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THE MAXIMAL QUANTUM GROUP–TWISTED TENSOR PRODUCT

OF C∗–ALGEBRAS

SUTANU ROY AND THOMAS TIMMERMANN

Abstract. We construct a maximal counterpart to the minimal quantum group-
twisted tensor product of C∗-algebras studied by Meyer, Roy and Woronowicz [16,17],
which is universal with respect to representations satisfying certain braided commuta-
tion relations. Much like the minimal one, this product yields a monoidal structure on
the coactions of a quasi-triangular C∗-quantum group, the horizontal composition in
a bicategory of Yetter-Drinfeld C∗-algebras, and coincides with a Rieffel deformation
of the non-twisted tensor product in the case of group coactions.

1. Introduction

Let G be a locally compact group acting on C∗-algebras C and D. Then the minimal
and the maximal tensor products C ⊗min D and C ⊗max D carry canonical diagonal
actions of G. However, this is no longer true when G is replaced by a quantum group G.
This problem appears already on the purely algebraic level, where it can be solved if
the quantum group G is quasi-triangular and the multiplication of the tensor product is
twisted accordingly [13, Corollary 9.2.14]. In the setting of C∗-algebras, building on the
work of Vaes [22, Proposition 8.3], such a twisted tensor product was first constructed
by Nest and Voigt in the case where G is the quantum double or the Drinfeld double
of some regular locally compact quantum group H or, equivalently, when C and D are
Yetter-Drinfeld C∗-algebras over H [18, Proposition 3.2]. A systematic study of quantum
group-twisted tensor products, in the general framework of manageable multiplicative
unitaries, was taken up by Meyer, Roy and Woronowicz in [16], and carried on in [17].
These constructions are reduced or minimal in the sense that they use canonical Hilbert
space representations and reduce to the minimal tensor product C ⊗D if G is trivial.
In this article, we introduce a universal or maximal counterpart to the constructions
in [16, 18]. As in [16], we start with two C∗-quantum groups G and H (in the sense

of [21]), a bicharacter χ ∈ U(Â ⊗ B̂) and two C∗-algebras C and D equipped with
coactions of G and H, respectively. We then consider representations of C and D on the
same C∗-algebra that commute in a braided fashion with respect to χ, and construct
a C∗-algebra C ⊠χmax D with nondegenerate *-homomorphisms ju

C ∶C → M(C ⊠χmax D)
and ju

D ∶D →M(C ⊠χmax D) such that (ju
C , j

u
D) is a universal pair of braided-commuting

representations.
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2 SUTANU ROY AND THOMAS TIMMERMANN

For example, this construction subsumes the following special cases.

(1) If χ is trivial, it reduces to the maximal tensor product C ⊗max D.
(2) If G = Z/2Z, so that C and D are Z/2Z-graded C∗-algebras, we obtain the

universal C∗-algebra generated by a copy of C and a copy of D satisfying dc =
(−1)∣c∣∣d∣cd for homogeneous elements c ∈ C and d ∈ D of degrees ∣c∣, ∣d∣ ∈ {0,1}.

(3) If H = Ĝ and D is the universal dual C∗-algebra of G, we obtain the universal
crossed product C ⋊u G

u.

Our maximal twisted tensor product shares many of the properties of the minimal
twisted tensor product, which we denote by ⊠χmin, established in [16] and [17]. We show
that it carries a canonical coaction of the generalised Drinfeld double Dχ(G,H) (see
[19]), yields a monoidal structure on the category of G-C∗-algebras in the case where G

is quasi-triangular, and is functorial with respect to G and H in a natural sense.
We also show that the maximal and the minimal twisted and non-twisted tensor

products are related by a commutative diagram of the form

(C ⊠χmax D) ⋊Dχ(G,H) ≅ //

����

(C ⊗max D) ⋊ (G ×H)
����

(C ⊠χmin D) ⋊Dχ(G,H) ≅ // (C ⊗D) ⋊ (G ×H),

(1.1)

where the lower isomorphism extends [16, Theorem 6.5]. The upper isomorphism yields
a quick proof of the following result, which extends our list of examples:

(4) If G and H are duals of locally compact abelian groups, then C⊠χmaxD is a Rieffel
deformation of the maximal tensor product C ⊗max D in the sense of Kasprzak
[8].

The corresponding assertion for the minimal twisted tensor product is contained in
[16, Theorem 6.2]. If C or D are nuclear, then (1.1) implies that the images of C ⊠χmaxD

and C⊠χminD in the respective crossed products on the left hand side, but not necessarily
the algebras themselves, are isomorphic. In particular, the canonical map from the
maximal to the minimal twisted tensor product is an isomorphism if (i) C or D is
nuclear and additionally (ii) the coaction of Dχ(G,H) on C ⊠χmax D is injective.

Finally, we consider the case where C and D are generalized Yetter-Drinfeld C∗-
algebras, show that the maximal twisted tensor product is a generalized Yetter-Drinfeld
C∗-algebra again, and obtain a bicategory whose objects are C∗-quantum groups and
1-morphisms are generalized Yetter-Drinfeld C∗-algebras. Here, we need to work with
coactions of universal C∗-quantum groups.

A recurring issue that arises here is to verify that certain pairs of representations of the
C∗-algebras C andD or of the C∗-algebras A andB underlying the C∗-quantum groups G
and H satisfy braided commutation relations, and to check how such relations transform
if various representations are put together. Instead of case-by-case calculations, we
present a categorical approach where braided-commuting representations are interpreted
as 2-morphisms in cubical tricategory, and the horizontal and vertical compositions
account for all constructions that we need to consider.

This article is organized as follows. In Section 2, we first recall notation and prelim-
inaries concerning C∗-quantum groups and their morphisms. In Sections 3 and 4, we



THE MAXIMAL QUANTUM GROUP-TWISTED C∗-TENSOR PRODUCT 3

introduce the notion of braided commutation relations for representations of C∗-quantum
groups, first on the universal and then on the reduced level. After these preparations, we
define the maximal twisted tensor product in Section 5, establish several of its properties
in Section 6, and construct the isomorphisms in the fundamental diagram (1.1) in Section
7. In Section 8, we pass to coactions of universal C∗-quantum groups, and in Section
9, we consider the maximal twisted tensor product of generalized Yetter-Drinfeld C∗-
algebras. In the appendix, we summarize the relation between coactions of C∗-quantum
groups and their universal counterparts, and consider the push-forward of non-injective
coactions along morphisms of C∗-quantum groups.

2. Preliminaries

Throughout we use the symbol “:=” to abbreviate the phrase “defined by”.
All Hilbert spaces and C∗-algebras are assumed to be separable.
For two norm-closed subsets X and Y of a C∗-algebra, let

X ⋅ Y ∶= {xy ∶ x ∈X,y ∈ Y }CLS,

where CLS stands for the closed linear span.
For a C∗-algebra A, let M(A) be its multiplier algebra and U(A) be the group of

unitary multipliers of A. The unit of M(A) is denoted by 1A. Next we recall some
standard facts about multipliers and morphisms of C∗-algebras from [14, Appendix A].
Let A and B be C∗-algebras. A *-homomorphism ϕ∶A →M(B) is called nondegenerate
if ϕ(A) ⋅B = B. Each nondegenerate *-homomorphism ϕ∶A →M(B) extends uniquely
to a unital *-homomorphism ϕ̃ from M(A) to M(B). Let C∗alg be the category of
C∗-algebras with nondegenerate *-homomorphisms A → M(B) as morphisms A → B;
let Mor(A,B) denote this set of morphisms. We use the same symbol for an element
of Mor(A,B) and its unique extenstion from M(A) to M(B).

Let H be the conjugate Hilbert space to the Hilbert space H. The transpose of an
operator x ∈ B(H) is the operator xT ∈ B(H) defined by xT(ξ) ∶= x∗ξ for all ξ ∈ H. The
transposition is a linear, involutive anti- isomorphism B(H) → B(H).

A representation of a C∗-algebra A on a Hilbert space H is a nondegenerate *-
homomorphism π∶A → B(H). Since B(H) =M(K(H)), the nondegeneracy conditions
π(A) ⋅K(H) = K(H) is equivalent to π(A)(H) being norm dense in H, and hence this is
the same as having a morphism from A to K(H). The identity representation of K(H)
on H is denoted by idH. The group of unitary operators on a Hilbert space H is denoted
by U(H). The identity element in U(H) is denoted by 1H.

We use ⊗ both for the tensor product of Hilbert spaces and minimal tensor product
of C∗-algebras, which is well understood from the context. We write Σ for the tensor
flip H ⊗K → K ⊗H, x⊗ y ↦ y ⊗ x, for two Hilbert spaces H and K. We write σ for the
tensor flip isomorphism A⊗B → B ⊗A for two C∗-algebras A and B.

We use the leg numbering on the level of C∗-algebras as follows. Let A1, A2, A3 be
C∗-algebras. For t ∈M(A1 ⊗A2), we write

t12 ∶= t⊗ 1A3
∈M(A1 ⊗A2 ⊗A3), t23 ∶= 1A3

⊗ t ∈M(A3 ⊗A1 ⊗A2),
and t13 ∶= σ12(t23) = σ23(t12) ∈M(A1 ⊗A3 ⊗A2).
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In particular, we apply this notation in case Ai = B(Hi) for some Hilbert spaces Hi,
where i = 1,2,3, and then σ amounts to conjugation by Σ.

2.1. C∗-bialgebras. A C∗-bialgebra is a C∗-algebra A with a comultiplication ∆A ∈
Mor(A,A ⊗A) that is coassociative in the sense that

(∆A ⊗ idA) ○∆A = (idA ⊗∆A) ○∆A.

It satisfies the cancellation conditions if

∆A(A) ⋅ (1A ⊗A) = A⊗A = (A⊗ 1A) ⋅∆A(A). (2.1)

A morphism of C∗-bialgebras (A,∆A) and (B,∆B) is a morphism f ∈ Mor(A,B)
satisfying

∆B ○ f = (f ⊗ f) ○∆A.

A left corepresentation of a C∗-bialgebra (A,∆A) on a C∗-algebra C is a unitary
U ∈ U(A⊗C) satisfying

(∆A ⊗ idC)(U) = U23U13. (2.2)

A right corepresentation of (A,∆A) on C is a unitary U ∈ U(C ⊗A) satisfying

(idC ⊗∆A)(U) = U12U13. (2.3)

If U is a left or right corepresentation, then Û ∶= σ(U)∗ is a right or left corepresentation,
called the dual of U . A corepresentation on a Hilbert space H is just a corepresentation
on the C∗-algebra C = K(H).

A bicharacter between C∗-bialgebras (A,∆A) and (B,∆B) is a unitary χ ∈ U(A⊗B)
that is a left corepresentation of (A,∆A) and a right corepresentation of (B,∆B). Every
such bicharacter has a dual bicharacter

χ̂ = σ(χ∗) ∈ U(B ⊗A). (2.4)

2.2. C∗-quantum groups [1,20,21,23]. We follow the approach of Woronowicz, where
a C∗-bialgebra is regarded as a C∗-quantum group if it arises from a well-behaved mul-
tiplicative unitary, and which includes the locally compact quantum groups or, more
precisely, the reduced C∗-algebraic quantum groups of Kustermans and Vaes [11].

Definition 2.1 ([1, Definition 1.1]). Let H be a Hilbert space. A unitary W ∈ U(H⊗H)
is multiplicative if it satisfies the pentagon equation

W23W12 =W12W13W23 in U(H ⊗H⊗H). (2.5)

Technical assumptions such as manageability ([23]) or, more generally, modularity
([20]) are needed in order to construct C∗-bialgebras out of a multiplicative unitary.

Theorem 2.2 ([20, 21, 23]). Let H be a separable Hilbert space and W ∈ U(H ⊗H) a
modular multiplicative unitary.

(1) The spaces

A ∶= {(ω ⊗ idH)W ∶ ω ∈ B(H)∗}CLS, (2.6)

Â ∶= {(idH ⊗ ω)W ∶ ω ∈ B(H)∗}CLS (2.7)

are separable, nondegenerate C∗-subalgebras of B(H).
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(2) We have W ∈ U(Â ⊗A) ⊆ U(H ⊗H). We write WA for W viewed as a unitary

multiplier of Â⊗A.
(3) There exist unique comultiplications

∆A ∈Mor(A,A⊗A) and ∆̂A ∈Mor(Â, Â⊗ Â)
such that WA is a bicharacter for the C∗-bialgebras (A,∆A) and (Â, ∆̂A). Ex-

plicitly, for all a ∈ A and â ∈ Â,

∆A(a) =W12(a⊗ 1)W∗12, ∆̂A(â) = σ(W∗12(1⊗ â)W12). (2.8)

These two comultiplications satisfy the cancellation condition (2.1).
(4) There exists a unique ultraweakly continuous, linear anti-automorphism RA of A

with

∆A ○RA = σ ○ (RA ⊗RA) ○∆A, (2.9)

where σ(x⊗ y) = y ⊗ x. It satisfies R2
A = idA.

A C∗-quantum group is a C∗-bialgebra G = (A,∆A) constructed from a modular
multiplicative unitary as above.

If (A,∆A) is a reduced C∗-algebraic quantum group in the sense of Kustermans and
Vaes [11], that is, if it satisfies certain density conditions and carries an analogue of a left
and of a right Haar measure, then one can associate to it a right regular representation W,
which is a modular multiplicative unitary, and identify (A,∆A) with the C∗-bialgebra
constructed from W as above. Thus, (A,∆A) is a C∗-quantum group.

The dual multiplicative unitary is Ŵ ∶= ΣW
∗Σ ∈ U(H⊗H), where Σ(x⊗y) = y⊗x. It

is modular or manageable if W is. The C∗-quantum group generated by Ŵ is the dual

Ĝ = (Â, ∆̂A) of G.
Let G = (A,∆A) be a C∗-quantum group constructed from modular multiplicative

unitary W as above and let C be a C∗-algebra. By (2.8), a unitary U ∈ U(C ⊗A) is a

right corepresentation of (A,∆A) and a unitary V ∈ U(Â⊗C) is a left corepresentation

of (Â, ∆̂A) if and only if

U12U13W
A
23 =W

A
23U12 and WA

12V13V23 = V23W
A
12 (2.10)

in U(C ⊗K(H)⊗A) or U(Â⊗K(H)⊗C), respectively.
If G = (A,∆A) and H = (B,∆B) are C∗-quantum groups and χ ∈ U(A ⊗ B) is a

bicharacter, then by [15, Proposition 3.15],

(RA ⊗RB)(χ) = χ. (2.11)

2.3. Universal quantum groups [15, 21]. The universal dual quantum group Ĝ
u =

(Âu, ∆̂u
A) associated to Ĝ = (Â, ∆̂A), introduced in [10] in the presence of Haar weights

and in [21] in the general framework of modular multiplicative unitaries, is a C∗-bialgebra
that satisfies the cancellation conditions and comes with a universal bicharacter

ṼA ∈ U(Âu
⊗A)

such that

Âu = {(id ⊗ ω)(ṼA) ∶ ω ∈ A′}CLS
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and the following universal property holds. For every right corepresentation U of (A,∆A)
on a C∗-algebra C, there exists a unique morphism ρ ∈Mor(Âu,C) such that

(ρ⊗ idA)ṼA = U in U(C ⊗A). (2.12)

Taking U =WA, we obtain a reducing map Λ̂A ∈Mor(Âu, Â) such that (Λ̂A⊗idA)ṼA =
WA.

Taking U = 1 ∈ U(C ⊗A), we obtain the counit ε̂u
A∶ Â

u → C. By [21, Proposition 31],
it satisfies

(ε̂u
A ⊗ id

Âu) ○ ∆̂u
A = id

Âu = (idÂu ⊗ ε̂
u
A) ○ ∆̂u

A. (2.13)

Taking U = (j⊗RA)(ṼA), where j denotes the canonical ∗-anti-isomorphism from Âu

to the opposite C∗-algebra, we obtain the unitary antipode R̂u
A, which we can regard as

a ∗-anti-isomorphism of Âu. By [21, Proposition 42], it satisfies (R̂u
A)2 = id

Âu and

Λ̂A ○ R̂
u
A = R̂A ○ Λ̂A, ∆̂u

A ○ R̂
u
A = σ ○ (R̂u

A ⊗ R̂
u
A) ○ ∆̂u

A. (2.14)

Similarly, there exist unique bicharacters

VA ∈ U(Â⊗Au) and WA ∈ U(Âu
⊗Au)

that lift WA ∈ U(Â ⊗A). The latter is constructed in [10] in presence of Haar weights
and in [15] in the general framework of modular multiplicative unitaries.

2.4. Morphisms of quantum groups [15]. Let G = (A,∆A) and H = (B,∆B) be

C∗-quantum groups with duals Ĝ = (Â, ∆̂A) and Ĥ = (B̂, ∆̂B), respectively. According

to [15], morphisms from G to Ĥ can be described in terms of bicharacters χ ∈ U(Â⊗B̂), of

morphisms from G
u to Ĥ

u, and in terms of right or left quantum group homomorphisms.

Definition 2.3. An element ∆R ∈ Mor(A,A ⊗ B̂) is a right quantum group homomor-

phism from G to Ĥ if it satifies

(∆A ⊗ id
B̂
) ○∆R = (idA ⊗∆R) ○∆A,

(idA ⊗ ∆̂B) ○∆R = (∆R ⊗ id
B̂
) ○∆R.

(2.15)

A left quantum group homomorphism from G to Ĥ is an element ∆L ∈ Mor(A, B̂ ⊗A)
that satisfies

(id
B̂
⊗∆A) ○∆L = (∆L ⊗ idA) ○∆A,

(∆̂B ⊗ idA) ○∆L = (idB̂ ⊗∆L) ○∆L.
(2.16)

A morphism f ∈Mor(Au, B̂u) of C∗-bialgebras is a morphism from G
u to Ĥ

u.

The following theorem summarises some of the main results of [15].

Theorem 2.4. There are natural bijections between the following sets:

(1) bicharacters χ ∈ U(Â⊗ B̂) from G to Ĥ;

(2) bicharacters χ̂ ∈ U(B̂ ⊗ Â) from H to Ĝ;

(3) right quantum group homomorphisms ∆R ∈Mor(A,A⊗ B̂);
(4) left quantum group homomorphisms ∆L ∈Mor(A, B̂ ⊗A);
(5) morphisms f ∈Mor(Au, B̂u) from G

u to Ĥ
u;
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(6) morphisms f̂ ∈Mor(Bu, Âu) from H
u to Ĝ

u;

(7) bicharacters χu ∈ U(Âu
⊗ B̂u).

The mutually corresponding objects are related by the following equations:

χ̂ = σ(χ)∗, χ = (Λ̂A ⊗ Λ̂B)χu, (2.17)

χu = (id
Âu ⊗ f)(WA) = (f̂ ⊗ id

B̂u)(ŴB), (2.18)

(id
Â
⊗∆R)WA =WA

12χ13, (idÂ ⊗∆L)WA = χ12W
A
13. (2.19)

We denote the bicharactes χ and χu associated to a morphism f ∶Gu → Ĥ
u by W f and

Wf , respectively, so that WA =W idA and WA =W idA .
By [15, Proposition 3.15], every bicharacter χ ∈ U(Â⊗ B̂) satisfies the relation (R̂A ⊗

R̂B)(χ) = χ. Using (2.14) and uniqueness of the lift of a bicharacter, we get:

(R̂u
A ⊗ R̂

u
B)(χu) = χu. (2.20)

The bicharacter relations (2.2) and (2.3) together with (2.13) imply

(ε̂u
A ⊗ id

B̂u)(χu) = 1
B̂u , (id

Âu ⊗ ε̂
u
B)(χu) = 1

Âu . (2.21)

Combining these relations with (2.18), we conclude that the morphism f corresponding
to χ and χu intertwines the unitary antipodes and counits,

f ○ R̂u
A = R̂

u
B ○ f, ε̂u

B ○ f = ε̂
u
A. (2.22)

The corresponding left and the right quantum group homomorphisms make the following
diagram commute,

B̂u
⊗Au

Λ̂B⊗ΛA ��

Au
(f⊗idAu)∆u

Aoo
(idAu⊗f)∆u

A //

ΛA

��

Au
⊗ B̂u

ΛA⊗Λ̂B
��

B̂ ⊗A A
∆Loo

∆R // A⊗A.

(2.23)

In particular, this diagram and the relations (2.14) and (2.22) imply

∆R ○RA = σ ○ (RB̂ ⊗RA) ○∆L. (2.24)

2.5. Coactions of C∗-quantum groups. A (right) coaction of a C∗-bialgebra (A,∆A)
on a C∗-algebra C is a morphism γ ∈Mor(C,C ⊗A) satisfying

(idC ⊗∆A) ○ γ = (γ ⊗ idA) ○ γ. (2.25)

Note that we do not assume injectivity of γ. A morphism π between C∗-algebras C and
D with coactions γ and δ of (A,∆A) is equivariant if δ ○ π = (π ⊗ idA) ○ γ.

Following [2], we call a coaction (C,γ) (strongly) continuous if it satisfies the the
Podleś condition

γ(C) ⋅ (1C ⊗A) = C ⊗A. (2.26)

Note that every such coaction is weakly continuous in the sense that

{(idC ⊗ ω)(γ(C)) ∶ ω ∈ A′}CLS = C. (2.27)

The following straighforward result is well known:



8 SUTANU ROY AND THOMAS TIMMERMANN

Lemma 2.5. Let G = (A,∆A) be a C∗-quantum group with universal C∗-bialgebra
(Au,∆u

A). Then for every coaction (C,γ) of (Au,∆u
A), the following conditions are

equivalent:

(1) γ is injective;
(2) γ is weakly continuous;
(3) (idC ⊗ εu

A)γ = idC .

If γ is continuous, then (1)–(3) hold.

Proof. The equivalence of (1) and (3) is straightforward, and clearly, (3) implies (2). For
the converse, observe that (idC ⊗ εu

A)γ(idC ⊗ ω)γ = (idC ⊗ ω)γ if ω ∈ (Au)′. �

Suppose now that G = (A,∆A) is a C∗-quantum group.

Definition 2.6. We call a C∗-algebra with a continuous coaction of (A,∆A) or (Au,∆u
A)

a G-C∗-algebra or G
u-C∗-algebra, respectively, and denote by C∗alg(G) and C∗alg(Gu),

respectively, the categories formed by all such coactions and equivariant morphisms.

Note that in case of (A,∆A), we do not assume injectivity here.

3. Braided commutation relations

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups. To define the twisted max-
imal tensor product of a G-C∗-algebra and an H-C∗-algebra with respect to a morphism
from G to Ĥ, we need to consider certain braided commutation relations for represen-
tations of A and B which generalize the Heisenberg and anti-Heisenberg commutation
relations considered in [16]. We begin with pairs of representations that lift to the uni-
versal C∗-algebras Au and Bu and interprete them as 2-cells in a tricategory, where the
vertical and horizontal compositions account for various constructions that will come up
later.

3.1. Braided-commuting representations. Denote by Ĝ = (Â, ∆̂A) and Ĥ = (B̂, ∆̂B)
the duals of G and H, and let f, g be morphisms from G

u to Ĥ
u. Denote by

WA ∈ U(Âu
⊗Au), WB ∈ U(B̂u

⊗Bu), Wf ,Wg ∈ U(Âu
⊗ B̂u)

the universal bicharacters associated to A, B, f and g, respectively, see Subsection 2.4,
by WA,WB ,W f ,W g their reduced counterparts, and by σ the flip on a minimal tensor
product of C∗-algebras.

Lemma 3.1. Let α and β be representations of Au and Bu, respectively, on the same
Hilbert space H. Then the following relations are equivalent:

Wf
12WA

1αWB
2β =WB

2βWA
1αWg

12 in U(Âu
⊗ B̂u

⊗K(H)), (3.1)

W
f
12VA1αVB2β = VB2βVA1αW g

12 in U(Â⊗ B̂ ⊗K(H)), (3.2)

(f ⊗ α)∆u
A(a) =WB

1β(g ⊗α)σ∆u
A(a)(WB

1β)∗ for all a ∈ Au, (3.3)

where WA
1α = ((idÂu ⊗ α)WA)13, WB

2β = ((idB̂u ⊗ β)WB)23 et cetera.
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Proof. If (3.1) holds, then an application of Λ̂A⊗Λ̂B⊗id yields (3.2). Conversely, suppose

(3.2) holds. Let Ṽf = (id
Âu ⊗ Λ̂B)(Wf ) and Ṽg = (id

Âu ⊗ Λ̂B)(Wg). Then

(Λ̂A ⊗ id
B̂
⊗ idK(H))(Ṽf12WA

1α) =W f
12VA1α = VB2βVA1αW g

12(VB2β)∗ = (Λ̂A ⊗Ad(VB1β))(WA
1αṼg12).

Since Ṽf12WA
1α and WA

1αṼg12 are left corepresentations, [15, Lemma 4.13] implies

Ṽf12WA
1α = (idÂu ⊗Ad(VB1β))(WA

1αṼg12) = VB2βWA
1αṼg12(VB2β)∗.

Thus, our initial relation lifts from Â ⊗ B̂ ⊗ K(H) to Âu
⊗ B̂ ⊗ K(H). Repeating the

argument similarly as in [15, Proposition 4.14], we can conclude that the relation lifts

to Âu
⊗ B̂u

⊗K(H) as well so that (3.1) holds.
Finally, (3.1) is equivalent to (3.3) because

(id
Âu ⊗ (f ⊗ α)∆u

A)(WA) = (id
Âu ⊗ f ⊗ α)(WA

12WA
13) =Wf

12WA
1α

and similarly (id
Âu ⊗ (g ⊗ α)σ∆u

A)(WA) =WA
1αWg

12. �

Definition 3.2. An (f, g)-pair consists of non-degenerate representations α of Au and
β of Bu on the same Hilbert space H satisfying (3.1)–(3.3).

We are primarily interested in the four combinations that arise when one of the mor-
phisms is the trivial morphism τ ∈ Mor(Au, B̂u), given by τ(a)b = εu

A(a)b for all a ∈ A,

b ∈ B, or when H = Ĝ and one of the morphisms is the identity on Au = B̂u. Note that
the associated bicharacters are just W τ = 1A ⊗ 1

B̂
and W id =WA, respectively.

Definition 3.3 ([16], [19]). A Heisenberg pair for f is a (τ, f)-pair, an anti-Heisenberg
pair for f is an (f, τ)-pair, and a Drinfeld pair for f is an (f, f)-pair of representations.

Example 3.4. A (τ, τ)-pair of representations is a commuting pair of representations.

Example 3.5. The counits εu
A and εu

B on Au and Bu, respectively, form an (f, f)-pair for

every f because (id
Âu ⊗ ε

u
A)(WA) = 1 ∈M(Âu) and (id

B̂u ⊗ ε
u
B)(WB) = 1 ∈M(B̂u).

Example 3.6. Let Γ be a discrete group and consider the C∗-bialgebras A = C0(Γ)
and Â = C∗r (Γ) that arise from the multiplicative unitary W ∶= ∑g ρg ⊗ δg acting on

l2(G) ⊗ l2(G), where δg and ρg denote the canonical projection and right translation

operators on l2(G). Denote by Ug ∈ Âu = C∗(Γ), where g ∈ Γ, the canonical generators,

so that WA = ∑g Ug ⊗ δg. Then a pair of representations (α,β) of Au and Âu is a
Heisenberg pair, anti-Heisenberg pair or Drinfeld pair for f = idAu if and only if for all
g,h ∈ G, the product α(δh)β(Ug) is equal to

β(Ug)α(δhg), β(Ug)α(δg−1h) or β(Ug)α(δg−1hg),
respectively.

Let us collect a few useful formulas for Heisenberg pairs and anti-Heisenberg pairs.

Remark 3.7. Taking f or g equal to τ in (3.3), we find that a pair of representations

(α,β) is a Heisenberg pair for a morphism g from G
u to Ĥ

u if and only if

α(a)⊗ 1
B̂u = (ŴB

β1)∗(α⊗ g)∆u
A(a)(ŴB

β1) for all a ∈ Au, (3.4)
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and an anti-Heisenberg pair for a morphism f from G
u to Ĥ

u if and only if

(WB
1β)∗(f ⊗ α)∆u

A(a)WB
1β = 1

B̂u ⊗α(a) for all a ∈ Au. (3.5)

In particular, if Ĥ = G so that Bu = Âu, then (α,β) is a Heisenberg pair for the identity
on G if and only if

WA
β2(α(a) ⊗ 1)(WA

β2)∗ = (α⊗ idAu)∆u
A(a) for all a ∈ Au, (3.6)

and an anti-Heisenberg pair for the identity on G if and only if

ŴA
1β(1⊗ α(a))(ŴA

1β)∗ = (idAu ⊗ α)∆u
A(a) for all a ∈ Au. (3.7)

Intertwiners of (f, g)-pairs are defined in a natural way.

Definition 3.8. An intertwiner from an (f, g)-pair (α,β) on some Hilbert space H to
an (f, g)-pair (α′, β′) on some Hilbert space H′ is an operator T ∈ B(H,H′) satisfying
Tα(a) = α′(a)T and Tβ(b) = β′(b)T for all a ∈ Au and b ∈ Bu. We call two such
(f, g)-pairs isomorphic and write (α,β) ≅ (α′, β′) if they admit a unitary intertwiner,

Evidently, all (f, g)-pairs with intertwiners form a category. We denote it by R(f, g).
We shall also need a weaker notion of equivalence.

Lemma 3.9. Let (α,β) be an (f, g)-pair. Then α(Au) ⋅ β(Bu) is a C∗-algebra.

Proof. Apply slice maps of the form ω ⊗ ω′ ⊗ id to (3.2) to see that β(Bu) ⋅ α(Au) =
α(Au) ⋅ β(Bu). �

Definition 3.10. We call two (f, g)-pairs (α,β) and (α′, β′) equivalent and write
(α,β) ∼ (α′, β′) if there exists an isomorphism of C∗-algebras Φ from α(Au)β(Bu)
to α′(Au)β′(Bu) such that Φ ○α = α′ and Φ ○ β = β′.

The unitary antipode yields a bijective correspondence between (f, g)-pairs and (g, f)-
pairs as follows. Given representations α and β of Au and Bu on some Hilbert space H,
we define representations ᾱ and β̄ of Au and Bu on the conjugate Hilbert space H as in
[16, Section 3] by

ᾱ(a) ∶= α(Ru
A(a))T, β̄(b) ∶= β(Ru

B(b))T, (3.8)

where Ru
A and Ru

B denote the unitary antipodes and TT the transpose of an operator
T ∈ B(H).
Lemma 3.11. Let (α,β) be a pair of non-degenerate representations of Au and Bu on
the same Hilbert space. Then the following assertions are equivalent:
(1) (α,β) is an (f, g)-pair, (2) (ᾱ, β̄) is a (g, f)-pair,

(3) (β,α) is an (f̂ , ĝ)-pair, (4) (β̄, ᾱ) is a (ĝ, f̂)-pair.

Proof. Copy the proof of [16, Lemma 3.6, 3.7]. �

Since the assignment T ↦ TT is anti-multiplicative, the assignments

(α,β) ↦ (α,β) ∶= (ᾱ, β̄) and T ↦ TT

form a contravariant functor R(f, g) →R(g, f). Moreover, clearly

(α,β) ∼ (α′, β′) ⇔ (α,β) ∼ (α′, β′). (3.9)
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3.2. The tensor product. Next, we assemble the categories R(f, g) associated to mor-

phisms f, g from G
u to Ĥ

u into a bicategory.

Lemma 3.12. Let f, g, h∶Gu → Ĥ
u be morphisms of universal C∗-quantum groups.

(1) If (α,β) is an (f, g)-pair on some Hilbert space H and (α′, β′) is a (g,h)-pair
on some Hilbert space H′, then

(α,β) ⊗ (α′, β′) ∶= ((α⊗ α′) ○∆u
A, (β ⊗ β′) ○∆u

B) (3.10)

is an (f,h)-pair on H⊗H′. Moreover, the flips H⊗H′ ⇄H′⊗H are isomorphisms

(α,β) ⊗ (α′, β′) ≅ (α′, β′)⊗ (α,β). (3.11)

(2) The assignments

((α′, β′), (α,β)) ↦ (α,β) ⊗ (α′, β′) and (T,S) ↦ S ⊗ T (3.12)

define a functor R(g,h) ×R(f, g) → R(f,h).
Proof. (1) Denote the pair on the right hand side in (3.10) by (α′′, β′′). Then (2.3),
applied to WA and WB , implies

WA
1α′′ =WA

1αWA
1α′ and WB

2β′′ =WB
2βWB

2β′ , (3.13)

whereWA
1α = (idÂu⊗α)(WA)12 andWA

1α′ = (idÂu⊗α
′)(WA)13 inM(Âu

⊗K(H)⊗K(H′))
and WB

2β and WB
2β′ are defined similarly. Now two applications of (3.1) show that

Wf
12WA

1αWA
1α′WB

2βWB
2β′ =Wf

12WA
1αWB

2βWA
1α′WB

2β′

=WB
2βWA

1αWg
12WA

1α′WB
2β′

=WB
2βWA

1αWB
2β′WA

1α′Wh
12 =WB

2βWB
2β′WA

1αWA
1α′Wh

12

and hence Wf
12WA

1α′′WB
2β′′ =WB

2β′′WA
1α′′Wh

12.

The flip provides isomorphisms in (3.11) because the unitary antipodes reverse the
comultiplications.

(2) Straightforward. �

Recall that a bicategory B consists of a class of objects obB, a category B(f, g) for
each f, g ∈ obB whose objects and morphisms are called 1-cells and 2-cells, respectively,
a functor cf,g,h∶B(g,h) × B(f, g) → B(f,h) (“composition”) for each f, g, h ∈ obB,
an object 1f ∈ B(f, f) (“identity”) for each f ∈ obB, an isomorphism af,g,h,j(α,β, γ)
from cf,g,j(cg,h,j(γ,β), α) to cf,h,j(γ, cf,g,h(β,α)) in B(f, j) (“associativity”) for each

triple of 1-cells f
αÐ→ g

βÐ→ h
γÐ→ j in B, and isomorphisms lf(α)∶ cf,f,g(α,1f ) → α and

rg(α)∶ cf,g,g(1g, α) → α in B(f, g) for each 1-cell f
αÐ→ g in B, subject to several axioms

[12].

Proposition 3.13. Let G and H be C∗-quantum groups. There exists a bicategory B,
where the objects are all morphisms f ∶Gu → Ĥ

u, the category B(f, g) is the category of
(f, g)-pairs with intertwiners as morphisms, the composition functors B(g,h)×B(f, g) →
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B(f,h) are given by (3.12), the unit object 1f ∈ B(f, f) is (εu
A, ε

u
B), and the isomor-

phisms af,g,h,j((α,β), (α′ , β′), (α′′, β′′)), lf((α,β)) and rf((α,β)) associated to pairs of
representations on Hilbert spaces H,H′ and H′′ are the canonical isomorphisms

H ⊗ (H′ ⊗H′′) → (H ⊗H′)⊗H′′, C⊗H → H and H ⊗C→ H. (3.14)

Proof. The isomorphisms in (3.14) intertwine the representations of Au involved because
(idAu ⊗∆u

A)∆u
A = (∆u

A ⊗ idAu)∆u
A, (εu

A ⊗ idAu)∆u
A = idAu and (idAu ⊗ εu

A)∆u
A = idAu , and

likewise they intertwine the representations of Bu involved. The coherence conditions
that these isomorphisms have to satisfy in order to obtain a bicategory reduce to the
corresponding coherence conditions for the monoidal category of Hilbert spaces. �

From now on, we suppress the isomorphisms in (3.14) and pretend the monoidal
category of Hilbert spaces to be strict. Then the bicategory constructed above becomes
a strict 2-category. We denote this 2-category by C(Gu, Ĥu).
3.3. The cubical tricategory. We now vary G and H and assemble the associated
2-categories C(Gu, Ĥu) into a tricategory that is rather strict, namely, cubical [5], [7], or
equivalently, into a category enriched over 2-categories, where the latter are equipped
with the monoidal structure due to Gray [6].

Let F = (A,∆A), G = (B,∆B) and H = (C,∆C) be C∗-quantum groups.

Lemma 3.14. Let φ∶Fu → G
u and ψ∶Gu → Ĥ

u be morphisms. Then there exist strict
2-functors φ∗∶C(Gu, Ĥu) → C(Fu, Ĥu) and ψ∗∶C(F,G) → C(F, Ĥ) such that for each mor-
phism f , each pair of representations (α,β) and each intertwiner T ,

φ∗f = f ○ φ, φ∗(α,β) = (α ○ φ,β), φ∗T = T,

ψ∗f = ψ ○ f, ψ∗(α,β) = (α,β ○ ψ̂), ψ∗T = T.

Proof. The verification is straightforward. For example, if f, g∶Gu → Ĥ
u are morphisms

and (α,β) is an (f, g)-pair, then (α ○ φ,β) is an (f ○ φ, g ○ φ)-pair because

Wfφ
12WC

1(αφ)WB
2β =W

f

φ̂2
WA

φ̂α
WB

2β =WB
2βWA

φ̂α
W

g

φ̂2
=WB

2βWC
1(αφ)Wgφ

12 ,

where we used the relation (id
Ĉu ⊗ φ)(WC) =Wφ = (φ̂⊗ idAu)(WA). �

Lemma 3.15. Given morphisms f, g∶Fu → G
u and f ′, g′∶Gu → Ĥ

u, and an (f, g)-pair
(α,β) and an (f ′, g′)-pair (α′, β′), there exists an isomorphism

U
(α′,β′)

(α,β)
∶= ŴB

α′βΣ∶f ′∗(α,β) ⊗ g∗(α′, β′) → f∗(α′, β′)⊗ g′∗(α,β).

Proof. Denote the underlying Hilbert spaces of (α,β) and (α′, β′) by H and H′, and let

(γ, δ) = f ′∗(α,β) ⊗ g∗(α′, β′) = ((α ⊗α′g)∆u
A, (βf̂ ′ ⊗ β′)∆u

B),
(γ′, δ′) = f∗(α′, β′)⊗ g′∗(α,β) = ((α′f ⊗ α)∆u

A, (β′ ⊗ βĝ′)∆u
B).

Then by (2.2), (2.3) and (2.18),

WA
1γ =WA

1αWg
1α′ ∈ U(Âu

⊗K(H)⊗K(H′)), WA
1γ′ =Wf

1α′WA
1α ∈ U(Âu

⊗K(H′)⊗K(H)),
WC

1δ =Wf ′

1β
WC

1β′ ∈ U(Ĉu
⊗K(H)⊗K(H′)), WC

1δ′ =WC
1β′Wg′

1β
∈ U(Ĉu

⊗K(H′)⊗K(H)),
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and ŴB
α′βΣ intertwines (γ, δ) and (γ′, δ′) because by (3.1),

ŴB
α′βΣ23WA

1γ = ŴB
α′βΣ23WA

1αWg
1α′ =Wf

1α′WA
1αŴB

α′βΣ23 =WA
1γ′ŴB

α′βΣ23,

ŴB
α′βΣ23WC

1δ = Σ23(WB
βα′)∗Wf ′

1β
WC

1β′ = Σ23WC
1β′Wg′

1β
(WB

βα′)∗ =WC
1δ′ŴB

α′βΣ23.

Finally, if T intertwines (α,β) and some pair f
(α′′,β′′)ÐÐÐÐ→ g, and S intertwines (α′, β′)

and some pair f ′
(α′′′,β′′′)ÐÐÐÐÐ→ g′, then clearly ŴB

α′βΣ(T ⊗ S) = (S ⊗ T )ŴB
α′′′β′′Σ. �

We can now define a second composition of pairs of representations as one part of a
cubical functor [5]; see also [7].

Proposition 3.16. Let F,G and H be C∗-quantum groups. There exists a cubical functor
C(Gu, Ĥu)×C(Fu,Gu) → C(Fu, Ĥu), given on pairs of objects by (f ′, f) ↦ f ′ ○f , on pairs

of representations f ′
(α′,β′)ÐÐÐÐ→ g′ and f

(α,β)ÐÐÐ→ g by

((α′, β′), (α,β)) ↦ (α′, β′) ○ (α,β) ∶= f∗(α′, β′)⊗ g′∗(α,β),

and on pairs of intertwiners by (T ′, T ) ↦ T ⊗ T ′.

Proof. We show that the functors and the unitary intertwiners obtained in Lemma 3.14
and Lemma 3.15 satisfy the conditions in [7, Proposition 5.2.2].

Suppose given morphisms, pairs of representations and intertwiners as follows:

f

(α,β)
))

(γ,δ)

55
✤✤
✤✤

�� T g in C(Fu,Gu) and f ′
(α′,β′)

))

(γ′,δ′)

55
✤✤
✤✤

�� T
′ g′ in C(Gu, Ĥu).

Then the compositions of the 2-cells in

f ′ ○ f

f ′∗(α,β)
,,

⇓T

f ′∗(γ,δ)

22

f∗(α′,β′)





T ′
⇐

f∗(γ′,δ′)

��

f ′ ○ g

g∗(α′,β′)

��U
(α′,β′)

(γ,δ)
ow

and

f ′ ○ f
f ′∗(α,β) //

f∗(α′,β′)

��

f ′ ○ g

f∗(γ′,δ′)





T ′
⇒

f∗(α′,β′)

��

U
(α′,β′)

(α,β)

y�

g′ ○ f
g′∗(γ,δ)

// g′ ○ g g′ ○ f

f ′∗(α,β)
,,

⇓T

f ′∗(γ,δ)

22 g′ ○ g

coincide because they are just

(T ′ ⊗ 1)U (α′,β′)
(γ,δ)

(T ⊗ 1) = (T ′ ⊗ 1)ŴB
α′δΣ(T ⊗ 1) = (T ′ ⊗ T )ŴB

α′βΣ = (T ′ ⊗ T )U (α′,β′)
(α,β)

.

Next, suppose that we have morphisms and pairs of braided-commuting representa-
tions

f
(α,β)ÐÐÐ→ g

(γ,δ)ÐÐÐ→ h in C(Fu,Gu) and f ′
(α′,β′)ÐÐÐÐ→ g′

(γ′,δ′)ÐÐÐ→ h′ in C(Gu, Ĥu), (3.15)
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with underlying Hilbert spaces H,K,H′,K′, respectively. Write (φ,ψ) = (γ, δ) ⊗ (α,β)
and (φ′, ψ′) = (γ′, δ′)⊗ (α′, β′), and consider the diagram

f ′ ○ f
f ′∗(α,β) //

f∗(α′,β′)
��

f ′ ○ g

g∗(α′,β′)
��

f ′∗(γ,δ) //

U
(α′,β′)

(α,β)

❧❧
❧❧
❧

❧❧
❧❧
❧

qy ❧❧❧
❧

❧❧
❧❧

f ′ ○ h

h∗(α′,β′)
��

U
(α′,β′)

(γ,δ)

❧❧
❧❧
❧

❧❧
❧❧
❧

qy ❧❧❧❧
❧

❧❧
❧❧
❧

g′ ○ f g′∗(α,β)
//

f∗(γ′,δ′)
��

g′ ○ g g′∗(γ,δ)
//

g∗(γ′,δ′)
��

U
(γ′,δ′)

(α,β)

❧❧
❧❧
❧

❧❧
❧❧
❧

qy ❧❧❧
❧

❧❧
❧❧

g′ ○ h

h∗(γ′,δ′)
��

U
(γ′,δ′)

(γ,δ)

❧❧
❧❧
❧

❧❧
❧❧
❧

qy ❧❧❧❧
❧

❧❧
❧❧
❧

h′ ○ f
h′∗(α,β)

// h′ ○ g
h′∗(γ,δ)

// h′ ○ h.

(3.16)

Then by (2.2) and (2.3),

(U (α′,β′)
(α,β)

)
23
(U (γ′,δ′)
(α,β)

)
12
= (ŴB

α′βΣH,H′)23(ŴB
γ′βΣH,K′)12 = (ŴB

φ′β)ΣH,K′⊗H′ = U (φ
′,ψ′)

(α,β)

and

(U (α′,β′)
(γ,δ)

)
12
(U (α′,β′)
(α,β)

)
23
= (ŴB

α′δΣK,H′)12(ŴB
α′βΣH,H′)23 = (ŴB

α′ψ)ΣK⊗H,H′ = U (α
′,β′)

(φ,ψ)
,

where ΣH,H′ denotes the flip H ⊗H′ → H′ ⊗H et cetera. Thus, the three axioms in
[7, Proposition 5.2.2] hold and the assertion follows. �

Note that for general pairs of representations as in (3.15), the two compositions

((α′, β′) ○ (α,β)) ⊗ ((γ′, δ′) ○ (γ, δ)) = f∗(α′, β′)⊗ g′∗(α,β) ⊗ g∗(γ′, δ′)⊗ h′∗(γ, δ),
((α′, β′)⊗ (γ′, δ′)) ○ ((α,β) ⊗ (γ, δ)) = f∗(α′, β′)⊗ f∗(γ′, δ′)⊗ h′∗(α,β) ⊗ h′∗(γ, δ)

are not equal, but naturally isomorphic via 1⊗U
(γ′,δ′)

(α,β)
⊗ 1; see also (3.16).

Theorem 3.17. There exists a cubical tricategory C, where the objects are universal C∗-
quantum groups, the 2-category of morphisms between two universal C∗-quantum groups
F

u and G
u is C(Fu,Gu), the composition functors are as in Proposition 3.16, and the

composition of 2-cells is strictly associative.

Proof. This is straightforward. For example, the composition of 2-cells is strictly as-
sociative because for any sequence of morphisms of C∗-quantum groups and pairs of
representations

E
u

f
++

g

33
✤✤
✤✤

�� (α,β) F
u

f ′

++

g′

33
✤✤
✤✤

�� (α
′,β′) G

u

f ′′

++

g′′

33
✤✤
✤✤

�� (α
′′,β′′) H

u,

a short calculation shows that ((α′′, β′′)○(α′, β′))○(α,β) and (α′′, β′′)○((α′, β′)○(α,β))
both are equal to (α,βĝ′ ĝ′′)⊗ (α′f,β′ĝ′′)⊗ (α′′f ′f,β′′). �

4. Reduced braided-commuting representations

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups as before. We now turn to
consider braided-commuting pairs of representations of the (reduced) C∗-algebras A and
B, which can be defined similarly as for their universal counterparts Au and Bu. Let
χ,χ′ ∈ U(Â⊗ B̂) be bicharacters.
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Definition 4.1. We say that two representations α of A and β of B on the same Hilbert
space H form a (χ,χ′)-pair or (χ,χ′)-commute if

χ12W
A
1αW

B
2β =W

B
2βW

A
1αχ

′
12 in U(Â⊗ B̂ ⊗K(H)).

We call (α,β) faithful if both α and β are faithful.

We will primarily be interested in the case where χ or χ′ is trivial. Clearly, a (1,1)-pair
is just a commuting pair of representations.

Definition 4.2 ([16], [19]). Let χ ∈ U(Â⊗ B̂) be a bicharacter. A Heisenberg pair for χ
is a (1, χ)-pair, an anti-Heisenberg pair for χ is a (χ,1)-pair, and a Drinfeld pair for χ
is a (χ,χ)-pair.

We define intertwiners and equivalence of (χ,χ′)-pairs similarly as before for (f, g)-
pairs. Moreover, for every (χ,χ′)-pair (α,β), the pair (ᾱ, β̄) defined by ᾱ(a) = α(RA(a))T
and β̄(b) = β(RB(b))T for all a ∈ A, b ∈ B is a (χ′, χ)-pair, and the tensor product of a
(χ,χ′)-pair (α,β) and a (χ′, χ′′)-pair (α′, β′),

(α,β) ⊗ (α′, β′) ∶= ((α⊗ α′) ○∆A, (β ⊗ β′) ○∆B)
is a (χ,χ′′)-pair again.

Lemma 4.3. For any two bicharacters χ,χ′ ∈ U(Â⊗B̂), there exists a faithful (χ,χ′)-pair.

Proof. By [16, Lemma 3.8], there exist a faithful anti-Heisenberg pair for χ and a faithful
Heisenberg pair for χ′. The tensor product of the two is a faithful (χ,χ′)-pair. �

There exist canonical Heisenberg, anti-Heisenberg and Drinfeld pairs which are unique
up to equivalence:

Example 4.4. Let (α,β) be a (1, χ)-pair, that is, a Heisenberg pair for χ, and denote by
ιA, ιB the canonical morphisms from A and B to A⊗B. Since (ιA, ιB) is a (1,1)-pair, the
tensor product (α′, β′) ∶= (ιA, ιB)⊗(α,β) is a Heisenberg pair for χ again. [16, Theorem
4.6] shows that (α′, β′) does not depend on (α,β) up to equivalence. We call (α′, β′) a
canonical Heisenberg pair associated to χ, and (ᾱ′, β̄′) a canonical anti-Heisenberg pair
associated to χ. The tensor product (ᾱ′, β̄′)⊗(α′, β′) defines the canonical Drinfeld pair
associated to χ, which plays a fundamental role in the construction of the generalised
Drinfeld double in [19].

The following result is a strengthening of [16, Proposition 3.9]:

Proposition 4.5. Let (α,β) and (α′, β′) be pairs of representations of A and B on some

Hilbert spaces H and K, and let χ,χ′′ ∈ U(Â⊗B̂) be bicharacters such that (α,β)⊗(α′, β′)
is a (χ,χ′′)-pair. Then there exists a bicharacter χ′ such that (α,β) is a (χ,χ′)-pair
and (α′, β′) is a (χ′, χ′′)-pair.

Proof. Choose a (1, χ)-pair (γ, δ) and a (χ′,1)-pair (γ′, δ′). Then (γ, δ) ⊗ (α,β) ⊗
(α′, β′) ⊗ (γ′, δ′) is a (1,1)-pair, and by [16, Proposition 3.9], there exists a bichar-
acter χ′ such that (γ, δ) ⊗ (α,β) is a (1, χ′)-pair and (α′, β′) ⊗ (γ′, δ′) is a (χ′,1)-pair.
By (3.13), the first relation implies

WA
1γW

B
2δW

A
1αW

B
2β =W

A
1γW

A
1αW

B
2δW

B
2β =W

B
2δW

B
2βW

A
1γW

A
1αχ

′
12 =W

B
2δW

A
1γW

B
2βW

A
1αχ

′
12.
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Since WA
1γW

B
2δ = W

B
2δW

A
1γχ12, we can conclude that (α,β) is a (χ,χ′)-pair. A similar

calculation shows that (α′, β′) is a (χ′, χ′′)-pair. �

Let now f, g be morphisms from G
u to Ĥ

u and let χ = W f , χ′ = W g. Then the
(χ,χ′)-pairs defined above correspond to (f, g)-pairs that are reduced in the following
sense:

Definition 4.6. We call an (f, g)-pair (α,β) reduced if α and β factorize through the
reducing homomorphisms ΛA∶A

u → A and ΛB ∶B
u → B, respectively.

Lemma 4.7. Let α and β be representations of A and B on the same Hilbert space.
Then (α,β) is a (χ,χ′)-pair if and only if (αΛA, βΛB) is an (f, g)-pair.

Proof. The if part is trivial. Suppose that (α,β) is a (χ,χ′)-pair. Choose a (1, χ)-pair
(α′, β′) and let (α′′, β′′) ∶= (α′, β′) ⊗ (α,β). Then (α′, β′) and (α′′, β′′) are Heisenberg
pairs for χ and χ′, respectively. Denote the respective compositions with ΛA or ΛB by
α̃′, β̃′, α̃′′, β̃′′, respectively. Then by [16, (4.3)],

WA
1α̃′WB

2β̃′
=WB

2β̃′
WA

1α̃′Wf
12 and WA

1α̃′′WB
2β̃′′
=WB

2β̃′′
WA

1α̃′′Wg
12,

and using (3.13), we conclude that Wf
12WA

1α̃WB
2β̃
=WB

2β̃
WA

1α̃Wg
12. �

With respect to the tensor product, reduced pairs of braided-commuting representa-
tions form a two-sided ideal. To prove this, we need the following well-known result, for
which we did not find a convenient reference.

Proposition 4.8. There exist unique morphisms ∆r,u
A

and ∆u,r
A

that make the following
diagram commute,

Au
⊗Au

idAu⊗ΛA
��

Au
∆u

A //

ΛA
��

∆u

Aoo Au
⊗Au

ΛA⊗idAu

��
Au
⊗A A

∆
u,r
Aoo

∆
r,u
A // A⊗Au.

(4.1)

Proof. Uniqueness is clear. We only prove existence of ∆r,u
A

. Relations (2.3) and (2.10),

applied to the bicharacter VA, imply

(id
Â
⊗ (ΛA ⊗ idAu)∆u

A)(VA) = (idÂ ⊗ΛA ⊗ idAu)(VA12VA13) =WA
12VA13 = VA23W

A
12(VA23)∗

and hence (ΛA ⊗ idAu)∆u
A(a) = VA(ΛA(a)⊗ 1Au)(VA)∗. �

Corollary 4.9. Let (α,β) be an (f, g)-pair and let (α′, β′) be a (g,h)-pair. If one of
the two is reduced, then so is (α,β) ⊗ (α′, β′).

Let us call a morphism f ∈Mor(Au, B̂u) of C∗-bialgebras reduced if the compositions

Λ̂B ○f ∈Mor(Au, B̂) and Λ̂A ○ f̂ ∈Mor(Bu, Â) factorize through ΛA and ΛB , respectively,
such that we obtain commutative diagrams

Au f
//

ΛA ��

B̂u

Λ̂B��

Bu f̂
//

ΛB ��

Âu

Λ̂A��

A
fr

// B̂ B
f̂r

// Â,

and denote by τ ∈Mor(Au, B̂u) the trivial morphism, given by a↦ εu
A(a)1B̂u .
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Remark 4.10. (1) In case Ĥ = G, the identity f = idAu evidently is reduced.

(2) It may happen that f factorizes through ΛA and f̂ does not factorize through

ΛB . For example, if G is trivial, then f = f r but f̂ = εu
B need not descend to B.

The following result shows that Heisenberg and anti-Heisenberg pairs are automati-
cally reduced:

Proposition 4.11. If f is reduced, then every Heisenberg pair and every anti-Heisenberg
pair for f is reduced.

Proof. Let (α,β) be an anti-Heisenberg pair for f . Then by (3.5),

(f ⊗α)∆u
A(a) =WB

1β(1B̂u ⊗α(a))(WB
1β)∗.

We apply Λ̂B on the first tensor factor and obtain

(f r
○ΛA ⊗ α)∆u

A(a) = VB1β(1B̂ ⊗ α(a))(VB1β)∗.
By Proposition 4.8, (ΛA⊗ idAu)∆u

A factorizes through ΛA. Hence, so does α. Repeating

this argument for the (f̂ , τ̂)-pair (β,α), we find that β factorizes through ΛB . �

Of course, relations (3.4)–(3.7) have reduced counterparts which include, for example,
the following generalization of [15, Theorem 5.3 (33)]:

Lemma 4.12. Let χ ∈ U(Â⊗ B̂) be a bicharacter, denote by ∆R and ∆L the associated
right and left quantum group homomorphisms, and let (π, π̂) a Heisenberg pair for WA.
Then for all a ∈ A,

(π ⊗ id
B̂
)∆R(a) = χπ̂2(π(a) ⊗ 1)χ∗π̂2,

(id
B̂
⊗ π̄)∆L(a) = χ̂1¯̂π(1⊗ π̄(a))χ̂∗1¯̂π

.

Proof. We only prove the second equation; the first one follows similarly. By Lemma
4.7, (π̄, ¯̂π) is an anti-Heisenberg pair for the identity on A. Denote by f ∈Mor(Au, B̂u)
the morphism corresponding to χ and apply f ⊗ id to (3.7) to find that

(f ⊗ π̄ΛA)∆u
A(a) = ŴA

f ¯̂π
(1⊗ π̄(ΛA(a)))(ŴA

f ¯̂π
)∗. (4.2)

Now, apply Λ̂B ⊗ idA and use (2.18) and (2.23) to get the desired relation. �

5. The maximal twisted tensor product of C∗-algebras

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups, (C,γ) a G-C∗-algebra, (D,δ)
a H-C∗-algebra and χ ∈ U(Â⊗ B̂) a bicharacter. Note that we do not require γ or δ to
be injective.

We now define the maximal or universal counterpart to the minimal twisted tensor
product of (C,γ) and (D,δ) with respect to χ introduced in [16]. The following com-
mutation relation (5.1) is the key.

Lemma 5.1. Let E be a C∗-algebra, ϕ ∈Mor(C,E) and ψ ∈Mor(D,E) such that

[(ϕ⊗ ᾱ)γ(c), (ψ ⊗ β̄)δ(d)] = 0 for all c ∈ C,d ∈D (5.1)

and one χ-anti-Heisenberg pair (ᾱ, β̄). Then this relation holds for every χ-anti-Heisenberg
pair (ᾱ, β̄).
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Proof. Denote by ιA and ιB the canonical morphisms from A and B to A⊗B and regard
(ιA, ιB) as a (1,1)-pair. Then (2.27) implies that (5.1) holds if for all c ∈ C and d ∈ D,
the elements

((ϕ⊗ ᾱ) ○ γ ⊗ ῑA)γ(c) = (ϕ⊗ (ᾱ⊗ ῑA)∆A)γ(c)

commutes with the element

((ψ ⊗ β̄)δ ⊗ ῑB)δ(d) = (ψ ⊗ (β̄ ⊗ ῑB)∆B)δ(d).

But Example 4.4 and relations (3.11), (3.9) imply that the anti-Heisenberg pair

((ᾱ ⊗ ῑA)∆A, (β̄ ⊗ ῑB)∆B) = (ᾱ, β̄)⊗ (ῑA, ῑB) ≅ (ιA, ιB)⊗ (α,β)

does not depend on the anti-Heisenberg pair (ᾱ, β̄) up to equivalence. Note that in this
argument, we could have replaced (ῑA, ῑB) by the equivalent pair (ιA, ιB) everywhere. �

Definition 5.2. A χ-commutative representation of (C,γ) and (D,δ) consists of a
C∗-algebra E and morphisms ϕ ∈ Mor(C,E) and ψ ∈ Mor(D,E) such that (5.1) holds
for some (and then for every) anti-Heisenberg pair (ᾱ, β̄) for χ.

A morphism of χ-commutative representations (E,ϕ,ψ) and (E′, ϕ′, ψ′) is a morphism
Ψ ∈ Mor(E,E′) satisfying ϕ′ = Ψ ○ ϕ and ψ′ = Ψ ○ ψ. If Ψ can be chosen to be an
isomorphism, we call (ϕ,ψ) and (ϕ′, ψ′) equivalent.

Let us consider some simple examples.

Example 5.3. Let χ be the trivial bicharacter 1 ∈ U(Â ⊗ B̂). Then a 1-commutative
representation is just a commuting pair of representations. Indeed, an anti-Heisenberg
pair for χ is given by ᾱ(a) = a ⊗ 1 and β̄(b) = 1 ⊗ b, and two representations (ϕ,ψ)
of C and D on a common C∗-algebra χ-commute if and only if (ϕ ⊗ idA)(γ(c))12 and
(ψ ⊗ idB)(δ(d))13 commute for all c ∈ C and d ∈ D, which by (2.27) holds if and only if
ϕ(c) and ψ(d) commute for all c ∈ C and d ∈ D.

Example 5.4. Suppose that (C,γ) = (A,∆A) and (D,δ) = (B,∆B). Then two nondegen-
erate representations ϕ and ψ of A and B, respectively, on the same Hilbert space form a
χ-commutative representation of (A,∆A) and (B,∆B) if and only if they form a Heisen-
berg pair for χ in the sense of Definition 4.2. Indeed, let (ᾱ, β̄) be an anti-Heisenberg
pair for χ, that is, a (χ,1)-pair. Then Proposition 4.5 implies that (ϕ ⊗ ᾱ)∆A(A) and
(ψ ⊗ β̄)∆B(B) commute, that is, (ϕ,ψ) ⊗ (ᾱ, β̄) is a (1,1)-pair, if and only if (ϕ,ψ) is
a (1, χ)-pair.

Example 5.5. Let Γ be a discrete group and suppose that A = C0(Γ) and B ∶= Â = C∗r(Γ)
are equipped with the usual comultiplications. Then δ corresponds to a grading of D
by G and γ corresponds to a (left) action of G on C, which we write as (g, c) ↦ g ⋅ c. In
the notation of Example 3.6, an anti-Heisenberg pair (ᾱ, β̄) for WA = ∑g ρg ⊗ δg is given

by ᾱ(δh) = δh−1 and β̄(ρg) = ρg. Hence, a pair of representations (ϕ,ψ) of C and D is a

WA-commutative representation if and only if for every c ∈ C and every d ∈ D of degree
g,

∑
h

ϕ(h ⋅ c)ψ(d) ⊗ δh−1ρg = ∑
h′
ψ(d)ϕ(h′ ⋅ c)⊗ ρgδh′−1 ,

that is, if and only if ψ(d)ϕ(c′) = ϕ(g ⋅ c′)ψ(d) for all c′ ∈ C and all d ∈D of degree g.
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Every χ-commutative representation is a crossed tensor product of C and D in the
sense of [16, Definition 2.1]:

Lemma 5.6. Let (E,ϕ,ψ) be a χ-commutative representation of (C,γ) and (D,δ).
Then

ϕ(C) ⋅ ψ(D) = ψ(D) ⋅ ϕ(C) ⊆M(E). (5.2)

Proof. Let (ᾱ, β̄) be a χ-anti-Heisenberg pair on H. Since ᾱ(A) ⋅ K(H) = K(H), the
Podleś condition (2.26) for γ gives

(idC ⊗ ᾱ)γ(C) ⋅ (1C ⊗K(H)) = C ⊗K(H).
Similarly, (idD ⊗ β̄)ψ(D) ⋅ (1D ⊗K(H)) =D ⊗K(H). Using (5.1), we conclude

ϕ(C) ⋅ ψ(D)⊗K(H) = (ϕ⊗ ᾱ)γ(C) ⋅ (ψ ⊗ β̄)δ(D) ⋅ (1E ⊗K(H))
= (ψ ⊗ β̄)δ(D) ⋅ (ϕ⊗ ᾱ)γ(C) ⋅ (1E ⊗K(H))
= ψ(D) ⋅ ϕ(C)⊗K(H).

Slicing the second leg by ω ∈ B(H)∗ completes the proof. �

The χ-commutative representations with morphisms as above form a category. Stan-
dard cardinality arguments show that there exists a χ-commutative representation which
is universal in the sense that it is an initial object in this category.

Definition 5.7. The maximal twisted tensor product of a G-C∗-algebra (C,γ) and an

H-C∗-algebra (D,δ) with respect to a bicharacter χ ∈ U(Â⊗ B̂) is the C∗-algebra

C ⊠χmax D ∶= j
u
C(C) ⋅ j

u
D(D)

generated by a universal χ-commutative representation (Eu, ju
C , j

u
D) of (C,γ) and (D,δ).

Note that by Lemma 5.6, (C ⊠χmax D,j
u
C , j

u
D) is a crossed product of C and D in the

sense of [16, Definition 2.1].
By definition, we obtain for every χ-commutative representation (E,ϕ,ψ) of (C,γ)

and (D,δ) a unique morphism

ϕ ◻ ψ ∈Mor(C ⊠χmax D,E) such that (ϕ ◻ ψ)ju
C = ϕ and (ϕ ◻ψ)ju

D = ψ.

The assignment ((C,γ), (D,δ)) ↦ C ⊠
χ
max D extends to a bifunctor as follows.

If also (C ′, γ′) is a G-C∗-algebra and (D′, δ′) is a H-C∗-algebra, and if ρ ∈Mor(C,C ′)
and θ ∈Mor(D,D′) are equivariant, we obtain a commutative diagram

C
ju

C //

ρ

��

C ⊠
χ
max D

ρ⊠χ
maxθ
��

D
ju

Doo

θ
��

C ′
ju

C′ // C ′ ⊠
χ
max D

′ D′,
ju

D′oo

where the representations ju
C′ ○ ρ and ju

D′ ○ θ χ-commute and

ρ ⊠χmax θ = (j
u
C′ ○ ρ) ◻ (j

u
D′ ○ θ).

Proposition 5.8. The assignments ((C,γ), (D,δ)) ↦ C ⊠
χ
max D and (ρ, θ) ↦ ρ ⊠

χ
max θ

form a bifunctor from C∗alg(G) × C∗alg(H) to C∗alg.
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As one should expect, there exists a canonical quotient map from the maximal twisted
tensor product C ⊠χmax D to the minimal twisted tensor product C ⊠χminD introduced in
[16]. To prove this, we use the following analogue of Proposition 4.5.

Lemma 5.9. Let (ϕ,ψ) be a χ-commutative representation of (C,γ) and (D,δ), and
let (α,β) be an (χ,χ′)-pair on some Hilbert space H. Then

(ϕ,ψ) ⊗ (α,β) ∶= ((ϕ⊗α)γ, (ψ ⊗ β)δ)

is a χ′-commutative representation of (C,γ) and (D,δ). In particular, there exists a
morphism

(ju
C ⊗α)γ ◻ (j

u
D ⊗ β)δ ∈Mor(C ⊠χ

′

max D, (C ⊠
χ
max D)⊗K(H)),

where ju
C and ju

D denote the canonical morphisms from C and D, respectively, to C ⊠χmax

D.

Proof. Let (ᾱ′, β̄′) be a (χ′,1)-pair. Then (α,β) ⊗ (ᾱ′, β̄′) is a (χ,1)-pair and hence
((ϕ⊗ α)γ ⊗ ᾱ′)γ(c) and ((ψ ⊗ β)δ ⊗ β̄′)δ(d) commute for all c ∈ C and d ∈ D. �

The minimal twisted tensor product C ⊠χmin D of (C,γ) and (D,δ) with respect to χ
was introduced in [16] as follows. Choose a χ-Heisenberg pair (α,β) on H and define
morphisms jC and jD from C and D to C ⊗D ⊗K(H) by

jC(c) ∶= (idC ⊗α)γ(c)13, jD(d) ∶= (idD ⊗ β)δ(d)23 for all c ∈ C, d ∈ D.

Then the minimal twisted tensor product is the C∗-algebra

C ⊠
χ
min D = jC(C) ⋅ jD(D) ⊆M(C ⊗D ⊗K(H)).

This C∗-algebra does not depend on the choice of (α,β) [16, Section 4].

Proposition 5.10. For every G-C∗-algebra (C,γ) and H-C∗-algebra (D,δ), there exists
a unique quotient map C ⊠χmaxD → C ⊠

χ
minD that makes the following diagram commute:

C
ju

C //

jC ((◗◗
◗◗

◗◗
◗◗

◗◗
◗ C ⊠

χ
max D

��

D
ju

Doo

jDvv♠♠♠
♠♠
♠♠
♠♠
♠

C ⊠
χ
min D.

These quotient maps form a natural transformation from the maximal to the minimal
twisted tensor product.

Proof. The natural morphisms ιC , ιD from C and D to C ⊗D form a 1-commutative
representation by Example 5.3, and (jC , jD) = (ιC , ιD) ⊗ (α,β) is a χ-commutative
representation by Lemma 5.9. The desired quotient map is jC ◻ jD. �

Let χ ∈ U(Â⊗ B̂) be a bicharacter as before, and χ̂ = σ(χ)∗ ∈ U(Â⊗ B̂) its opposite.

Proposition 5.11. There exists a natural isomorphism C ⊠
χ
max D ≅ D ⊠

χ̂
max C which

intertwines the canonical maps of C and D.

Proof. By Lemma 3.11, (ᾱ, β̄) is an anti-Heisenberg pair for χ if and only if (β̄, ᾱ) is an
anti-Heisenberg pair for χ̂. Therefore, two representations (ϕ,ψ) form a χ-commutative
representation of (C,γ) and (D,δ) if and only if (ψ,ϕ) is a χ̂-commutative representation
of (D,δ) and (C,γ). �
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In the case where G is a finite group and H is its dual, we can describe the commutation
relations between elements of C and D in the maximal twisted tensor product as follows.

Example 5.12. Suppose that Γ is a finite group, that A = C0(Γ) and B = Â = C∗r(Γ) as
in Example 5.5 and that χ = WA. Then γ and δ correspond to an action of Γ on C

and a grading on D, and the algebraic tensor product C ⊙D can be endowed with the
structure of a *-algebra with multiplication and involution given by

(c⊙ d)(c′ ⊙ d′) = c(g ⋅ c′)⊙ dd′ and (c⊙ d)∗ = (g−1
⋅ c∗)⊙ d∗ (5.3)

for all c, c′ ∈ C and d, d′ ∈ D such that d has degree g ∈ Γ. Example 5.5 shows that
χ-commutative representations of C and D correspond to nondegenerate representations
of C ⊙D, and therefore the maximal twisted tensor product C ⊠χmax D is canonically
isomorphic to the enveloping C∗-algebra C∗(C ⊙D).

In the case Γ = Z/2Z, the coactions γ and δ correspond to Z/2Z-gradings on C and
D, and (5.3) takes the form

(c⊙ d)(c′ ⊙ d′) = (−1)∣c
′∣∣d∣cc′ ⊙ dd′, (c⊙ d)∗ = (−1)∣c∣∣d∣c∗ ⊙ d∗,

where ∣x∣ ∈ {0,1} denotes the degree of a homogeneous element x.

6. Some properties and special cases of the maximal twisted tensor

product

Throughout this section, let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups

with a bicharacter χ ∈ U(Â⊗ B̂) as before.

6.1. Exactness. Let (C,γ) be a G-C∗-algebra with an ideal I ⊆ C that is G-invariant
in the sense that γ(c) = c ⊗ 1 for all c ∈ I. Denote by i∶ I → C the inclusion and by
q∶C → C/I the quotient map. By assumption on I, γ descends to a ∗-homomorphism
γ̃∶C/I →M(C/I⊗A). Clearly, γ̃ is a coaction, satisfies the Podleś condition, and makes
q equivariant.

Proposition 6.1. For every H-C∗-algebra (D,δ), the sequence

0→ I ⊠χmax D
i⊠χ

maxidDÐÐÐÐÐ→ C ⊠χmax D
q⊠χ

maxidDÐÐÐÐÐ→ (C/I) ⊠χmax D → 0

is exact.

Proof. Denote by E0,E1 and E2, respectively, the C∗-algebras in the sequence above,
read from the left to the right, and by

ϕu
0 ∈Mor(I,E0), ϕu

1 ∈Mor(C,E1), ϕu
2 ∈Mor(C/I,E2), ψu

i ∈Mor(D,Ei)

for i = 0,1,2 the canonical morphisms.
First, the map q ⊠

χ
max idD is surjective because

E2 = ϕu
2(C/I) ⋅ ψ

u
2(D) = ϕ

u
2(q(C)) ⋅ ψ

u
2(D)

= (q ⊠χmax idD)(ϕ
u
1(C) ⋅ ψ

u
1(D)) = (q ⊠

χ
max idD)(E1).

Next, we show that the map i⊠χmax idD is injective. Since the natural map r∶C →M(I)
is equivariant and (ϕu

0 , ψ
u
0 ) is a χ-commutative representation, also (ϕu

0 ○ r,ψ
u
0 ) is a χ-

commutative representation. The induced morphism (ϕu
0 ○ r) ◻ ψ

u
0 from C ⊠

χ
max D to

I ⊠
χ
max D is a left inverse to i ⊠χmax idD.
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Let us finally prove exactness in the middle. Clearly, the ideal

J ∶= (i ⊠χmax idD)(I ⊠
χ
max D) = ϕ

u
1(I) ⋅ ψ

u
1(D) ⊆ C ⊠

χ
max D

is contained in ker(q ⊠χmax idD). To deduce the converse inclusion, consider the natural
maps

ϕ̌u
2 ∶C

ϕu

1Ð→M(C ⊠χmax D)→M((C ⊠χmax D)/J),

ψ̃u
2 ∶D

ψu

1Ð→M(C ⊠χmax D)→M((C ⊠χmax D)/J).

Since ϕu
1(I)(C ⊠

χ
maxD) ⊆ J , the map ϕ̌u

2 factorizes through the quotient map q∶C → C/I
and yields a map ϕ̃u

2 ∶C/I →M((C⊠χmaxD)/J). Since (ϕu
1 , ψ

u
1 ) is a χ-commutative repre-

sentation and the quotient map q is equivariant, (ϕ̌u
2 , ψ̃

u
2) and (ϕ̃u

2 , ψ̃
u
2) are χ-commutative

representations. The induced morphism

π = ϕ̃u
2 ◻ ψ̃

u
2 ∈Mor((C/I) ⊠χmax D, (C ⊠

χ
max D)/J)

makes the following diagram commute,

C ⊠
χ
max D

q⊠χ
maxidD //

**❯❯❯
❯❯

❯❯
❯

(C/I) ⊠χmax D

πtt❤❤❤❤
❤❤
❤❤

(C ⊠χmax D)/J,

whence ker(q ⊠χmax idD) ⊆ J . �

6.2. Relation with the universal crossed product. The universal crossed product
construction can be regarded as a special case of a maximal twisted tensor product as
follows.

Let (C,γ) be a G-C∗-algebra. Recall that a covariant representation of (C,γ) on a
Hilbert space H consists of a nondegenerate representation ϕ∶C → B(H) and a right
representation U ∈ U(K(H)⊗A) of G on H satisfying

U(ϕ(c) ⊗ 1)U∗ = (ϕ⊗ idA)γ(c) for all c ∈ C. (6.1)

The universal crossed product C ⋊ Âu is the C∗-algebra ϕ(C) ⋅ ρ(Âu) generated by a

universal covariant representation (ϕ,U) of (C,γ), where ρ is the representation of Âu

on H determined by (ρ⊗ idA)(ṼA) = U . Here, ϕ is faithful if and only if γ is.

The C∗-algebra Âu of the universal dual quantum group Ĝ
u of G can be regarded as

a Ĝ-C∗-algebra via the coaction

δ′ ∶= (id
Âu ⊗ Λ̂A) ○ ∆̂u

A ∈Mor(Âu, Âu
⊗ Â),

where Λ̂A ∈ Mor(Âu, Â) denotes the reducing morphism. Note that δ′ need not be
injective.

We now consider the maximal twisted tensor product of (C,γ) and (Âu, δ′) with

respect to the bicharacter WA ∈ U(Â⊗A).
Theorem 6.2. There exists a unique isomorphism C ⊠W

A

max Â
u ≅ C ⋊ Âu that intertwines

the canonical morphisms of C and Âu to both sides.
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Proof. It suffices to prove the following assertion: If ϕ and ρ are representations of C
and Âu on some Hilbert space H, then (ϕ,ρ) is a WA-commutative representation if and
only if ϕ and U = (ρ⊗ idA)(ṼA) form a covariant representation of (C,γ).

So, suppose that ϕ and ρ are representations of C and Âu on a Hilbert space H
and let (ᾱ, β̄) be a faithful anti-Heisenberg pair for WA on a Hilbert space K. Since

Âu is generated by slices of ṼA, the representations (ϕ,ρ) form a WA-commutative
representation if and only if (ϕ⊗ ᾱ)γ(C)12 commutes with

((ρ⊗ β̄)δ′ ⊗ idA)(ṼA)
in M(K(H)⊗K(K)⊗A). Since ṼA is a bicharacter, the operator above is equal to

(ρ⊗ β̄Λ̂A ⊗ idA)(ṼA23ṼA13) =W
A
β̄3
ṼAρ3.

Thus, (ϕ,ρ) is a WA-commutative representation if and only if (ϕ⊗ ᾱ)γ(C)12 commutes
with WA

β̄3
ṼAρ3 or, equivalently, if and only if

ṼAρ2(ϕ⊗ ᾱ)γ(c)13(ṼAρ2)
∗ = ŴA

2β̄
(ϕ⊗ ᾱ)γ(c)13(Ŵ

A
2β̄
)∗ (6.2)

for all c ∈ C. Since (ᾱ, β̄) is an anti-Heisenberg pair for WA, (3.7) implies

ŴA
2β̄
(ϕ⊗ ᾱ)γ(c)13(Ŵ

A
2β̄
)∗ = (ϕ⊗ (idA ⊗ ᾱ)∆A)γ(c) = ((ϕ⊗ idA)γ ⊗ ᾱ)γ(c).

Slicing the third tensor factor above and in (6.2), and using (2.27), we conclude that
(ϕ,ρ) is a WA-commutative representation if and only if for all c ∈ C,

ṼAρ2(ϕ(c) ⊗ idA)(ṼAρ2)
∗ = (ϕ⊗ idA)γ(c). �

6.3. The quasi-triangular case. Suppose that G is quasi-triangular in the following
sense.

Definition 6.3 ([17, Definition 3.1]). A C∗-quantum group G = (A,∆A) is quasi-

triangular if it comes with a fixed bicharacterR ∈ U(Â⊗Â), called its R-matrix, satisfying

R(σ ○ ∆̂A(â))R∗ = ∆̂A(â) for all â ∈ Â. (6.3)

A short calculation shows that (6.3) is equivalent to the relation

R23Ŵ
A
13Ŵ

A
12 = Ŵ

A
12Ŵ

A
13R23 in U(A⊗ Â⊗ Â), (6.4)

which in turn is equivalent to (idA, idA) being an (R,R)-pair, that is, a Drinfeld pair
for R.

Suppose that R ∈ U(Â⊗ Â) is an R-matrix.

Proposition 6.4. Let (C,γC) and (D,γD) be G-C∗-algebras. Then there exists a unique
continuous coaction γC⊠D of G on C⊠RmaxD that makes the canonical morphisms juC and

juD from C and D to C ⊠Rmax D equivariant.

Proof. Lemma 5.9, applied to (ju
C , j

u
D) and the (R,R)-pair (idA, idA), shows that ϕ ∶=

(ju
C ⊗ idA) ○ γC and ψ ∶= (ju

D ⊗ idA) ○ γD form an R-commutative representation. The
induced morphism

γ(C⊠D) ∶= ϕ ◻ ψ ∈Mor(C ⊠Rmax D, (C ⊠
R
max D)⊗A)

is easily seen to be a coaction and to satisfy the Podleś condition. �
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Denote by τG the trivial coaction of G on C.

Theorem 6.5. Let G be a quasi-triangular C∗-quantum group with R-matrix R. Then
the assignment

((C,γC), (D,γD))↦ (C ⊠Rmax D,γC⊠D)

extends to a bifunctor C∗alg(G) × C∗alg(G) → C∗alg(G) which endows C∗alg(G) with the
structure of a monoidal category. Its unit is (C, τG).

Proof. Clearly, the assignment extends to a bifunctor. To show that C∗alg(G) becomes
monoidal, it suffices to prove the following two assertions:

(1) For any G-C∗-algebra (C,γ), the canonical morphisms to (C,γ)⊠Rmax (C, τG) and
(C, τG) ⊠

R
max (C,γ) are isomorphisms.

(2) For any G-C∗-algebras (C,γC), (D,γD), (E,γE), there exists a unique isomor-
phism of G-C∗-algebras

(C ⊠Rmax D) ⊠
R
max E → C ⊠Rmax (D ⊠

R
max E)

that intertwines the canonical maps of C,D and E to these C∗-algebras.

Both follow easily from Yoneda-type arguments. For example, to prove (2), it suffices to
note that for every C∗-algebra F with morphisms πC , πD, πE from C,D,E, respectively,
to F , the following conditions are equivalent:

● (πC , πD) and (πC ◻ πD, πE) are R-commutative representations;
● (πC , πD), (πC , πE) and (πD, πE) are R-commutative representations;
● (πD, πE) and (πC , πD ◻ πE) are R-commutative representations. �

We can also define the notion of braided commutativity for G-C∗-algebras. In the von-
Neumann algebraic setting, the corresponding notion was introduced in [3, Definition
2.5.3].

Definition 6.6. Let G be a quasi-triangular C∗-quantum group. A G-C∗-algebra (C,γ)
is braided-commutative if (idC , idC) is an R-commutative representation or, equivalently,
if there exists a morphism

C ⊠Rmax C → C, ju
C(c)j

u
D(c

′)↦ cc′,

where ju
C and ju

D denote the two canonical morphisms from C to C ⊠Rmax C.

7. An isomorphism of two crossed products

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups with a bicharacter χ ∈
U(Â⊗ B̂), and let (C,γ) be a G-C∗-algebra and (D,δ) an H-C∗-algebra as before.

Then the maximal tensor product C ⊗maxD carries a natural coaction of the product

C∗-quantum group G×H ∶= (Â⊗B̂, σ23(∆̂A⊗∆̂B)) and we can form the crossed product

(C ⊗max D) ⋊ (Â⊗ B̂). (7.1)

The maximal twisted tensor product C ⊠χmaxD can informally be regarded as a deforma-
tion of C ⊗max D with respect to χ. Likewise, there exists a deformation of G ×H with
respect to χ, the generalised Drinfeld double Dχ(G,H) = (Dχ,∆Dχ) associated to the
bicharacter χ in [19]. We show that like the minimal twisted tensor product C ⊠χmax D,
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see [19, Theorem 6.3], also the maximal twisted tensor product carries a natural coaction
of Dχ(G,H). Moreover, we show that the associated crossed product

(C ⊠max D) ⋊ D̂χ (7.2)

is naturally isomorphic to the crossed product (7.1).
Recall that the C∗-quantum group Dχ(G,H) comes with two morphisms ρ∶A → Dχ

and θ∶B → Dχ of C∗-bialgebras such that (ρ, θ) form a Drinfeld pair for χ and ρ(A) ⋅
θ(B) = Dχ [19].

Proposition 7.1. There exists a unique coaction of Dχ(G,H) on C ⊠
χ
maxD that makes

the following diagram commute, and this coaction is continuous:

C

γ

��

ju

C // C ⊠
χ
max D

��

D
ju

Doo

δ

��
C ⊗A

ju

C⊗ρ // (C ⊠χmax D)⊗Dχ D ⊗B
ju

D⊗θoo

Proof. Lemma 5.9, applied to the χ-commutative representation (ju
C , j

u
D) and the (χ,χ)-pair

(ρ, θ), yields the desired morphism (ju
C ⊗ ρ)γ ◻ (j

u
D ⊗ θ)δ. A routine computation shows

that this morphism is a coaction and satisfies the Podleś condition. �

We thus find:

Theorem 7.2. The maximal twisted tensor product is a bifunctor

⊠
χ
max∶C

∗alg(G) × C∗alg(H)→ C∗alg(Dχ(G,H)).

Let us now turn to the crossed products (7.1) and (7.2). First, we recall their defini-
tion.

Denote by ιuC , ι
u
D and ju

C , j
u
D the canonical morphisms from C and D to C⊗maxD and

to C ⊠χmax D, respectively.
Choose faithful Heisenberg pairs (π, π̂) and (η, η̂) for G and H on Hilbert spaces

H and K, respectively. Then (π ⊗ η, π̂ ⊗ η̂) is a Heisenberg pair for G × H, and the

reduced crossed product (C ⊗maxD)⋊ (Â⊗ B̂) can be identified with the C∗-subalgebra
of M((C ⊗max D)⊗K(H)⊗K(K)) generated by all elements of the form

ċ ∶= (ιuC ⊗ π)(γ(c))12, ḋ ∶= (ιuD ⊗ η)(δ(d))13 , ω̇ ∶= (π̂ ⊗ η̂)(ω)23, (7.3)

where c ∈ C, d ∈ D and ω ∈ Â⊗ B̂.
Following [19], we next define a χ-Heisenberg pair (α,β) on K ⊗H by

α(a) = 1⊗ π(a), β(b) = (η ⊗ π̂)∆̂R(b),

see [19, Proposition 2.35]. Denote by (ᾱ, β̄) the associated χ-anti-Heisenberg pair and

define, as in [19, Proposition 3.10], representations ρ, θ, ξ, ζ of A,B, Â, B̂, respectively,
on K⊗H⊗K⊗H by

ρ(a) = (ᾱ⊗α)∆A(a), θ(b) = (β̄ ⊗ β)∆B(b),

ξ(â) = 1⊗ 1⊗ 1⊗ π̂(â), ζ(b̂) = 1⊗ 1⊗ η̂(b̂)⊗ 1.
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Then the reduced crossed product (C⊠χmaxD)⋊Dχ can be identified with the C∗-subalgebra

ofM((C ⊠χmaxD)⊗K(K)⊗K(H)⊗K(K)⊗K(H)) generated by all elements of the form

c̈ = (ju
C ⊗ ρ)γ(c), d̈ = (ju

D ⊗ θ)δ(d), ω̈ = (η̂ ⊗ π̂)(σ(ω))45,

where c ∈ C, d ∈ D and ω ∈ Â ⊗ B̂. Moreover, the C∗-quantum group Dχ(G,H) =
(Dχ,∆Dχ) arises from the modular multiplicative unitary

W
Dχ =WA

ξρW
B
ζθ ∈ U(K ⊗H ⊗K⊗H),

see [19, Theorem 4.1].

Lemma 7.3. There exists a non-degenerate ∗-homomorphism

Φ∶ (C ⊗max D) ⋊ (Â⊗ B̂)→ (C ⊠χmax D) ⋊ D̂χ
such that for all c ∈ C, d ∈ D and ω ∈ Â⊗ B̂,

Φ(ċ) = c̈, Φ(ḋ) = χ̈d̈χ̈∗, Φ(ω̇) = ω̈.

Proof. Since (ju
C , j

u
D) is a χ-commutative representation, the morphisms ϕC and ϕD

from C and D, respectively, to (C ⊠χmax D)⊗K(K ⊗H) given by

ϕC(c) ∶= (j
u
C ⊗ ᾱ)γ(c) and ϕD(d) ∶= (j

u
D ⊗ β̄)δ(d)

commute and induce a morphism ϕ from C⊗maxD to (C⊠χmaxD)⊗K(K⊗H). Since the
representations (η ⊗ π) ○ σ and (η̂ ⊗ π̂) ○ σ form a Heisenberg pair for G ×H, we obtain
a morphism

Φ ∈Mor((C ⊗max D) ⋊ (Â⊗ B̂), (C ⊠
χ
max D)⊗K(K)⊗K(H)⊗K(K)⊗K(H))

satisfying

Φ(ċ) = (ϕC ⊗ π)γ(c)1235 = (ju
C ⊗ (ᾱ⊗ π)∆A)γ(c)1235 = c̈,

Φ(ḋ) = (ϕD ⊗ η)δ(d)1234 = (ju
D ⊗ (β̄ ⊗ η)∆B)δ(d)1234 ,

Φ(ω̇) = (η̂ ⊗ π̂)σ(ω)45 = ω̈

for all c ∈ C, d ∈D and ω ∈ Â⊗ B̂. But by Lemma 4.12 and definition of β,

(η̂ ⊗ π̂)(χ̂)(η(b) ⊗ 1)(η̂ ⊗ π̂)(χ̂∗) = (η ⊗ π̂)(∆̂R(b)) = β(b), (7.4)

and hence

χ̈∗Φ(ḋ)χ̈ = (ju
C ⊗ (β̄ ⊗ β)∆B)δ(d)12345 = (ju

C ⊗ θ)δ(d)12345 = d̈. �

To show that Φ is an isomorphism, we shall construct its inverse and use the following
result.

Lemma 7.4. There exists a representation λ of A⊗B on K⊗H⊗K⊗H such that for
all a ∈ A and b ∈ B,

λ(a⊗ b) = (α⊗ ᾱ)∆A(a)(β ⊗ β̄)∆B(b).



THE MAXIMAL QUANTUM GROUP-TWISTED C∗-TENSOR PRODUCT 27

Proof. Denote by (π̄, ¯̂π) and (η̄, ¯̂η) the anti-Heisenberg pairs associated to (π, π̂) and
(η, η̂), respectively, and write

π(2) ∶= (π ⊗ π̄)∆A, π̂(2) ∶= (π̂ ⊗ ¯̂π)∆̂A, η(2) ∶= (η ⊗ η̄)∆B.

Then there exists a representation κ of A⊗B such that

κ(a⊗ b) = π(2)(a)23η
(2)(b)14.

Let U ∶= (η̂ ⊗ π̂(2))(χ̂)123. Since π(2)(A) and π̂(2)(Â) commute [16, Proposition 3.15],

Uκ(a⊗ 1)U∗ = π(2)(a)23 = (α⊗ π̄)(∆A(a))123.

On the other hand, Lemma 4.12 implies that

Uκ(1⊗ b)U∗ = (η ⊗ π̂(2) ⊗ η̄)(∆̂R ⊗ idB)∆B(b).

Here, (2.15) and the relation (∆̂R ⊗ idB)∆B = (idB ⊗ ∆̂L)∆B [15, Lemma 5.7] imply

(idB ⊗ ∆̂A ⊗ idB)(∆̂R ⊗ idB)∆B = (∆̂R ⊗ idA ⊗ idB)(∆̂R ⊗ idB)∆B = (∆̂R ⊗ ∆̂L)∆B ,

whence

Uκ(1⊗ b)U∗ = (η ⊗ π̂ ⊗ ¯̂π ⊗ η̄)(∆̂R ⊗ ∆̂L)∆B(b) = (β ⊗ ¯̂π ⊗ η̄)(idB ⊗ ∆̂L)∆B(b).

Flipping the third and fourth tensor factor, we obtain the desired representation λ

because ᾱ(a) = 1 ⊗ π̄(a) and by (2.24), ∆̂R ○ RB = σ(RÂ ⊗ RB)∆̂L and hence β̄(b) =
(η̄ ⊗ ¯̂π)σ∆̂L(b). �

Theorem 7.5. The reduced crossed products (C⊗maxD)⋊(Â⊗ B̂) and (C⊠χmaxD)⋊Dχ
are isomorphic.

Proof. We construct an inverse to Φ as follows. The morphisms ψC and ψD from C and
D to (C ⊗max D)⊗K(K⊗H) given by

ψC ∶= (ι
u
C ⊗ α)γ and ψD ∶= (ι

u
D ⊗ β)δ

form a χ-commutative representation by Lemma 5.9 and induce a morphism ψ = ψC◻ψD
from C ⊠

χ
max D to (C ⊗max D) ⊗K(K ⊗H). This, in turn, yields a morphism Ψ from

(C ⊠χmax D) ⋊ D̂χ to

(C ⊗max D)⊗K(K)⊗K(H)⊗K(K)⊗K(H)⊗K(K)⊗K(H) (7.5)

such that for all c ∈ C, d ∈ D, and ω ∈ Â⊗ B̂,

Ψ(c̈) = (ψC ⊗ ρ)γ(c) = (ι
u
C ⊗ (α⊗ ᾱ⊗ α)∆

(2)
A )γ(c),

Ψ(d̈) = (ψD ⊗ θ)δ(d) = (ιuD ⊗ (β ⊗ β̄ ⊗ β)∆
(2)
B
)δ(d),

Ψ(ω̈) = (η̂ ⊗ π̂)σ(ω)67,

where ∆(2) = (id⊗∆)∆. By the preceding Lemma 7.4, we can define representations κ

and κ̂ of A⊗B and Â⊗ B̂ on K ⊗H ⊗K⊗H⊗K⊗H by the formulas

κ(a⊗ b) ∶= (α⊗ ᾱ⊗ π)∆(2)
A
(a)12346(β ⊗ β̄ ⊗ η)∆

(2)
B
(b)12345,

κ̂(â⊗ b̂) ∶= (η̂ ⊗ π̂)(b̂⊗ â)56,
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and (κ, κ̂) forms a faithful Heisenberg pair for G×H. We therefore obtain an embedding

Ξ of (C ⊗max D) ⋊ (Â⊗ B̂) into the C∗-algebra (7.5) such that

Ξ(ċ) = (ιuC ⊗ (α⊗ ᾱ⊗ π)∆
(2)
A
)γ(c)123457 = Ψ(c̈),

Ξ(ḋ) = (ιuD ⊗ (β ⊗ β̄ ⊗ η)∆
(2)
B )δ(d)123456 ,

Ξ(ω̇) = Ψ(ω̈) = (η̂ ⊗ π̂)σ(ω)67.

Now, we conclude from (7.4) that Ψ(d̈) = Ξ(χ̇∗)Ξ(ḋ)Ξ(χ̇). Evidently, the composition
Ξ−1
○Ψ is inverse to Φ. �

The arguments above can be adapted to the minimal twisted tensor product:

Theorem 7.6. There exists an isomorphism Φr that makes the following diagram com-
mute, where the vertical maps are the canonical quotient maps:

(C ⊗max D) ⋊ (Â⊗ B̂)
Φ //

��

(C ⊠χmax D) ⋊ D̂χ
��

(C ⊗D) ⋊ (Â⊗ B̂)
Φr // (C ⊠χmin D) ⋊ D̂χ.

Proof. A straightforward modification of the proof above yields embeddings Ψmin and
Ξmin from (C ⊠χmin D) ⋊ D̂χ and (C ⊗D) ⋊ (Â⊗ B̂), respectively, into

M((C ⊗D)⊗K(K ⊗H⊗K⊗H⊗K ⊗H))
such that, denoting by ċ, ḋ, ω̇ and c̈, d̈, ω̈ the canonical images of c ∈ C, d ∈ D and ω ∈ Â⊗B̂
in (C ⊠χmin D) ⋊ D̂χ and (C ⊗D) ⋊ (Â⊗ B̂), respectively,

Ψmin(c̈) = Ξmin(ċ), Ψmin(d̈) = Ξmin(χ̇
∗ḋχ̇), Ψmin(ω̈) = Ξmin(ω̇). �

As before, denote by χ̇, Ċ = {ċ ∶ c ∈ C} and Ḋ = {ḋ ∶ d ∈ D} the natural images of χ, C

and D, respectively, in the crossed product (C ⊗max D) ⋊ (Â⊗ B̂).

Corollary 7.7. Suppose that the coaction of Dχ(G,H) on C ⊠
χ
max D is injective. Then:

(1) Φ maps C ⊠χmax D isomorphically to [χ̇Ċχ̇∗ ⋅ Ḋ] ⊆ (C ⊗max D) ⋊ (Â⊗ B̂).
(2) If C is nuclear, then the canonical map C ⊠χmaxD → C⊠

χ
minD is an isomorphism.

Proof. Assertion (1) follows immediately from Theorem 7.5. Suppose that C is nuclear.

Then we can identify (C ⊗maxD)⋊ (Â⊗ B̂) ≅ (C ⊗D)⋊ (Â⊗ B̂) using the quotient map,
and Φ and Φr map C ⊠

χ
max D and C ⊠

χ
min D, respectively, isomorphically to the same

C∗-subalgebra [χ̇Ċχ̇∗ ⋅ Ḋ]. �

Remark 7.8. If the coaction of Dχ(G,H) on C ⊠
χ
max D is injective, one can use the iso-

morphism ϕ of Corollary 7.7 (1) and functoriality of the maximal tensor product and the
reduced crossed product to construct a twisted maximal tensor product f ⊠ g for equi-
variant *-homomorphisms/completely positive maps/completely positive contractions f
and g on C and D, respectively.

Let us end this section with an application of Corollary 7.7 to the case where G and
H are duals of locally compact abelian groups G and H, respectively. In that case, the
minimal twisted tensor product C⊠χminD can be regarded as a Rieffel deformation of the
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minimal tensor product C ⊗D as defined in [8]. This result carries over to the universal
setting easily as follows.

Let G and H be locally compact abelian groups with Pontrjagin duals Ĝ and Ĥ,
respectively. Let C be a Ĝ-C∗-algebra, D an Ĥ-C∗-algebra and χ ∈ Cb(G × H,T) a
bicharacter. Then the maximal tensor product C ⊗max D carries the product action of
Γ ∶= Ĝ × Ĥ, the formula

Ψ((g,h), (g′ , h′)) ∶= χ(g,h′) (7.6)

defines a bicharacter Ψ on Γ, which we can regard as a 2-cocycle, and as in [8], we can
form a Rieffel deformation of C⊗maxD with respect to Ψ in the form of a C∗-subalgebra

(C ⊗max D)
Ψ ⊆M((C ⊗max D) ⋊ Γ).

The following explicit description of this Rieffel deformation was obtained already in
[16, Theorem 6.2], but we include the proof for convenience of the reader. Note that
the bicharacter Ψ above is denoted by Ψ′ in [16, Theorem 6.2], but the difference is
inessential. For elements of M((C ⊗max D) ⋊ Γ), we use the notation (7.3) as before.

Lemma 7.9. (C ⊗max D)
Ψ = [χ̇Ċχ∗Ḋ] as C∗-subalgebras of M((C ⊗max D) ⋊ Γ).

Proof. We follow [16, proof of Theorem 6.3] and only switch Ψ and Ψ′.
The Rieffel deformation (C ⊗max D)

Ψ is defined as a C∗-subalgebra of the crossed
product (C ⊗max D) ⋊ Γ by means of the unitaries

Ug,h ∈ Cb(G ×H,T), Ug,h(g
′, h′) = Ψ((g′, h′), (g,h)) = χ(g′, h),

see [8]. Since C ⊗max D = [(C ⊗max 1)(1⊗max D)], [9, Lemma 3.4] implies that

(C ⊗max D)
Ψ = [(C ⊗max 1)Ψ(1⊗max D)

Ψ]. (7.7)

Since the unitaries Ug,h lie in the subalgebra Cb(G,T)⊗1 and Ĝ acts trivially on D, the

images of Ug,h in (C ⊗max D) ⋊ Γ commute with Ḋ. Therefore,

(1⊗max D)
Ψ = Ḋ ⊆M((C ⊗max D) ⋊ Γ). (7.8)

The 2-cocycle Ψ is cohomologous to the 2-cocycle Ψ′ defined by

Ψ′((g,h), (g′ , h′)) ∶= χ−1(g′, h).

Indeed,

(∂χ)((g,h), (g′ , h′)) ∶=
χ(gg′, hh′)

χ(g,h)χ(g′, h′)
= χ(g,h′)χ(g′, h)

and hence Ψ = (∂χ)Ψ′. By [8, Lemmas 3.4 and 3.5], we get

(C ⊗max 1)Ψ = χ(C ⊗max 1)Ψ
′

χ∗ (7.9)

in M((C ⊗max D) ⋊ Γ). Now, a similar argument as above shows that (C ⊗max 1)Ψ
′
=

Ċ ⊆M((C ⊗max D) ⋊ Γ). Combining formulas (7.7)–(7.9), the assertion follows. �

Theorem 7.10. Let C be a Ĝ-C∗-algebra and D a Ĥ-C∗-algebra. Then there exists an
isomorphism C ⊠

χ
max D → (C ⊗max D)

Ψ that intertwines the canonical embeddings of C
and D.
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Proof. Combine the preceding result and Corollary 7.7 (1). Note that here, the coaction
of Dχ is injective because it just corresponds to an action of G ×H. �

8. Passage to coactions of universal quantum groups

The results that we would like to present next involve the push-forward of coactions
along morphisms of C∗-quantum groups. Such a push-forward, however, can only be
defined under additional assumptions on the coaction, like injectivity, see [15] and the
Appendix, which we are unable to verify in the cases of interest to us.

We therefore switch to coactions of universal quantum groups, which subsume injec-
tive, continuous coactions of C∗-quantum groups and where the push-forward is straight-
forward.

Indeed, let G = (A,∆A) be a C∗-quantum group and let (C,γ) be a (continuous)
coaction of the universal C∗-bialgebra (Au,∆u

A). If (D,∆D) is another C∗-bialgebra
and f ∈Mor(Au,D) is a morphism of C∗-bialgebras, then

f∗γ ∶= (idC ⊗ f)γ ∈Mor(C,C ⊗D)

is a (continuous) coaction again. In the case where (D,∆D) = (A,∆A) and f = ΛA, we
write

γr
∶= (ΛA)∗γ = (idC ⊗ΛA)γ ∈Mor(C,C ⊗A),

and then the assignment (C,γ) ↦ (C,γr) identifies the normal and continuous coactions
of (Au,∆u

A) with the injective and continuous coactions of (A,∆A).
The construction of the maximal twisted tensor product lifts to coactions of universal

C∗-quantum groups as follows.
Suppose that G = (A,∆A) and H = (B,∆B) are C∗-quantum groups with a morphism

of C∗-bialgebras f ∈Mor(Au, B̂u), and denote by χ =W f ∈ U(Â⊗ B̂) the corresponding
bicharacter. Let (C,γ) be a G

u-C∗-algebra and (D,δ) a H
u-C∗-algebra.

Lemma 8.1. Let E be a C∗-algebra with morphisms ϕ ∈Mor(C,E) and ψ ∈Mor(D,E),
and suppose that (ᾱ, β̄) is an anti-Heisenberg pair for f on some Hilbert space H. Then
the following conditions are equivalent:

(1) (φ⊗ ᾱ)γ(c) and (ψ ⊗ β̄)δ(d) commute for all c ∈ C, d ∈ D.
(2) (ϕ,ψ) is a χ-commutative representation of (C,γr) and (D,δr).

Note that if f is reduced, then the assertion follows immediately from Proposition
4.11.

Proof. Since the coactions γr and δr are (strongly) continuous, they are also weakly
continuous. Hence, (1) is equivalent to the commutation of the elements

((ϕ ⊗ ᾱ)γ ⊗ idA)γ
r(c)123 = (ϕ⊗ (ᾱ⊗ΛA)∆

u
A)γ(c)123

and

((ψ ⊗ β̄)δ ⊗ idB)δ
r(d)124 = (ψ ⊗ (β̄ ⊗ΛB)∆

u
B)δ(d)124

in M(E ⊗K(H)⊗A⊗B) for all c ∈ C and d ∈ D. By Corollary 4.9,

((ᾱ ⊗ΛA)∆
u
A, (β̄ ⊗ΛB)∆

u
B) = (ᾱ, β̄)⊗ (ΛA,ΛB)
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is a reduced anti-Heisenberg pair for f and hence, by Lemma 4.7, of the form (ᾱ′ΛA, β̄
′ΛB)

for some anti-Heisenberg pair (ᾱ′, β̄′) for χ. Now, (1) is equivalent to commutation of
(ϕ⊗ ᾱ′)γr(c) and (ψ ⊗ β̄′)δr(d) for all c ∈ C and d ∈ D, which is (2). �

Thanks to this result, we can quickly define an f -commutative representation of (C,γ)
and (D,δ) to be a χ-commutative representation of (C,γr) and (D,δr), and the maximal
twisted tensor product of (C,γ) and (D,δ) with respect to f to be the C∗-algebra

(C,γ) ⊠fmax (D,δ) ∶= (C,γ
r) ⊠χmax (D,δ

r).

The construction of the maximal twisted tensor product is functorial with respect to
the C∗-quantum groups involved in the following sense. Denote by f̂ ∈Mor(Bu, Âu) the
dual morphism of f ; see Theorem 2.4.

Lemma 8.2. Let E be a C∗-algebra with morphisms ϕ ∈Mor(C,E) and ψ ∈Mor(D,E).
Then the following conditions are equivalent:

(1) (ϕ,ψ) is an f -commutative representation of (C,γ) and (D,δ);
(2) (ϕ,ψ) is an id

B̂u-commutative representation of (C,f∗γ) and (D,δ);

(3) (ϕ,ψ) is an idAu-commutative representation of (C,γ) and (D, f̂∗δ).

Proof. We only prove equivalence of (1) and (2); equivalence of (1) and (3) follows
similarly. Choose an anti-Heisenberg pair (ᾱ, β̄) for id

B̂u . Then by Lemma 8.1, (2)

holds if and only if (ϕ⊗ ᾱf)γ(c) commutes with (ψ⊗ β̄)δ(d) for all c ∈ C and d ∈ D. But
by Lemma 3.14, (ᾱf, β̄) is an anti-Heisenberg pair for f , and so, by Lemma 8.1 again,
this commutation relation is equivalent with (1). �

We obtain the following immediate consequence:

Theorem 8.3. There exist canonical isomorphisms

(C,f∗γ) ⊠
id
max (D,γ) ≅ (C,γ) ⊠

f
max (D,δ) ≅ (C,γ) ⊠

id
max (D, f̂∗δ)

which intertwine the canonical morphisms from C and D, respectively, to the three C∗-
algebras above.

Corollary 8.4. Let Gi = (Ai,∆i) be a C∗-quantum group for i = 1,2,3,4, let f (i) ∈
Mor(Au

i ,A
u
i+1) be morphisms of C∗-bialgebras for i = 1,2,3, and let (C,γ) be a G1-C∗-

algebra and (D,δ) a G4-C∗-algebra. Write f ∶= f (3) ○ f (2) ○ f (1). Then there exists a
canonical isomorphism

(C,γ) ⊠fmax (D,δ) ≅ (C,f
(1)
∗ γ) ⊠f

(2)

max (D, f̂
(3)
∗ δ).

Proof. Use the sequence of isomorphisms

(C,γ) ⊠fmax (D,δ) ≅ (C,f
(3)
∗ f

(2)
∗ f

(1)
∗ γ) ⊠id

max (D,δ)

≅ (C,f (2)∗ f
(1)
∗ γ) ⊠id

max (D, f̂
(3)
∗ δ) ≅ (C,f (1)∗ γ) ⊠f

(2)

max (D, f̂
(3)
∗ δ). �

By Proposition 7.1, the maximal twisted tensor product C ⊠χmaxD carries a canonical
coaction of the generalised Drinfeld double Dχ(G,H) = (Dχ,∆Dχ). We show that this
coaction lifts to the universal level. Recall that the C∗-algebra Dχ is generated by the
images of two morphisms ρ ∈ Mor(A,Dχ) and θ ∈ Mor(B,Dχ) of C∗-bialgebras which
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form a Drinfeld pair for χ [19]. By [15, Section 4], the compositions ρ ○ ΛA and θ ○ ΛB
lift uniquely to morphisms ρu ∈Mor(Au,Du

χ) and θu ∈Mor(Bu,Du
χ) of C∗-bialgebras.

Lemma 8.5. (ρu, σu) is a Drinfeld pair for f .

Proof. Denote by VA and VB the maximal corepresentations. By Lemma 3.1, it suffices
to show that the products

VA1ρuVB2θu and χ∗12VB2θuVA1ρuχ12 (8.1)

in U(Â⊗B̂⊗Du
χ) coincide. Since ρu and θu are morphisms of C∗-bialgebras, both products

are right corepresentations. We apply the reducing morphism to Du
χ and obtain the

right corepresentations WA
1ρW

B
2θ and χ∗12W

B
2θW

A
1ρχ12, respectively, which coincide because

(ρ, θ) is a (χ,χ)-pair. By [15, Lemma 4.13], the products (8.1) have to coincide. �

Now, the proofs of Proposition 7.1 and 7.2 carry over to the universal setting and we
obtain the following results:

Proposition 8.6. Let (C,γ) be a G
u-C∗-algebra and (D,δ) be a H

u-C∗-algebra. Then

there exists a unique coaction of Du
χ(G,H) on C⊠fmaxD that makes the following diagram

commute, and this coaction is continuous:

C

γ

��

ju

C // C ⊠
f
max D

��

D
ju

Doo

δ

��
C ⊗Au

ju

C⊗ρ
u

// (C ⊠fmax D)⊗Du
χ D ⊗Bu

ju

D⊗θ
u

oo

Theorem 8.7. The maximal twisted tensor product extends to a bifunctor

⊠
f
max∶C

∗alg(Gu) × C∗alg(Hu)→ C∗alg(Du
χ(G,H)).

Let us finally consider the case where G is quasi-triangular with R-matrix R ∈ U(Â⊗
Â).

Theorem 8.8. Let G be a quasi-triangular C∗-quantum group with R-matrix R and
denote by f = fR ∈Mor(Au, Âu) the corresponding morphism of C∗-bialgebras.

(1) Let (C,γC) and (D,γD) be G
u-C∗-algebras. Then there exists a unique contin-

uous coaction γC⊠D of Gu on C ⊠
f
max D that makes the canonical morphisms ju

C

and ju
D from C and D to C ⊠fmax D equivariant.

(2) The assignment ((C,γC), (D,γD)) ↦ (C ⊠f D,γC⊠D) extends to a bifunctor

C∗alg(Gu) × C∗alg(Gu)→ C∗alg(Gu)

which endows C∗alg(Gu) with the structure of a monoidal category. Its unit is
(C, τG).

Proof. As observed after (6.4), (idA, idA) is a Drinfeld pair for R. A similar argument
like the one used in the proof of Lemma 8.5 shows that (idAu , idAu) is an (f, f)-pair.
Now, (1) and (2) follow by similar argument as in the proofs of Proposition 8.6 and of
Theorem 6.5. �
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9. Yetter–Drinfeld C*-algebras

For every quasi-triangular C∗-quantum group G, the maximal twisted tensor product
endows the category of G-C∗-algebras with a monoidal structure, as we saw in Subsection
6.3 and Theorem 8.8. More generally, we now consider Yetter-Drinfeld C∗-algebras and
their maximal twisted tensor products, and thus obtain not a monoidal category but a
bicategory.

In the reduced setting, Yetter-Drinfeld C∗-algebras were introduced in [18] and gener-
alized in [19]. We need to work in the universal setting, because the following construc-
tions will involve the push-forward of coactions along morphisms of C∗-quantum groups
in situations where we do not know whether this is well-defined in the reduced setting.

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups and let f ∈Mor(Au,Bu) be
a morphism of C∗-bialgebras with corresponding bicharacter Wf = (id

Âu ⊗ f)(WA).
The definition of Yetter-Drinfeld C∗-algebras over f involves the twisted flip map

σu
f ∶B

u
⊗ Âu → Âu

⊗Bu, bu
⊗ âu ↦Wf(âu

⊗ bu)(Wf)∗.

Since W f̂ = Σ(Wf)∗Σ, we have

(σu
f )
−1 = σu

f̂
. (9.1)

Moreover, (2.2) implies the following cocycle relation:

(id
Âu ⊗ σ

u
f )(σ

u
f ⊗ id

Âu)(idBu ⊗ ∆̂u
A) = (∆̂

u
A ⊗ idBu)σu

f . (9.2)

Now, we can give the following the universal counterpart to [19, Definition 7.2].

Definition 9.1. An f -Yetter-Drinfeld C∗-algebra is a C∗-algebra with continuous coac-
tions γ of Ĝu and δ of Hu satisfying

(γ ⊗ idB) ○ δ = (idC ⊗ σu
f ) ○ (δ ⊗ id

Â
) ○ γ. (9.3)

A morphism of f -Yetter-Drinfeld C∗-algebras (C,γC , δC) and (D,γD, δD) is a morphism

φ ∈Mor(C,D) that is equivariant with respect to the respective coactions of Ĝu and H
u.

Denote by YD-C∗alg(f) the category of f -Yetter-Drinfeld C∗-algebras.

Remark 9.2. Denote by f̂ ∈ Mor(B̂u, Âu) the morphism dual to f . Then (9.1) implies
that the assignment (C,γ, δ) ↦ (C,δ, γ) defines an isomorphism

YD-C∗alg(f)→ YD-C∗alg(f̂). (9.4)

Denote by χ = W f = (Λ̂A ⊗ ΛB)(Wf) the reduced bicharacter corresponding to f .
Then the reduced χ-Yetter-Drinfeld C∗-algebras defined in [19, Definition 7.2] form a
full subcategory of YD-C∗alg(f):

Proposition 9.3. Let C be a C∗-algebra with normal continuous coactions γ of Ĝu and
δ of Hu. Then the following assertions are equivalent:

(1) (C,γ, δ) is an f -Yetter-Drinfeld C∗-algebra;
(2) (C,γr, δr) is a χ-Yetter-Drinfeld C∗-algebra.
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Proof. We need to show that (9.3) holds if and only if

(γr
⊗ idB) ○ δ

r = (idC ⊗ σχ) ○ (δr
⊗ id

Â
) ○ γr, (9.5)

where σχ(b ⊗ â) = χ(â ⊗ b)χ∗. Clearly, (9.5) follows from (9.3) upon application of

idC ⊗ Λ̂A ⊗ΛB . Conversely, suppose (9.5). We first show that

(idC ⊗ σ̃)(δ
r
⊗ id

Âu)γ = (γ ⊗ idB)δ
r, (9.6)

where σ̃∶B ⊗ Âu → Âu
⊗ B is given by b ⊗ â ↦ χ̃(â ⊗ b)χ̃∗ with χ̃ = (id

Âu ⊗ ΛB)(Wf).

Denote by ∆̃A∶ Â → Â⊗ Âu the canonical coaction. Then (idC ⊗∆̃A)γ
r = (idC ⊗γr)γ and

(γr
⊗ idB ⊗ id

Âu)(δ
r
⊗ id

Âu)γ = (idC ⊗ σχ ⊗ id
Âu)(δ

r
⊗ idB ⊗ id

Âu)(γ
r
⊗ id

Âu)γ

= (idC ⊗ σχ ⊗ id
Âu)(δ

r
⊗ ∆̃A)γ

r

= (idC ⊗ σχ ⊗ id
Âu)(idC ⊗ idB ⊗ ∆̃A)(idC ⊗ σ

−1
χ )(γ

r
⊗ idB)δ

r.

Now, (9.2) implies

(σχ ⊗ id
Âu)(idB ⊗ ∆̃A)σ

−1
χ = (idÂ ⊗ σ̃

−1)(∆̃A ⊗ idB)

as morphisms from Â⊗B to Â⊗B ⊗ Âu, and hence

(γr
⊗ idB ⊗ id

Âu)(δ
r
⊗ id

Âu)γ = (idC ⊗ id
Â
⊗ σ̃−1)(idC ⊗ ∆̃A ⊗ idB)(γ

r
⊗ idB)δ

r

= (γr
⊗ idB ⊗ id

Âu)(idC ⊗ σ̃
−1)(γ ⊗ idB)δ

r.

Since γ is normal, γr is injective and (9.6) follows. Now, denote by ∆̃B ∶B → B⊗Bu the
canonical coaction. Then

(δr
⊗ id

Âu ⊗ idBu)(γ ⊗ idBu)δ = (idC ⊗ σ̃
−1
⊗ idBu)(γ ⊗ idB ⊗ idBu)(δr

⊗ idBu)δ

= (idC ⊗ σ̃
−1
⊗ idBu)(γ ⊗ ∆̃B)δ

r

= (idC ⊗ σ̃
−1
⊗ idBu)(idC ⊗ id

Âu ⊗ ∆̃B)(idC ⊗ σ̃)(δ
r
⊗ id

Âu)γ.

Now, (9.1) and (9.2), applied to f̂ instead of f , imply

(σ̃−1
⊗ idBu)(id

Âu ⊗ ∆̃B)σ̃ = (id⊗ σ−1
f )(∆̃B ⊗ id)

and hence

(δr
⊗ id

Âu ⊗ idBu)(γ ⊗ idBu)δ = (idC ⊗ id
Âu ⊗ σ

−1
f )(idC ⊗ ∆̃B ⊗ id

Âu)(δ
r
⊗ id

Âu)γ

= (idC ⊗ idB ⊗ σ
−1
f )(δ

r
⊗ idBu ⊗ id

Âu)(δ ⊗ id
Âu)γ.

Since δr is injective, we can conclude the desired relation (9.3). �

Suppose now that we have three C∗-quantum groups G = (A,∆A), H = (B,∆B) and
I = (C,∆C) with morphisms f ∈Mor(Au,Bu) and g ∈Mor(Bu,Cu) of C∗-bialgebras.

Lemma 9.4. (1) Let (D,γD, δD) be an f -Yetter-Drinfeld C∗-algebra. Then the
triple (D,γD, g∗δD) is a (g ○ f)-Yetter-Drinfeld C∗-algebra.

(2) Let (E,γE , δE) be a g-Yetter-Drinfeld C∗-algebra. Then (E, f̂∗γE, δE) is a (g○f)-
Yetter-Drinfeld C∗-algebra.
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Proof. We only prove (1); a similar argument applies to (2). By (2.18), the universal
bicharacters Wf and Wg○f corresponding to f and g ○f , respectively, are related by the
equation

(id
Âu ⊗ g)(Wf ) = (id

Âu ⊗ (g ○ f))(WA) =Wg○f ,

and hence

(id
Âu ⊗ g)σ

u
f (b⊗ â) = (idÂu ⊗ g)(Wf (â⊗ b)(Wf)∗) = σu

(g○f)(g(b) ⊗ â) (9.7)

for all b ∈ Bu and â ∈ Âu. Now, we apply idD ⊗ id
Âu ⊗ g to (9.3) and conclude that

(γD ⊗ idCu)g∗δD = (idD ⊗ σu
(g○f))(g∗δD ⊗ id

Âu)γD. �

Clearly, the assignments (D,γD, δD)↦ (D,γD, g∗δD) and (E,γE , δE)↦ (E, f̂∗γE , δE)
extend to functors

g∗∶YD-C∗alg(f)→ YD-C∗alg(g ○ f) and f∗∶YD-C∗alg(g)→ YD-C∗alg(g ○ f),

respectively.

Proposition 9.5. Let (D,γD, δD) be an f -Yetter-Drinfeld C∗-algebra and (E,γE , δE)
a g-Yetter-Drinfeld C∗-algebra. Denote by D⊠id

maxE the maximal twisted tensor product
of D and E formed with respect to δD, γE and the identity morphism on Bu. Then there
exist unique continuous right coactions γD⊠E and δD⊠E of Ĝ

u and I
u, respectively, on

D ⊠id
max E such that

γ(D⊠E) ○ j
u
D = (j

u
D ⊗ id

Âu)γD, γ(D⊠E) ○ j
u
E = (j

u
E ⊗ f̂)γE ,

δ(D⊠E) ○ j
u
D = (j

u
D ⊗ g)δD, δ(D⊠E) ○ j

u
E = (j

u
E ⊗ idCu)δE .

Moreover, the triple (D ⊠id
max E,γD⊠E , δD⊠E) is a (g ○ f)-Yetter-Drinfeld C∗-algebra.

Proof. Uniqueness is clear since ju
D(D) ⋅ j

u
E(E) =D ⊠

id
max E.

To prove existence of δ(D⊠E), we need to show that the representations

φ ∶= (ju
D ⊗ g)δD and ψ ∶= (ju

E ⊗ idCu)δE

form an idBu -commutative representation. By Lemma 8.1, it suffices to choose an anti-
Heisenberg pair (π̄, ¯̂π) for the identity morphism on Bu, and to show that the elements

(φ⊗ π̄)δD(d) = (j
u
D ⊗ (g ⊗ π̄)∆

u
D)δD

and

(ψ ⊗ ¯̂π)γE(e) = ((ju
E ⊗ idCu)δE ⊗ ¯̂π)γE(e)

commute for all d ∈ D and e ∈ E. We use (4.2) and the Yetter-Drinfeld condition for
(E,γE , δE) to rewrite these elements in the form

(φ⊗ π̄)δD(d) = (ŴB
g ¯̂π
)23(j

u
D ⊗ π̄)δD(d)13(ŴB

g ¯̂π
)∗23,

and

(ψ ⊗ ¯̂π)γE(e) = (j
u
E ⊗ (idCu ⊗ ¯̂π)(σu

g )
−1)(γE ⊗ idCu)δE(e)

= (ŴB
g ¯̂π
)23(j

u
E ⊗ (idCu ⊗ ¯̂π)σ)(γE ⊗ idCu)δE(e)(ŴB

g ¯̂π
)∗23.
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Now, (ju
D⊗ π̄)δD(d)13 commutes with (ju

E ⊗(idCu ⊗ ¯̂π)σ)(γE ⊗ idCu)δE(e) because (ju
D⊗

π̄)δD(d) commutes with (ju
E ⊗

¯̂π)γE(e
′) for all e′ ∈ E.

The universal property of D⊠id
maxE yields a morphism δD⊠E as desired, and it is easy

to see that this morphism is a continuous coaction. Existence of γD⊠E follows similarly.
Finally, the relation ju

D(D) ⋅ j
u
E(E) = D ⊠

id
max E and Lemma 9.4 imply that the triple

(D ⊠id
max E,γD⊠E , δD⊠E) is a (g ○ f)-Yetter-Drinfeld C∗-algebra. �

We thus obtain a bifunctor

YD-C∗alg(f) × YD-C∗alg(g) → YD-C∗alg(g ○ f) (9.8)

which sends a pair of Yetter-Drinfeld C∗-algebras ((D,γD , δD), (E,γE , δE)) to

(D,γD, δD) ⊠
id
max (E,γE , δE) ∶= (D ⊠

id
max E,γD⊠E , δD⊠E),

and a pair (φ,ψ) of morphisms to φ ⊠ ψ.
Letting G,H, I and f, g vary, we obtain a bicategory:

Theorem 9.6. There exists a bicategory YD-C∗alg, where the 0-objects are C∗-quantum
groups, the category of 1-morphisms between two C∗-quantum groups G = (A,∆A) and
H = (B,∆B) is the disjoint union of the categories YD-C∗alg(f) for all morphisms f ∈
Mor(Au,Bu) of C∗-bialgebras, and the horizontal composition is given by the bifunctors
in (9.8).

Proof. The main points to prove are existence of units and associativity of the horizontal
composition.

For every C∗-quantum group G = (A,∆A), the C∗-algebra C, equipped with the trivial

coactions τ
Ĝu of Ĝu and τGu of Gu, is an idAu-Yetter-Drinfeld C∗-algebra, and this is the

identity of G in the sense that for every morphism f as above and every f -Yetter-Drinfeld
C∗-algebra (C,γC , δC), one has natural isomorphisms

(C, τ
Ĝu , τGu) ⊠idA

max (C,γC , δC) ≅ (C,γC , δC) ≅ (C,γC , δC) ⊠
idA
max (C, τĤu , τHu).

Let us prove associativity. Suppose that G = (Ai,∆i), where i = 1, . . . ,4, are C∗-quantum

groups with morphisms f (i) ∈ Mor(Au
i ,A

u
i+1) of C∗-bialgebras and f (i)-Yetter-Drinfeld

C∗-algebras (Ci, γi, δi) for i = 1, . . . ,3. Denote by idi the identity on Au
i . We claim that

there exists a unique isomorphism of (f (3) ○ f (2) ○ f (1))-Yetter-Drinfeld algebras

C1 ⊠
id2

max (C2 ⊠
id3

max C3)→ (C1 ⊠
id2

max C2) ⊠
id3

max C3 (9.9)

that intertwines the canonical morphisms from each Ci to these C∗-algebras. This follows
from a similar Yoneda-type argument as used in the proof of Theorem 6.5. Indeed,
suppose that F is a C∗-algebra with morphisms πi∶Ci → F for i = 1, . . . ,3 such that

(1) (π1, π2) is an id2-commutative representation of (C1, δ1) and (C2, γ2), and
(2) (π1 ◻ π2, π3) is an id3-commutative representation of (C1 ⊠

id2

max C2, δC1⊠C2
) and

(C3, γ3).

Now, C1 ⊠
id2

max C2 is generated by the images of the canonical morphisms from C1 and

C2 , and the first morphism is equivariant with respect to f
(2)
∗ δ1 and δC1⊠C2

, while the
second one is equivariant with respect to δ2 and δC1⊠C2

. Hence, (1)–(2) are equivalent
to (1) together with the following two conditions:
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(2a) (π1, π3) is an f2-commutative representation of (C1, δ1) and (C3, γ3), and
(2b) (π2, π3) is an id3-commutative representation of (C2, δ2) and (C3, γ3).

But if (2b) holds, then a similar argument shows that (1) and (2a) are equivalent to

(3) (π1, π2 ◻ π3) is an id2-commutative representation of (C1, δ1) and (C2 ⊠
id3

max

C3, γC2⊠C3
, δC2⊠C3

).

Thus, we obtain a bijection between the morphisms from C1⊠
id2

max (C2⊠
id3

maxC3) to F and
the morphisms from (C1 ⊠

id2

max C2) ⊠
id3

max C3 to F , and this bijection is compatible with
the canonical morphisms from each Ci to the two domains. �

Appendix A. Normal coactions of universal C∗-bialgebras

This appendix summarises the relation between coactions of a C∗-quantum group and
coactions of its universal counterpart. It does not contain any new results but is included
for convenience of the reader because we did not find a good reference besides [4].

Let G = (A,∆A) be a C∗-quantum group.

Definition A.1. A coaction γ of (Au,∆u
A) on a C∗-algebra C is normal if the morphism

γr
∶= (idC ⊗ΛA) ○ γ∶C → C ⊗A (A.1)

is injective. Denote by C∗alg
n(Gu) the full subcategory of C∗alg(Gu) of all normal and

continuous coactions.

G-C∗-algebras with injective underlying coaction can be identified with normal Gu-
C∗-algebras as follows. The assignment (C,γ) ↦ (C,γr) evidently defines a functor

C∗alg
n
(Gu)→ C∗alg

i
(G), (A.2)

where C∗alg
i(G) denotes the full subcategory of C∗alg(G) formed by all injective coac-

tions, and this functor is an isomorphism [4]. To describe the inverse, we use the coaction
∆r,u
A of G

u on A obtained in Proposition 4.8. Clearly, ΛA is an equivariant morphism
from (Au,∆u

A) to (A,∆r,u
A
).

Theorem A.2. Let (C,γ) be a G-C∗-algebra. Suppose that γ is injective. Then there
exists a unique coaction γu of (Au,∆u

A) on C such that the following diagram commutes,

C
γ

//

γu

��

C ⊗A

idC⊗∆
r,u
A

��
C ⊗Au γ⊗idAu

// C ⊗A⊗Au,

and (C,γu) is a normal Gu-C∗-algebra. The assignment (C,γ) ↦ (C,γu) extends to a

functor C∗alg
i(G)→ C∗alg

n(Gu) which is inverse to the functor given by (C,γ) ↦ (C,γr).

Proof. Essentially, but not literally, this is contained in [4, Section 3.3]. To get existence
of γu and that (C,γu) is a normal G

u-C∗-algebra, one can simply copy the proof of
[15, Theorem 6.1], replacing ∆R and ∆L with ∆r,u

A
and ∆u,r

A
, respectively. The relation

(γ ⊗ idA)(idC ⊗ΛA)γ
u = (idC ⊗∆A)γ = (γ ⊗ idA)γ
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and injectivity of γ imply (idC ⊗ΛA)γ
u = γ. Finally, if γ = (idC ⊗ΛA)γ

′ for some normal
coaction γ′ of (Au,∆u

A) on C, then

(γ ⊗ idAu)γ′ = (idC ⊗ΛA ⊗ idAu)(γ′ ⊗ idAu)γ′

= (idC ⊗∆r,u
A
○ΛA)γ

′ = (idC ⊗∆r,u
A
)γ

and hence γu = γ′. �

Appendix B. Push-forward of weakly continuous coactions along

morphisms of C∗-quantum groups

In this section we consider the push-forward of coactions along morphisms of C∗-
quantum groups, but not for injective coactions as in [15], but for weakly continuous
ones.

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups with a morphism from G

to Ĥ in the form of a bicharacter χ ∈ U(Â⊗ B̂), and let (C,γ) be a coaction of G.
If γ is injective, it was shown in [15, Theorem 69] that there exists a unique injective

continuous coaction χ∗γ of Ĥ on C that makes the following diagram commute,

C
γ

//

χ∗γ
��

C ⊗A

idC⊗∆R
��

C ⊗ B̂
γ⊗id

B̂ // C ⊗A⊗ B̂,

(B.1)

where ∆R∶A → A⊗ B̂ denotes the right quantum group homomorphism associated to χ.

Definition B.1. Let (C,γ) be a weakly continuous coaction of G. We say that χ∗γ

exists if there exists a morphism χ∗γ ∈Mor(C,C ⊗ B̂) that makes the following diagram
commute:

C
γ

//

γ
��

C ⊗A

idC⊗∆L
��

C ⊗A
χ∗γ⊗idA // C ⊗ B̂ ⊗A.

(B.2)

Example B.2. (1) If γ is injective, then the action χ∗γ defined in [15] makes diagram
(B.2) commute; see the proof of [15, Theorem 69].

(2) If γ lifts to a coaction γu of (Au,∆u
A) such that γ = (idC ⊗ ΛA)γ

u, then χ∗γ

exists and is equal to (idC ⊗ Λ̂Bf)γ
u, where Λ̂B ∶ B̂

u → B̂ denotes the reducing

morphism and f ∶Au → B̂u denotes the morphism of C∗-bialgebras corresponding
to χ, because

(idC ⊗∆L)γ = (idC ⊗∆LΛA)γ
u

= (idC ⊗ (Λ̂u
Bf ⊗ΛA)∆

u
A)γ

u

= (idC ⊗ Λ̂Bf ⊗ΛA)(γ
u
⊗ idAu)γu

= ((idC ⊗ Λ̂Bf)γ
u
⊗ idA)γ.

For example, the coaction γ ∶= (idAu ⊗Λ)∆u
A of G on Âu has such a lift γu =∆u

A,
and γ is injective if and only if the reducing morphism Λ is injective. For a
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comparison of coactions of (Au,∆u
A) and of (A,∆A), see also [4], but note that

only injective ones are considered there.

Proposition B.3. Let (C,γ) be a weakly continuous coaction of G. If χ∗γ exists, then

this morphism is uniquely determined, a weakly continuous coaction of Ĥ, and diagram
(B.1) commutes. If γ is continuous, then so is χ∗γ.

Proof. Since γ is weakly continuous, the map χ∗γ is uniquely determined by (B.2). To
see that it is a coaction, note that

(χ∗γ ⊗ id
B̂
⊗ idA)(χ∗γ ⊗ idA)γ = (χ∗γ ⊗∆L)γ

= (idC ⊗ id
B̂
⊗∆L)(idC ⊗∆L)γ

= (idC ⊗ ∆̂B ⊗ idA)(idC ⊗∆L)γ

= (idC ⊗ ∆̂B ⊗ idA)(χ∗γ ⊗ idA)γ.

Slicing the third tensor factor, we find that χ∗γ indeed is a coaction.
The following computation shows that χ∗γ makes diagram (B.1) commute, and uses

the relation (idA ⊗∆L)∆A = (∆R ⊗ idA)∆ [15, Lemma 5.7 (36)]:

(γ ⊗ id
B̂
⊗ idA)(χ∗γ ⊗ idA)γ = (γ ⊗∆L)γ

= (idC ⊗ idA ⊗∆L)(idC ⊗∆A)γ

= (idC ⊗∆R ⊗ idA)(idC ⊗∆A)γ

= (idC ⊗∆R ⊗ idA)(γ ⊗ idA)γ.

To see that χ∗γ is weakly continous, note that

{(idC ⊗ ω)χ∗γ(c) ∶ ω ∈ B̂
′, c ∈ C} ⊆ {(idC ⊗ ω ⊗ ω

′)(χ∗γ ⊗ idA)γ(c) ∶ ω ∈ B̂
′, ω′ ∈ A′}

= {(idC ⊗ (ω ⊗ ω′)∆L)γ(c) ∶ ω ∈ B̂′, ω′ ∈ A′}.

Since ∆L is injective, functionals of the form (ω ⊗ω′)∆L above are linearly dense in A′.
Since γ is weakly continuous, we can conclude that χ∗γ is weakly continuous as well.

Finally, suppose that χ∗γ is continuous. Then the Podleś condition for γ and ∆L

implies

(χ∗γ ⊗ idA)γ(C) ⋅ (1⊗ B̂ ⊗A) = (idC ⊗∆L)γ(C) ⋅ (1⊗∆L(A)(B̂ ⊗A))

= (idC ⊗∆L)(γ(C)(1 ⊗A)) ⋅ (1⊗ B̂ ⊗A)

= C ⊗∆L(A)(B̂ ⊗A)

= C ⊗ B̂ ⊗A.

Slicing on the third tensor factor, we find that χ∗γ(C)(1⊗ B̂) = C ⊗ B̂. �

Let us now consider the iteration.

Proposition B.4. Let (C,γ) be a weakly continuous coaction of G such that χ∗γ exists.

Suppose that I = (D,∆D) is a C∗-quantum group with a bicharacter χ′ ∈ U(B⊗D̂). Then
χ′∗(χ∗γ) exists if and only if (χ′ ∗ χ)∗γ exist, and in that case, both coincide.
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Proof. Let χ′′ = χ′ ∗ χ and denote by ∆L,∆
′
L,∆

′′
L the left quantum group homomor-

phisms associated to χ′ and χ,χ′, yχ′′, respectively. Then a left-handed analogue of
[15, Proposition 6.3] shows that

(∆′L ⊗ idA)∆L = (idD̂ ⊗∆L)∆
′′
L

and hence

(idC ⊗∆′L ⊗ idA)(χ∗γ ⊗ idA)γ = (idC ⊗ idD ⊗∆L)(idC ⊗∆′′L)γ. (B.3)

Suppose that χ′∗(χ∗γ) exists. Then the left hand side above is equal to

(χ′∗(χ∗γ)⊗ id
B̂
⊗ idA)(χ∗γ ⊗ idA)γ = (χ′∗(χ∗γ)⊗∆L)γ

Since ∆L is injective, we can conclude that (χ′∗(χ∗γ) ⊗ idA)γ = (idC ⊗∆′′L)γ, whence
χ′′∗γ exists and equals χ′∗(χ∗γ).

Conversely, if χ′′∗γ exists, then the right hand side in (B.3) is equal to

(idC ⊗ idD ⊗∆L)(χ
′′
∗γ ⊗ idA)γ = (χ′′∗γ ⊗ idA)(idC ⊗∆L)γ

= (χ′′∗γ ⊗ id
B̂
⊗ idA)(χ∗γ ⊗ idA)γ.

Slicing the third tensor factor, we conclude that (idC ⊗∆′L)χ∗γ = (χ
′′
∗γ ⊗ id

B̂
)χ∗γ so

that χ′∗(χ∗γ) exists and equals χ′′∗γ. �
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