$\mathcal{SU}_q(2)$ on the level of operator algebras

(work in progress)

Thomas Timmermann

14.10.2010

The dynamical $SU_{\alpha}(2)$ on the level of operator algebras

Joint project with Erik Koelink

Study the dynamical $SU_q(2)$ on the level of operator algebras

Motivation/Aims

- Erik's: study relations between special functions and dynamical quantum groups beyond $SU_q(2)$
- ► mine: study quantum groupoids in the C*-/W*-setting
 - establish a link to the setting of pure algebra
 - obtain fundamentally new examples
 - ▶ test case for a theory of proper C*-quantum groupoids

Each compact quantum group G has associated

- 1. an algebra $\mathcal{O}(\mathbb{G})$ of polynomial functions on \mathbb{G}
- 2. a universal C^* -algebra $C_U(\mathbb{G}) = C^*(\mathcal{O}(\mathbb{G}))$
- 3. a reduced C^* -algebra $C_r(\mathbb{G}) = \overline{\pi(\mathcal{O}(\mathbb{G}))} \subseteq \mathcal{L}(H)$, where $\pi: \mathcal{O}(\mathbb{G}) \to \mathcal{L}(H)$ is the GNS-rep. for the Haar state
- 4. a von Neumann algebra $L(\mathbb{G}) = \pi(\mathcal{O}(\mathbb{G}))'' \subseteq \mathcal{L}(H)$

Fundamental example: $\mathbb{G} = SU_q(2)$

$$\mathcal{O}(SU_q(2)) = \left(a, c \mid u := \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix} \text{ is unitary } \right)$$

▶
$$\Delta$$
: $\mathcal{O}(\mathrm{SU}_q(2)) \to \mathcal{O}(\mathrm{SU}_q(2)) \odot \mathcal{O}(\mathrm{SU}_q(2))$ s.t. $u \stackrel{M_2(\Delta)}{\longleftrightarrow} u \boxtimes u$

Background

Definition A dynamical Hopf algebroid consists of

- a commutative algebra B
- an algebra A with commuting inclusions $r, s: B \to A$
- an action of a group G on B and a $G \times G$ -grading on A s.t.

$$\forall a \in A_{\gamma,\gamma'}, b \in B : ar(b) = r(\gamma(b))a \text{ and } as(b) = s(\gamma'(b))a$$

- a homomorphism $\Delta: A \to A * A$ that is *coassociative*, where $A * A = \bigoplus_{\gamma, \gamma', \gamma'' \in G} (A_{\gamma, \gamma'})_{s \underset{B}{\odot} r} (A_{\gamma', \gamma''})$
- an antipode and counit subject to further conditions

Example If a finite group G acts on a compact space X, we get

$$\underbrace{C(X)}_{=R} \stackrel{r,s}{\hookrightarrow} \underbrace{C(X) \rtimes G}_{=A} \text{ with } \Delta : f \rtimes U_{\gamma} \mapsto (f \rtimes U_{\gamma}) \underset{C(X)}{\odot} (1 \rtimes U_{\gamma})$$

Definition of the dynamical $SU_{\alpha}(2)$ on the algebraic level

Let $q \in (0,1)$. Then $SU_q(2)$ is a dynamical Hopf algebroid with

- ▶ $B = C_c(\mathbb{R})$, and $G = \mathbb{Z}$ acts via translations $f \mapsto f_{\pm k} := f(\cdot \pm k)$
- $A = \mathcal{O}(\mathcal{SU}_q(2)) = *$ -algebra generated by r(B), s(B), a, c,subject to the following relations
 - $r(f)s(g)a = ar(f_{+1})s(g_{+1})$ and $r(f)s(g)c = cr(f_{-1})s(g_{+1})$
 - the matrix $u := \begin{pmatrix} a qc^* \\ a c^* \end{pmatrix} \in M_2(A)$ satisfies

$$u\Big(\begin{smallmatrix} s(F_{-1}) & 0 \\ 0 & 1 \end{smallmatrix}\Big)^{-1}u^*\Big(\begin{smallmatrix} r(F) & 0 \\ 0 & 1 \end{smallmatrix}\Big) = 1 = u^*\Big(\begin{smallmatrix} r(F_{-1}) & 0 \\ 0 & 1 \end{smallmatrix}\Big)u\Big(\begin{smallmatrix} s(F) & 0 \\ 0 & 1 \end{smallmatrix}\Big)^{-1},$$

where $F \in C_b(\mathbb{R})$ is given by $F(t) = \frac{q^{2t} + q^{-2}}{q^{2t} + 1}$

 \rightarrow \triangle on a, c given by the same formulas as for $SU_q(2)$

Idea u is a corepresentation of $SU_a(2)$ on a \mathbb{C}^2 -bundle on \mathbb{R}

Detailed study of $\mathcal{SU}_q(2)$ and its relations to special functions: Koelink, Rosengren. Harmonic analysis on the dynamical quantum group $\mathcal{SU}_q(2)$, 2001.

Comments

- 1. The usual definition involves the choice $B = \mathfrak{M}(\mathbb{C})$; our modification allows us to pass to operator algebras
- 2. $SU_q(2)$ can actually be defined over a smaller B = Q
- 3. There exists a diagram of algebras $C_b(\mathbb{R}) \leftarrow Q \rightarrow \mathfrak{M}(\mathbb{C})$ and a corresponding diagram of variants of $\mathcal{SU}_q(2)$:

our
$$\mathcal{SU}_q(2)/_{\mathcal{C}_c(\mathbb{R})} \overset{\text{base}}{\leftarrow} \mathcal{SU}_q(2)/_Q \xrightarrow{\text{change}} \text{usual } \mathcal{SU}_q(2)/_{\mathfrak{M}(\mathbb{C})}$$

(Böhm et al.)

(Lesieur, Enock)

Passage to the level of operator algebras

We shall construct a diagram of the following form:

algebraic universal reduced von Neumann level
$$C^*$$
-level C^* -level level $\mathcal{O}(\mathcal{SU}_q(2)) \hookrightarrow C_u(\mathcal{SU}_q(2)) \longrightarrow C_r(\mathcal{SU}_q(2)) \hookrightarrow L(\mathcal{SU}_q(2))$

Hopf proper reduced measured algebroid C^* -qtm. groupoid qtm. groupoid

$$C_{c}(\mathbb{R})^{\varsigma} \longrightarrow C_{0}(\mathbb{R}) \longrightarrow \overline{\pi_{\mu}(C_{0}(\mathbb{R}))^{\varsigma}} \longrightarrow L^{\infty}(\mathbb{R})$$

$$\downarrow \downarrow r \qquad \qquad \downarrow \downarrow \qquad \qquad \qquad \downarrow \bar{\tau}$$

$$\mathcal{O}^{\varsigma} \longrightarrow C_{u} = C^{*}(\mathcal{O}) \longrightarrow C_{r} = \overline{\pi_{\nu}(\mathcal{O})^{\varsigma}} \longrightarrow L = \pi_{\nu}(\mathcal{O})^{\prime\prime}$$

$$\downarrow \Delta \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \bar{\Delta}$$

$$\mathcal{O}^{*} \longrightarrow C_{u} \xrightarrow{*} C_{u} \longrightarrow C_{r} \xrightarrow{*} C_{r} \subset \longrightarrow L \bar{\star} L$$

(T.)

We introduce $\nu: \mathcal{O}(\mathcal{SU}_q(2)) \to \mathbb{C}$ to define $C_r := \overline{\pi_{\nu}(\mathcal{O}(\mathcal{SU}_q(2)))}$:

Ingredient 1. Koelink, Rosengren:

- $ightharpoonup \mathcal{O}(\mathcal{SU}_q(2))$ is a free $r(B)\otimes s(B)$ -module with basis $(t_{i,j}^N)_{N,i,j}$
- ► Haar map $h: \mathcal{O}(\mathcal{SU}_q(2)) \to B \otimes B, \ r(f)s(g)t_{i,j}^N \mapsto \delta_{N,0}(f \otimes g)$

Ingredient 2. We fix a measure on \mathbb{R} that is (quasi-)invariant w.r.t. \mathbb{Z} and obtain a positive map $\mu \colon C_c(\mathbb{R}) \to \mathbb{C}$ with bounded, nondegenerate GNS-construction (H_μ, π_μ)

Lemma: $\nu: \mathcal{O}(\mathcal{SU}_q(2)) \stackrel{h}{\to} C_c(\mathbb{R}) \otimes C_c(\mathbb{R}) \stackrel{\mu \otimes \mu}{\longrightarrow} \mathbb{C}$ is positive Proof: Use explicit formula for $h((t_{i,j}^N)^*t_{k,l}^M)$ [Koelink, Rosengren] and our modification of the definition of $\mathcal{SU}_q(2)$

Let (H_{ν}, π_{ν}) be the GNS-construction for $\nu : \mathcal{O}(\mathcal{SU}_q(2)) \to \mathbb{C}$ Problem: Show that $\pi_{\nu}(a)$ is bounded for each $a \in \mathcal{O}(\mathcal{SU}_q(2))$

Lemma 1. $\pi_{\nu}(r(f)), \pi_{\nu}(s(f))$ are bounded for all $f \in C_c(\mathbb{R})$

2.
$$\exists$$
 extensions $C_c(\mathbb{R}) \xrightarrow{\pi_{\nu} \circ r, \pi_{\nu} \circ s} \mathcal{L}(H_{\nu})$

- 2. $\exists \Lambda^{(\dagger)} : \mathcal{O}(\mathcal{SU}_q(2)) \to \mathcal{L}(H_\mu, H_\nu) : \Lambda(a)f = as(f), \Lambda^{\dagger}(a)f = s(f)a$
- 3. $E := \overline{\mathrm{Img}(\Lambda)}$ and $E^{\dagger} := \overline{\mathrm{Img}(\Lambda^{\dagger})}$ are Hilbert C^* -modules over $C_0(\mathbb{R}) \subseteq \mathcal{L}(H_{\mu})$, where $\langle \xi | \eta \rangle = \xi^* \eta$ and ξf is the composition

Theorem There exists a unitary $V: E \otimes_{\bar{s}} H_{\nu} \to E^{\dagger} \otimes_{\bar{r}} H_{\nu}$ such that $\Lambda(x) \otimes_{\bar{s}} y \mapsto \sum \Lambda^{\dagger}(x_{(1)}) \otimes_{\bar{r}} x_{(2)} y$, where $\sum x_{(1)} \otimes x_{(2)} = \Delta(x)$

Background

Theorem \exists a unitary $V: \Lambda(x) \otimes_{\bar{s}} y \mapsto \sum \Lambda^{\dagger}(x_{(1)}) \otimes_{\bar{t}} x_{(2)} y$

Proof 1. isometric:
$$\psi : \mathcal{O}(\mathcal{SU}_q(2)) \xrightarrow{h} C_c(\mathbb{R}) \otimes C_c(\mathbb{R}) \xrightarrow{\mu \otimes \mathrm{id}} C_c(\mathbb{R})$$

$$\|\Lambda(x) \otimes_{\bar{s}} y\|^2 = \langle y | s(\psi(x^*x))y \rangle,$$

$$\|\sum \Lambda^{\dagger}(x_{(1)}) \otimes_{\bar{t}} x_{(2)}y\|^2 = \sum \langle y | r(\psi(x_{(1)}^*x_{(1')})) x_{(2)} x_{(2')}y \rangle,$$

both expressions coincide because ψ is *right-invariant*:

- $t_{i,i}^N \in \ker h \subseteq \ker \psi$ for $N \ge 1$ and $\Delta(t_{i,i}^N) = \sum_k t_{i,k}^N \odot t_{k,i}^N$
- $ightharpoonup z = r(f)s(g)t_{i,i}^{N} \text{ for } N \ge 1 \Rightarrow s(\psi(z)) = 0 = r(\psi(z_{(1)}))z_{(2)}$
- $ightharpoonup z = r(f)s(g) \Rightarrow \Delta(z) = r(f) \odot s(g)$ $\Rightarrow s(\psi(z)) = s(\mu(f)g) = \sum r(\psi(z_{(1)}))s(z_{(2)})$
- 2. surjective: the following map is inverse to V,

$$\Lambda^{\dagger}(x) \otimes_{\bar{r}} y \mapsto \sum \Lambda(x_{(1)}) \otimes_{\bar{s}} S(x_{(2)}) y$$

Background

Boundedness of the GNS-construction for ν

Corollary $\pi_{\nu}(\mathcal{O}(\mathcal{SU}_q(2))) \subseteq \mathcal{L}(\mathcal{H})$. Thus, we can define

$$C_r(\mathcal{SU}_q(2)) \coloneqq \overline{\pi_{\nu}(\mathcal{O}(\mathcal{SU}_q(2)))}, \quad L(\mathcal{SU}_q(2)) \coloneqq C_r(\mathcal{SU}_q(2))''.$$

Sketch of the Proof Let $x, x' \in \mathcal{O}(\mathcal{SU}_q(2))$. Then

there exist bounded linear operators

 $I(x): H_{\nu} \to E \otimes_{\bar{s}} H_{\nu}, \quad \xi \mapsto \Lambda(x) \otimes_{\bar{s}} \xi,$

$$I^{\dagger}(x'): H_{\nu} \to E^{\dagger} \otimes_{\bar{r}} H_{\nu}, \quad \xi \mapsto \Lambda^{\dagger}(x') \otimes_{\bar{r}} \xi,$$

- equal to $\pi_{\nu}(z)$, where $z = \sum r(\Lambda^{\dagger}(x')^*\Lambda^{\dagger}(x_{(1)}))x_{(2)}$
- elements like z span $\mathcal{O}(\mathcal{SU}_q(2))$

I.c. quantum group
$$\mathbb{G}$$
 \longrightarrow $\underset{W_{12}W_{13}W_{23}=W_{23}W_{12}}{\text{multiplicative unitary}}$ \longrightarrow $\underset{C_{u}(\mathbb{G}), C_{r}(\mathbb{G}), L\mathbb{G}}{C_{u}(\mathbb{G}), C_{r}(\mathbb{G}), L\mathbb{G}}$ $(C^{*}\text{-})$ quantum groupoid \mathbb{G} \longrightarrow $(C^{*}\text{-})$ pseudogroupoid \mathbb{G} \longrightarrow $(C_{r}(\mathbb{G}), C_{r}(\mathbb{G}))$ $L\mathbb{G}, L\mathbb{G}$

Theorem V is a regular pseudo-multiplicative unitary in the sense of Vallin (W^* -level) and of T. (C^* -level)

Lemma \exists canonical identifications of $E \otimes_{\bar{s}} H_{\nu}$ and $E^{\dagger} \otimes_{\bar{r}} H_{\nu}$ with Connes' fusions $H_{\nu \; \overline{t} \underset{\bar{u}}{\otimes} \bar{s}} H_{\nu}$ and $H_{\nu \; \bar{s} \underset{\bar{\mu}}{\otimes} \bar{t}} H_{\nu}$, where

- $\bar{t}:L^{\infty}(\mathbb{R})\to \mathcal{L}(H_{\nu})$ is given by $\bar{t}(f)a=as(f)$,
- $\bar{\mu}$ is the n.s.f. weight on $L^{\infty}(\mathbb{R})$ given by integration.

Problems

$$C_0(\mathbb{R}) \stackrel{\bar{r}}{\underset{\bar{s}}{\Rightarrow}} C_r(\mathcal{SU}_q(2)) \stackrel{\bar{\Delta}}{\rightarrow} C_r(\mathcal{SU}_q(2)) * C_r(\mathcal{SU}_q(2)), \quad (1)$$

$$L^{\infty}(\mathbb{R}) \stackrel{\bar{r}}{\underset{\bar{a}}{\to}} L(\mathcal{SU}_{q}(2)) \stackrel{\bar{\Delta}}{\to} L(\mathcal{SU}_{q}(2)) * L(\mathcal{SU}_{q}(2)), \tag{2}$$

where $\bar{\Delta}$ is given by $x\mapsto V(x_{\bar{l}}\underset{\bar{u}}{\otimes}_{\bar{s}}1)\,V^*$

Background

Theorem (4) is a measured quantum groupoid [Lesieur,Enock] ((3) is a proper reduced C^* -quantum groupoid [T])

Key point $\psi: \mathcal{O}(\mathcal{SU}_q(2)) \to C_c(\mathbb{R})$ extends to a right-invariant

- regular C^* -valued weight $\tilde{\psi}$: $C_r(\mathcal{SU}_q(2)) \to C_0(\mathbb{R})$
- ▶ n.s.f. operator-valued weight $\bar{\psi}$: $L(\mathcal{SU}_{\alpha}(2)) \to L^{\infty}(\mathbb{R})$

Kustermans inverse GNS-construction $C_r(\mathcal{SU}_q(2)) \rightarrow \mathcal{L}_{C_0(\mathbb{R})}(E)$

The dual of $SU_q(2)$

Corollary Hopf C*-bimodule & measured quantum groupoid

$$C_0(\mathbb{R}) \stackrel{\bar{s}}{\underset{\bar{t}}{\Rightarrow}} C_r(\widehat{\mathcal{SU}_q(2)}) \stackrel{\widehat{\Delta}}{\rightarrow} C_r(\widehat{\mathcal{SU}_q(2)}) * C_r(\widehat{\mathcal{SU}_q(2)}), \quad (3)$$

$$L^{\infty}(\mathbb{R}) \stackrel{\bar{s}}{\underset{\bar{t}}{\Rightarrow}} L(\widehat{\mathcal{SU}_{q}(2)}) \stackrel{\widehat{\Delta}}{\rightarrow} L(\widehat{\mathcal{SU}_{q}(2)}) * L(\widehat{\mathcal{SU}_{q}(2)}), \tag{4}$$

where $\widehat{\Delta}$ is given by $x \mapsto V^*(1_{\overline{s} \underset{\overline{n}}{\otimes} \overline{r}} x) V$

Proof (4) follows from the work of Lesieur, (3) from work of T.

Proposition 1. $\exists F : \mathcal{O}(\mathcal{SU}_q(2)) \to L(\mathcal{O}(\mathcal{SU}_q(2)), C_c(\mathbb{R}))$ such that $\mathcal{O}(\widehat{\mathcal{SU}_q(2)}) := \operatorname{Img}(F)$ is a *-algebra w.r.t. convolution

2. \exists representation $\lambda : \mathcal{O}(\widehat{\mathcal{SU}}_q(\overline{2})) \to \mathcal{L}(H_\nu)$ such that $C_r(\widehat{\mathcal{SU}}_q(\overline{2})) = \overline{\mathrm{Img}(\lambda)}$ and $L(\widehat{\mathcal{SU}}_q(\overline{2})) = \mathrm{Img}(\lambda)''$

The next problems on the agenda

- Investigation of the construction for $SU_q(2)$
 - computation of the structure maps of the C^* -/ W^* -quantum groupoids in terms of special functions
 - explicit formula for *V* with respect to $H \cong I^2(\mathbb{N} \times \mathbb{N} \times \mathbb{N})$
 - relation to the algebraic dual of $SU_q(2)$ by Rosengren
- Axiomatics of proper reduced C*-quantum groupoids
- Extension to the non-proper case
- Dynamical Hopf algebroids on the universal C*-level