jX(Cc(X))], A :=C0(X)⊆ L(L2(X,νX) = L(H),

K := L2(Y,νY), γ := [ jY(Cc(Y))], B :=C0(Y)⊆ L(L2(Y,νY)) = L(K).

ThenHβ, Kγ areC∗-b-modules andAβ
H , Bγ

K areC∗-b-algebras, as one can easily check. Consid-
eringβ andγ as HilbertC∗-modules overC0(Z), we can canonically identifyβz

∼= L2(Xz,φz) and
γz
∼= L2(Yz,ψz). Finally, define a Radon measureν on Xp×

Z
qY such that for allh∈Cc(Xp×

Z
qY),

∫
Xp×

Z
qY

hdν =
∫

Z

∫
Xz

∫
Yz

h(x,y)dψz(y)dφz(x)dµ(z).

Proposition 5.2. i) There exists a unitary U: Hβ⊗
b

γK→L2(Xp×
Z

qY,ν) such that(Φ( jX( f )=

h< jY(g)))(x,y) = f (x)h(p(x))g(y) for all f ∈ Cc(X), g ∈ Cc(Y), h ∈ Cc(Z), (x,y) ∈
Xp×

Z
qY.

ii) AdU(Aβ∗
b

γB) is the C∗-algebra of all f∈ L∞(Xp×
Z

qY,ν) that have representatives fX, fY

such that the maps X→TotL(γ) and Y→TotL(β) given by x7→ fX(x, ·)∈L∞(Yp(x),ψp(x))
and y 7→ fY(·,y) ∈ L∞(Xq(y),φq(y)) respectively, are strong-∗ continuous vanishing at in-
finity.

Proof. The proof of assertion i) is straightforward, and assertionii) follows immediately from
Proposition Lemma 3.16 viii) and Lemma 5.1 ii).

Examples 5.3. i) Let X,Y be discrete,Z = {0}, and letφ0, ψ0 be the counting measures on
X,Y, respectively. Then

C0(X)β∗
b

γC0(Y)∼= { f ∈Cb(X×Y) | f (x, ·) ∈C0(Y) for all x∈ X,

f ( · ,y) ∈C0(X) for all y∈Y}.

This follows from Proposition 5.2 and the fact that for eachf ∈ Cb(X×Y), the maps
X → L(l2(Y)), x 7→ f (x, ·), andY → L(l2(X)), y 7→ f ( · ,y), are strong-∗ continuous
vanishing at infinity if and only iff ( · ,y) ∈C0(X) and f (x, ·) ∈C0(Y) for eachy∈Y and
x∈ X.

ii) Let X =N, Z = {0}, and letφ0 be the counting measure. Then

C0(N)β∗
b

γC0(Y)∼= { f ∈Cb(N×Y) | ( f (x, ·))x is a sequence inC0(Y)

that converges strongly to 0∈ L(L2(Y,ψ0))}

because for eachf ∈ L∞(N×Y), the mapY→ L(l2(N)), y 7→ f ( · ,y), is strong-∗ contin-
uous vanishing at infinity if and only iff (x, ·) ∈C0(Y) for all x∈N.
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iii) Let X =Y = [0,1], Z = {0}, and letφ0 = ψ0 be the Lebesgue measure. For each subset
I ⊆ [0,1], denote byχI its characteristic function. Then the functionf ∈ L∞([0,1]× [0,1])
given by f (x,y) = 1 if y≤ x and f (x,y) = 0 otherwise belongs toC([0,1])β∗

b
γC([0,1])

because the functions[0,1]→ L∞([0,1])⊆ L(L2([0,1])) given byx 7→ f (x, ·) = χ[0,x] and
y 7→ f ( · ,y)= χ[y,1] are strong-∗ continuous. In particular, we see thatC([0,1])β∗

b
γC([0,1])*

C([0,1]× [0,1]) =C([0,1])⊗C([0,1]).
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