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PARTIAL ACTIONS OF C
∗-QUANTUM GROUPS

FRANZISKA KRAKEN1, PAULA QUAST2, AND THOMAS TIMMERMANN3∗

Abstract. Partial actions of groups on C
∗-algebras and the closely related actions

and coactions of Hopf algebras received much attention over the last decades. They
arise naturally as restrictions of their global counterparts to non-invariant subalge-
bras, and the ambient eveloping global (co)actions have proven useful for the study
of associated crossed products. In this article, we introduce the partial coactions of
C

∗-bialgebras, focussing on C
∗-quantum groups, and prove existence of an enveloping

global coaction under mild technical assumptions. We also show that partial coactions
of the function algebra of a discrete group correspond to partial actions on direct sum-
mands of a C

∗-algebra, and relate partial coactions of a compact or its dual discrete
C

∗-quantum group to partial coactions or partial actions of the dense Hopf subalge-
bra. As a fundamental example, we associate to every discrete C

∗-quantum group a
quantum Bernoulli shift.

1. Introduction

Partial actions of groups on spaces and on C∗-algebras were gradually introduced in
[14], [15], [21], with more recent study of associated crossed products shedding new light
on the inner structure of many interesting C∗-algebras; see [16] for a comprehensive
introduction and an overview. In the purely algebraic setting, the corresponding notion
of a partial action or a partial coaction of a Hopf algebra on an algebra was introduced
in [12].

Naturally, such partial (co)actions arise by restricting global (co)actions to non-invariant
subspaces or ideals, and in these cases, all the tools that are available for the study of
global situation can be applied to the study of the partial one. Therefore, it is highly
desirable to know, given a partial group action or a partial Hopf algebra (co)action,
whether it can be identified with some restriction of a global one, whether there exists a
minimal global one — called a globalization — and whether the latter, if it exists, can be
constructed explicitly. For partial actions of groups on locally compact Hausdorff spaces,
such a globalization can always be constructed, but the underlying space need no longer
be Hausdorff [1], [2]. As a consequence, partial actions of groups on C∗-algebras can not
always be identified with the restriction of a global action [2]. In the purely algebraic
setting, partial (co)actions of Hopf algebras always have a globalization [5], [6]; see also
[3], [4], [13].
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In this article, we introduce partial coactions of C∗-bialgebras, in particular, of C∗-
quantum groups, on C∗-algebras, and relate them to the partial (co)actions discussed
above. In case of the function algebra of a discrete group, partial coactions correspond
to partial actions of groups where for every group element, the associated domain of
definition is a direct summand of the total C∗-algebra, and these are precisely the partial
actions for which existence of a globalization can be proven. If the C∗-bialgebra is a
discrete C∗-quantum group, then every partial coaction gives rise to a partial action of the
Hopf algebra of matrix coefficients of the dual compact quantum group. Finally, in case
of a compact C∗-quantum group, partial coactions restrict, under a natural condition, to
partial coactions of the Hopf algebra of matrix coefficients on a dense subalgebra.

Partial coactions appear naturally as restrictions of ordinary coactions to ideals or,
more generally, to C∗-subalgebras that are weakly invariant in a suitable sense. An
identification of a partial coaction with such a restriction will be called a dilation of the
partial coaction. The main result of this article is the existence and a construction of
a minimal dilation, also called a globalization, under mild assumptions. We follow the
approach for coactions of Hopf algebras [6], but face new technical difficulties. To deal
with these, we assume that the C∗-algebra of the quantum group under consideration has
the slice map property, which follows, for example, from nuclearity [31], and is automatic
if the quantum group is discrete. Briefly, the main result can be summarised as follows.

Theorem. Let (A,∆) be a C∗-quantum group, where A has the slice map property.
Then every injective, weakly continuous, regular partial coaction of (A,∆) has a minimal
dilation and the latter is unique up tio isomorphism.

Presently, we do not see whether this slice map assumption is just convenient or
genuinely necessary.

Parts of the results in this article were obtained in the Master’s theses of the first and
the second author. In following articles, we plan to study crossed products for partial
coactions, and partial corepresentations of C∗-bialgebras.

The article is organized as follows. In Section 2, we recall background on C∗-quantum
groups, strict ∗-homomorphisms and the slice map property. In Section 3, we introduce
partial coactions of C∗-bialgebras and discuss a few desirable properties like weak and
strong continuity. In Section 4, we show that partial actions of a discrete group Γ on a C∗-
algebra correspond to counital partial coactions of the function algebra C0(Γ) if and only
if the domains of definition are direct summands of the C∗-algebra. In Section 5, we relate
partial coactions of compact and of discrete C∗-quantum groups to coactions and actions
of the Hopf algebra of matrix elements of the compact quantum group. In Section 6, we
show how partial coactions arise from global ones by restriction, and discuss the closely
related notion of weak or strong morphisms between partial coactions. In Section 7, we
construct for every discrete quantum group a quantum a quantum Bernoulli shift and
obtain, by restriction, a partial coaction that is initial in a suitable sense. In Section 8,
we consider the situation where a partial coaction can be identified with the restriction of
a global coaction, and study a few preliminary properties of such identifications. Finally,
in Section 9, we prove the main result stated above.
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2. Preliminaries

Let us fix some notation and recall some background.

Conventions and notation. Given a locally compact Hausdorff space X, we denote
by Cb(X) and C0(X) the C∗-algebra of continuous functions that are bounded or vanish
at infinity, respectively.

For a subset F of a normed space E, we denote by [F ] ⊆ E its closed linear span.
Given a C∗-algebra A, we denote by A∗ the space of bounded linear functionals on A,

by M(A) the multiplier algebra and by 1A ∈ M(A) the unit of M(A).
Given a Hilbert space K, we denote by 1K the identity on H.
Let A and B be C∗-algebras. A ∗-homomorphism ϕ : A → M(B) is called nonde-

generate if [ϕ(A)B] = B. Each nondegenerate ∗-homomorphism ϕ : A → M(B) extends
uniquely to a unital ∗-homomorphism from M(A) to M(B), which we denote by φ again.
By a representation of a C∗-algebra A on a Hilbert space H we mean a ∗-homomorphism
π : A → B(H). All tensor products of C∗-algebras will be minimal ones.

We write σ for the tensor flip isomorphism A⊗B → B ⊗A, a⊗ b 7→ b⊗ a.

C∗-bialgebras and C∗-quantum groups. A C∗-bialgebra is a C∗-algebra A with a
non-degenerate ∗-homomorphism ∆: A → M(A⊗A), called the comultiplication, that is
coassociative in the sense that (∆⊗ idA) ◦∆ = (idA⊗∆) ◦∆. It satisfies the cancellation
conditions if

[∆(A)(1A ⊗A)] = A⊗A = [(A⊗ 1A)∆(A)]. (2.1)

Given a C∗-bialgebra (A,∆), the dual space A∗ is an algebra with respect to the
convolution product defined by υω := (υ ⊗ ω) ◦∆.

A counit for a C∗-bialgebra (A,∆) is a character ε on A satisfying (ε ⊗ idA) ◦ ∆ =
idA = (idA ⊗ε)◦∆. If it exists, such a counit is a unit in the algebra A∗ and thus unique.

A morphism of C∗-bialgebras (A,∆A) and (B,∆B) is a non-degenerate ∗-homomorphism
f : A → M(B) satisfying ∆B ◦ f = (f ⊗ f) ◦∆A.

A C∗-quantum group is a C∗-bialgebra that arises from a well-behaved multiplicative
unitary as follows [26, 27, 32]. Suppose that H is a Hilbert space and that W ∈ B(H⊗H)
is a multiplicative unitary [8] that is manageable or modular [32, 27]. Then the spaces

A := [(ω ⊗ idH)W : ω ∈ B(H)∗] and Â := [(idH ⊗ω)W : ω ∈ B(H)∗]

are separable, nondegenerate C∗-subalgebras of B(H), the unitary W is a multiplier of

Â⊗A ⊆ B(H ⊗H), and the formulas

∆(a) = W (a⊗ 1H)W ∗, ∆̂(â) = σ(W ∗(1H ⊗ â)W ) (2.2)

define comultiplications on A and Â, respectively, such that (A,∆) and (Â, ∆̂) become
C∗-bialgebras. A C∗-bialgebra (A,∆) is a C∗-quantum group if it arises from a modular
multiplicative unitary W as above.

Let (A,∆) be a C∗-quantum group arising from a unitary W as above. Denote by Σ

the flip on H ⊗H. Then also the dual Ŵ := ΣW ∗Σ of W is a modular or manageable
multiplicative unitary and the associated C∗-quantum group is (Â, ∆̂). The latter only
depends on (A,∆) and not on the choice of W , and is called the dual of (A,∆). The

images of W and Ŵ in M(Â⊗A) or M(A⊗Â), respectively, do not depend on the choice
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of W but only on (A,∆). We call them the reduced bicharacters of (A,∆) and (Â, ∆̂)

and denote them by WA and ŴA, respectively. We will need an anti-Heisenberg pair for
(A,∆), which consists of non-degenerate, faithful representations π of A and π̂ of Â on
a Hilbert space K such that the unitary

V := (idA⊗π̂)(ŴA) ∈ M(A⊗ π̂(Â)), (2.3)

regarded as an element of M(A⊗K(K)), satisfies

V (1A ⊗ π(a))V ∗ = (idA⊗π)∆(a) for all a ∈ A; (2.4)

see [22, §3] and [24, §3.1] .
Every locally compact quantum group or, more precisely, every reduced C∗-algebraic

quantum group in the sense of Kustermans and Vaes [18], is a C∗-quantum group.
We shall use regularity of C∗-quantum groups, which was studied for multiplicative

unitaries in [8] and for reduced C∗-algebraic quantum groups in [9, §5(b)]. We follow
the approach of [25, Definition 5.37] and call a C∗-quantum group (A,∆) regular if its

reduced bicharacter satisfies [(Â ⊗ 1A)W
A(1

Â
⊗ A)] = Â ⊗ A in M(Â ⊗ A). This is

equivalent to the condition [(1
Â
⊗ A)WA(Â⊗ 1A)] = Â ⊗A, see [25, proof of Corollary

5.39]. For the unitary (2.3), this translates into

[(1A ⊗ π̂(Â))V (A⊗ 1
π̂(Â))] = A⊗ π̂(Â) in M(A⊗ π̂(Â)). (2.5)

In [25], this condition is referred to as weak regularity. However, every reduced C∗-
algebraic quantum (A,∆) is regular in the sense above if and only if it is regular in the
sense of [9, §5(b)]. One implication is contained in [8, Proposition 3.6], and the other
follows easily from [9, Proposition 5.6].

A compact C∗-quantum group is, by definition, a unital C∗-bialgebra G = (A,∆) that
satisfies the cancellation conditions, and is indeed a weakly regular C∗-quantum group
[33]. Associated to such a compact quantum group is a rigid C∗-tensor category of unitary
finite-dimensional corepresentations [23]. We denote by Irr(G) the equivalence classes of
irreducible corepresentations. Their matrix elements span a dense Hopf subalgebra O(G).

The dual (Â, ∆̂) is called a discrete C∗-quantum group, and the underlying C∗-algebra

Â is a direct sum of matrix algebras, indexed by Irr(G). We also denote the underlying

C∗-algebra Â of Ĝ by C0(Ĝ).

Strict ∗-homomorphisms of C∗-algebras. Recall from [19, §5, Corollary 5.7] that
a ∗-homomorphism π : B → M(C) is strict if it is strictly continuous on the unit ball,
and that in that case, it extends to a ∗-homomorphism M(B) → M(C) that is strictly
continuous on the unit ball. We denote this extension by π again. Using this extension,
we define the composition of strict ∗-homomorphisms, which evidently is strict again.
Hence, C∗-algebras with strict ∗-homomorphisms form a category.

Recall that a corner of a C∗-algebra B is a C∗-subalgebra of the form pBp for some
projection p ∈ M(B).

Strict ∗-homomorphisms are just non-degenerate ∗-homomorphisms in the usual sense
from the domain to a corner of the target. Indeed, if π : B → M(C) is a strict ∗-
homomorphism, then p := π(1B) ∈ M(C) is a projection, pCp ⊆ C is a corner, and the
co-restriction π : B → M(pCp) is non-degenerate. Conversely, given a corner C0 ⊆ C and
a non-degenerate ∗-homomorphism π : B → M(C0), we get a strict extension M(B) →
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M(C0), a natural strict map M(C0) → M(C) [10, II.7.3.14], and the composition is a
strict ∗-homomorphism.

This description of strict ∗-homomorphisms immediately implies that the minimal
tensor product of strict morphisms is a strict morphism again, and that an embedding
of C∗-algebras B →֒ C is a strict ∗-homomorphism if and only if B is a non-degenerate
C∗-subalgebra of a corner of C. We shall call such embeddings strict.

In the commutative case, partial morphisms correspond to partially defined continuous
maps with clopen domain of definition. Indeed, let X and Y be locally compact Hausdorff
spaces. Then every continuous map F from a clopen subset D ⊆ Y to X induces a strict
∗-homomorphism F ∗ : C0(X) → M(C0(Y )) = Cb(Y ) defined by

(F ∗(f))(y) = 0 if y 6∈ D, (F ∗(f))(y) = f(F (y)) if y ∈ D.

Conversely, if π : C0(X) → M(C0(Y )) is a strict ∗-homomorphism, then π(1X ) is the
characteristic function of a clopen subset D ⊆ Y and the corestriction π : C0(X) →
M(C0(D)) is the pull-back along a continuous function F : D → X.

2.1. The slice map property. In sections 8 and 9, we need the following property.
A C∗-algebra A has the slice map property if for every C∗-algebra B and every C∗-
subalgebra C ⊆ B, every x ∈ B ⊗ A satisfying (id⊗ω)(x) ∈ C for all ω ∈ A∗ lies in
C⊗A [31]. This property holds if A is nuclear, or, more generally, if A has the completely
bounded approximation property or the strong operator approximation property; see [30]
for a survey. In particular, this condition holds whenever (A,∆) is a discrete quantum
group, or, more generally, whenever (A,∆) is a reduced C∗-algebraic quantum group
whose dual is amenable [11, Theorem 3.3].

3. Partial coactions of C∗-bialgebras

The definition of a partial coaction given for Hopf algebras in [?] carries over to C∗-
bialgebras as follows.

Definition 3.1. A partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra C is a strict
∗-homomorphism δ : C → M(C ⊗A) satisfying the following conditions:

(1) δ(C)(1C ⊗A) ⊆ C ⊗A;
(2) δ is partially coassociative in the sense that

(δ ⊗ idA)δ(c) = (δ(1C )⊗ 1A)(idC ⊗∆)δ(c) (3.1)

for all c ∈ C, or, equivalently, the following diagram commutes:

C
δ

//

δ
��

M(C ⊗A)

δ⊗id
��

M(C ⊗A)
(δ(1C )⊗1A)(idC ⊗∆)δ

// M(C ⊗A⊗A)

(3.2)

Let δ be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra C. For every
functional ω ∈ A∗ and every multiplier T ∈ M(C), we define a multiplier

ω ⊲ T := (idC ⊗ω)δ(T ) ∈ M(C),
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where we use the fact that we can write ω = aυ or ω = υ′a′ with a, a′ ∈ A and υ, υ′ ∈ A∗

by Cohen’s factorization theorem.
Let c ∈ C and ω ∈ A∗. Then conditions (1) and (2) in Definition 3.1 imply ω ⊲ c ∈ C

and

δ(ω ⊲ c) = (idC ⊗ idA⊗ω)(δ ⊗ idA)δ(c) = δ(1C)(idC ⊗ idA⊗ω)(idC ⊗∆)δ(c). (3.3)

In particular, for every character χ ∈ A∗,

χ ⊲ (ω ⊲ c) = (χ ⊲ 1C)(idC ⊗(χ⊗ ω)∆)δ(c) = (χ ⊲ 1C)(χω ⊲ c). (3.4)

The following conditions on a partial coaction are straightforward generalizations of
the corresponding conditions on coactions, and will play an equally important role:

Definition 3.2. We say that a partial coaction δ of a C∗-bialgebra (A,∆) on a C∗-
algebra C

• satisfies the Podleś condition if [δ(C)(1C ⊗A)] = [δ(1C )(C ⊗A)];
• is weakly continuous if [A∗ ⊲ C] = C;
• is counital if (A,∆) has a counit ε and (idC ⊗ε) ◦ δ = id.

Remark 3.3. If δ is a partial coaction as above and X ⊆ A∗ is a subset that separates
the points of A, then a standard application of the Hahn-Banach theorem shows that
[X ⊲ C] = [A∗ ⊲ C].

Every counital partial coaction evidently is weakly continuous.
A coaction satisfying the Podleś condition is automatically weakly continuous, and

is usually called (strongly) continuous. For partial coactions, this implication does no
longer hold in general, and so we avoid this terminology.

Lemma 3.4. Let δ be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra C that
satisfies the Podleś condition. Then:

(1) δ is weakly continuous if and only if [(A∗ ⊲ 1C)C] = C;
(2) δ is counital if and only if (A,∆) has a counit ε and ε ⊲ 1C = 1C .

Proof. (1) By assumption, the closed linear span of all elements of the form aω ⊲ c =
(idC ⊗ω)(δ(c)(1C ⊗ a)), where ω ∈ A∗, a ∈ A and c ∈ C, is equal to the closed linear
span of all elements of the form (idC ⊗ω)(δ(1C )(c⊗ a)) = (aω ⊲ 1C)c. Now, use Cohen’s
factorization theorem.

(2) If ε⊲1C = 1C , then elements of the form aε⊲c, where a ∈ A and c ∈ C, are linearly
dense in C, and for every ω ∈ A∗ and c ∈ C, (3.4) implies ε ⊲ (ω ⊲ c) = 1C · (ω ⊲ c). �

For regular reduced C∗-algebraic quantum groups, weakly continuous coactions auto-
matically satisfy the Podleś condition [9, Proposition 5.8]. More generally, we show the
following:

Proposition 3.5. Let (A,∆) be a regular C∗-quantum group. Then every weakly con-
tinuous partial coaction of (A,∆) satisfies the Podleś condition.

Proof. We proceed similarly as in the proof of [9, Proposition 5.8], and use an anti-
Heisenberg pair (π, π̂) for (A,∆) on some Hilbert space K and the unitary V in (2.3).
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Let δ be a weakly continuous partial coaction of (A,∆) on a C∗-algebra C. By (3.3)
and Remark 3.3,

[δ(C)(1C ⊗A)] = [δ(ω ◦ π ⊲ C)(1C ⊗A) : ω ∈ B(K)∗]

= [δ(1C ) · (idC ⊗ idA⊗ω ◦ π)((idC ⊗∆)(δ(C))) · (1C ⊗A) : ω ∈ B(K)∗].

To shorten the notation, let δπ := (idC ⊗π) ◦ δ. We use the relations (2.4), (2.5) and

[π̂(Â)B(K)∗] = B(K)∗, and find

[(idC ⊗ idA ⊗ ω ◦ π)((idC ⊗∆)(δ(C))(1C ⊗A⊗ 1A)) : ω ∈ B(K)∗]

= [(idC ⊗ idA⊗ω)(V23δπ(C)13V
∗
23(A⊗ π̂(Â))23) : ω ∈ B(K)∗]

= [(idC ⊗ idA⊗ω)(V23δπ(C)13(A⊗ π̂(Â))23) : ω ∈ B(K)∗]

= [(idC ⊗ idA⊗ω)((1A ⊗ π̂(Â))23V23(A⊗ 1K)23δπ(C)13) : ω ∈ B(K)∗]

= [(idC ⊗ idA⊗ω)((A⊗ π̂(Â))23δπ(C)13) : ω ∈ B(K)∗]

= [A∗ ⊲ C]⊗A,

whence [δ(C)(1C ⊗A)] = [δ(1C )(C ⊗A)]. �

Partial coactions on C correspond to certain projections:

Lemma 3.6. Partial coactions of a C∗-bialgebra (A,∆) on C correpond bijectively with
projections p ∈ M(A) satisfying

(p⊗ 1A)∆(p) = p⊗ p. (3.5)

Proof. Projections p ∈ M(A) correspond to strict ∗-homomorphisms δ : C → M(C⊗A) ∼=
M(A) via p = δ(1), and under this correspondence, (δ ⊗ idA)δ(λ) = λ ⊗ p ⊗ p and
(δ(1) ⊗ 1A)(idC⊗∆)(δ(λ)) = λ⊗ (p ⊗ 1A)∆(p). �

Note that if (A,∆) is co-commutative, for example, if A = C∗(G) or A = C∗
r (G)

for a locally compact group G, then (3.5) just means that p is group-like in the sense
that (p ⊗ 1A)∆(p) = p ⊗ p = (1A ⊗ p)∆(p). Group-like projections were also studied in
connection with idempotent states, see [17, §2]. Elementary examples related to groups
are as follows.

Example 3.7. Let G be a locally compact group.

(1) Consider the C∗-bialgebra (C0(G),∆). A projection p ∈ M(C0(G)) is just the
characteristic function of a clopen subset H ⊆ G, and satisfies (3.5) if and only if
p(g)p(gg′) = p(g)p(g′) for all g, g′ ∈ G, that is, if and only if H ⊆ G is a subgroup.
Thus, partial coactions of (C0(G),∆) on C correspond to open subgroups of G.

(2) Consider the reduced group C∗-bialgebra (C∗
r (G),∆). For every finite normal

subgroup N ⊆ G, the sum p =
∑

g∈N λg is a central projection in M(C∗
r (G))

satisfying (3.5), where λg denotes the left translation by g ∈ G. More information
on group-like projections in C∗

r (G) and C∗(G) can be found in [20, Proposition
7.6] and [29].

Every central projection satisfying (3.5) gives rise to a quotient C∗-bialgebra (Ap,∆p)
of (A,∆) whose coactions can be regarded as partial coactions of (A,∆):
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Lemma 3.8. Suppose that (A,∆) is a C∗-bialgebra with a central projection p ∈ M(A)
satisfying (3.5). Let Ap = pA and define ∆p : Ap → M(Ap ⊗ Ap) by a 7→ (p ⊗ p)∆(a).
Then (Ap,∆p) is a C∗-bialgebra, the map A → Ap, a 7→ pa, is a morphism of C∗-
bialgebras, and every coaction of (Ap,∆p) can be regarded as a partial coaction of (A,∆).

Proof. All of these assertions are easily verified, for example, if δ is a coaction of (Ap,∆p)
on a C∗-algebra C, then for all c ∈ C,

(δ(1C )⊗ 1A)(idC ⊗∆)δ(c) = (1C ⊗ p⊗ 1A)(1C ⊗∆)((1C ⊗ p)δ(c))

= (1C ⊗ p⊗ p)(idC ⊗∆)δ(c) = (1C ⊗∆p)δ(c) = (idC ⊗δ)δ(c). �

Example 3.9. Let G = (A,∆) be a discrete quantum group, so that A is a c0-sum of

matrix algebras indexed by Irr(Ĝ). Consider a central projection p ∈ M(A) supported

on J ⊆ Irr(Ĝ). Then (p⊗ 1)∆(p) = p⊗ p if and only if the following condition holds:

If α ∈ J , β, γ ∈ Irr(Ĝ) and α⊗ β contains γ, then β ∈ J if and only if γ ∈ J . (3.6)

If (Ap,∆p) is a discrete quantum subgroup of (A,∆), then J is closed under taking duals
and summands of tensor products, and then Frobenius duality implies (3.6). Conversely,
suppose that (3.6) holds. Taking γ = α, we see that J contains the trivial representation,
and taking this for γ, we see that J contains the dual of α. Thus, finite sums of
representations in J form a rigid tensor subcategory, and (Ap,∆p) is a discrete quantum
subgroup of (A,∆).

4. The relation to partial actions of groups

We now relate partial actions of a (discrete) group Γ to counital partial coactions
of the C∗-bialgebra C0(Γ). Recall that a partial action of Γ on a C∗-algebra C is a
family (Dg)g∈Γ of closed ideals of C together with a family (θg)g∈Γ of isomorphisms
θg : Dg−1 → Dg such that

(G1) De = C and θe = idC , where e ∈ Γ denotes the unit,
(G2) θg−1θgθh = θg−1θgh and θgθhθh−1 = θghθh−1 for all g, h ∈ Γ as partially defined

maps;

see [16, 21]. We show that partial coactions of C0(Γ) correspond to partial actions of Γ
as above, where each ideal Dg is a direct summand, and adopt the following terminology:

Definition 4.1. A disconnected partial action of Γ on a C∗-algebra C is given by a
family (pg)g∈Γ of central projections in M(C) and a family (θg)g∈Γ of isomorphisms
θg : pg−1C → pgC such that ((pgC)g∈Γ, (θg)g∈Γ, ) is a partial action.

Remark 4.2. (1) Let X be a locally compact Hausdorff space. Then partial actions
of Γ on C0(X) correspond bijectively to partial actions of Γ on X [16, Corollary
11.6], and a partial action on C0(X) is disconnected if and only if for every group
element g ∈ Γ, the domain of definition of its action on X is not only open but
also closed. This condition also implies that the partial action on X admits a
globalization that is Hausdorff [16, Proposition 5.7].

(2) A partial action of Γ on an algebra C admits a globalization if and only if for
every group element g ∈ Γ, its domain of definition is not just a two-sided ideal
of C but also unital, that is, a direct summand [16, Theorem 6.13].
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We denote by Cb(Γ;C) the C∗-algebra of norm-bounded C-valued functions on Γ, and
identify this C∗-algebra with a subalgebra of M(C ⊗ C0(Γ)) in the canonical way. For
each g ∈ Γ, we denote by evg ∈ C0(Γ)

∗ the evaluation at g.

Proposition 4.3. Let Γ be a group and let C be a C∗-algebra.

(1) Let δ be a counital partial coaction of C0(Γ) on C. Then the projections

pg := evg ⊲ 1C

are central and the maps θg : pg−1C → pgC given by

θg(c) := evg ⊲ c

form a disconnected partial action of Γ on C.
(2) Let ((pg)g∈Γ, (θg)g∈Γ) be a disconnected partial action of Γ on C. Then the map

δ : C → Cb(Γ;C) →֒ M(C ⊗ C0(Γ))

defined by

(δ(c))(g) := θg(pg−1c) (c ∈ C, g ∈ Γ)

is a counital partial coaction of C0(Γ) on C.

Proof. (1) For each g ∈ Γ, the map Θg : C → C given by c 7→ evg ⊲ c is a strict endomor-
phism. Since δ is counital, Θe is the identity on C. Let g, h ∈ Γ. Then by (3.4),

Θg(Θh(c)) = (evg ⊲ 1C)(evgevh ⊲ c) = pgΘgh(c), (4.1)

in particular,

Θg(ph) = pgpgh, Θg(Θg−1(c)) = pgc, Θg−1(Θg(c)) = pg−1c. (4.2)

Since Θg ◦ Θg−1 is a ∗-homomorphism, the second equation implies pgc = cpg for all
c ∈ C, that is, pg is central and Dg := pgC is a direct summand of C. The second and
third equations imply that Θg and Θg−1 restrict to mutually inverse isomorphisms

Dg−1

θg

⇄
θ
g−1

Dg.

It remains to show that θg−1θgh = θg−1θgθh. But the relations (4.1) and (4.2) imply that

(Θg−1 ◦Θgh)(c) = pg−1Θgh(c) = (Θg−1 ◦Θg ◦Θh)(c)

for all c ∈ C, and that the compositions θg−1θgh and θg−1θgθh have the domain

Θh−1g−1(pg)C = ph−1g−1ph−1C = Θh−1(pg−1)C.

(2) For each g ∈ Γ, denote by δg ∈ C0(Γ) the characteristic function of {g} ⊂ Γ. Then

δ(c)(1C ⊗ δg) = θg(pgc)⊗ δg (g ∈ Γ, c ∈ C).

We conclude that δ(C)(1C ⊗C0(Γ)) is contained in C ⊗C0(Γ), and that δ co-restricts to
a non-degenerate ∗-homomorphism from C to q(C ⊗C0(Γ)), where q =

∑
g∈Γ pg ⊗ δg, so

that δ is strict. To verify that δ is partially coassociative, it suffices to check that for all
g, h ∈ Γ and c ∈ C, the element

(idC ⊗evg ⊗ evh)(δ ⊗ idA)δ(c) = θg(pg−1θh(ph−1c))
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is equal to the element

(idC ⊗evg ⊗ evh)((δ(1C )⊗ 1A)(idC ⊗∆)δ(c)) = θg(pg−1)θgh(ph−1g−1c),

and this follows easily from the definition of a partial action. �

The following example shows that the correspondence between partial coactions of
C0(Γ) and partial actions of Γ does not easily extend from groups to inverse semigroups.

Example 4.4. Denote by Γ the inverse semigroup consisting of the 2× 2-matrices

0, v =

(
0 0
1 0

)
, v∗ =

(
0 1
0 0

)
, vv∗ =

(
0 0
0 1

)
, v∗v =

(
1 0
0 0

)

with matrix multiplication as composition. Then C(Γ) is a C∗-bialgebra with respect to
the transpose ∆ of the multiplication. For x ∈ Γ, define δx ∈ C(Γ) by y 7→ δx,y. Then,
for example,

∆(δv∗v) = δv∗ ⊗ δv + δv∗v ⊗ δv∗v, ∆(δv) = δvv∗ ⊗ δv + δv ⊗ δv∗v.

Now, the ∗-homomorphism

δ : C2 → C
2 ⊗ C(Γ), (α, β) 7→ (α, 0) ⊗ δv∗v + (0, α) ⊗ δv ,

is a partial coaction. Indeed, for all α, β ∈ C,

(δ ⊗ idC(Γ))δ((α, β)) = (α, 0) ⊗ δv∗v ⊗ δv∗v + (0, α) ⊗ δv ⊗ δv∗v

is equal to the product of

δ((1, 0)) ⊗ 1C(Γ) = (1, 0) ⊗ δv∗v ⊗ 1C(Γ) + (0, 1) ⊗ δv ⊗ 1C(Γ)

with

(idC2 ⊗∆)δ((α, β)) = (α, 0) ⊗ (δv∗v ⊗ δv∗ + δv∗ ⊗ δvv∗)

+ (0, α) ⊗ (δv ⊗ δv∗v + δvv∗ ⊗ δv).

But the maps Θw := (id⊗evw) ◦ δ, where w ∈ Γ, are given by

Θ0 = Θv∗ = Θvv∗ = 0, Θv((α, β)) = (0, α), Θv∗v((α, β)) = (α, 0);

in particular, ΘvΘv∗Θv = 0 and ΘvΘv∗v = Θv.

5. Partial coactions of discrete and of compact C∗-quantum groups

Let G = (A,∆) be a compact C∗-quantum group and denote by O(G) ⊆ A the dense
Hopf subalgebra of matrix elements of finite-dimensional corepresentations. We now
relate partial (co)actions of G and of the discrete dual Ĝ to partial coactions and partial

actions of the Hopf algebra O(G), respectively. Note that (A,∆) and (Â, ∆̂) are regular,
so that weakly continuous partial coactions automatically satisfy the Podleś condition
by Proposition 3.5.

Recall that a partial action of a Hopf algebra H on a unital algebra C is a map

H ⊗ C → C, h⊗ c 7→ h ⊲ c,

satisfying the following conditions:

(H1) 1H ⊲ c = c for all c ∈ C;
(H2) h ⊲ (cd) = (h(1) ⊲ c)(h(2) ⊲ d) for all h ∈ H and c, d ∈ C;
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(H3) h ⊲ (k ⊲ c) = (h(1) ⊲ 1C)(h(2)k ⊲ c) for all h, k ∈ H and c ∈ C;

see [?], and that such a partial action is symmetric if additionally

(H4) h ⊲ (k ⊲ c) = (h(1)k ⊲ c)(h(2) ⊲ 1C) for all h, k ∈ H and c ∈ C;

see [7]. If additionally h ⊲ 1C = ε(h) for all h ∈ H, we have a genuine action; in that
case, (H3) and (H4) reduce to h ⊲ (k ⊲ c) = hk ⊲ c.

Recall that the C∗-algebra Â of the discrete C∗-quantum group Ĝ is a c0-direct sum
of matrix algebras Âα indexed by α ∈ Irr(G). The Hopf algebra O(G) can be identified

with the subspace of all functionals ω ∈ Â∗ that vanish on Âα for all but finitely many
α ∈ Irr(G), and then

∆(ω)(â⊗ b̂) = ω(âb̂) and (υω)(â) = (υ ⊗ ω)(â)

for all υ, ω ∈ O(G) and â, b̂ ∈ Â.

Theorem 5.1. Let G = (A,∆) be a compact quantum group and let δ be a counital

partial coaction of the discrete dual Ĝ = (Â, ∆̂) on a unital C∗-algebra C. Then the
formula

υ ⊗ c 7→ υ ⊲ c = (idC ⊗υ)(δ(c)) (υ ∈ O(G), c ∈ C)

defines a symmetric partial action of the Hopf algebra O(G) on C.

Proof. Condition (H1) holds because the unit of O(G), regarded as a functional on Â, is

the counit. Let υ, ω ∈ O(G) and c, d ∈ C. Choose central projections p, q ∈ Â such that

υ(pâ) = υ(â), ω(â) = ω(qâ) and υ(1)(â)υ(2)(b̂) = υ(1)(pâ)υ(2)(pb̂) for all â, b̂ ∈ Â. Then

υ ⊲ cd = (idC ⊗υ)((1C ⊗ p)δ(c)δ(d)(1C ⊗ p)).

Since (1C ⊗ p)δ(c) and δ(d)(1C ⊗ p) are contained in the tensor product of C with the

finite-dimensional C∗-algebra pÂ+ qÂ, this expression is equal to

(id⊗υ(1))((1 ⊗ p)δ(c)) · (id⊗υ(2))(δ(d)(1 ⊗ p)) = (υ(1) ⊲ c)(υ(2) ⊲ d).

Thus, condition (H2) is satisfied. Likewise,

υ ⊲ (ω ⊲ c) = (idC ⊗υ ⊗ ω)((δ ⊗ id
Â
)δ(c))

= (idC ⊗υ ⊗ ω)((1C ⊗ p⊗ q)(δ(1C )⊗ 1
Â
)(idC ⊗∆̂)(δ(c))),

and a similar argument as above shows that this expression is equal to

(idC ⊗υ(1))(δ(1C ))(idC ⊗(υ(2) ⊗ ω) ◦ ∆̂)(δ(c)) = (υ(1) ⊲ 1C) · (υ(2)ω ⊲ c).

Therefore, condition (H3) holds as well, and a similar argument proves (H4). �

Next, we consider partial coactions of the compact C∗-quantum group (A,∆), and
relate them to partial coactions of the Hopf algebra O(G). Recall that a partial coaction
of a Hopf algebra H on a unital algebra C is a homomorphism

δ : C 7→ C ⊗H

satisfying the following conditions,

(CH1) (δ ⊗ idH)(δ(c)) = (δ(1C )⊗ 1H) · (idC ⊗∆H)(δ(c)) for all c ∈ C, and
(CH2) (idC ⊗εH)(δ0(c)) = c for all c ∈ C;
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see [12].

Theorem 5.2. Let δ be a partial coaction of a compact C∗-quantum group G = (A,∆)
on a unital C∗-algebra C. Then the following conditions are equivalent:

(1) δ is weakly continuous, δ(1C) lies in the algebraic tensor product C ⊗O(G) and
(idC ⊗ε)(δ(1C )) = 1C , where ε denotes the counit of O(G).

(2) δ restricts to a partial coaction of O(G) on a unital dense ∗-subalgebra C0 of C.

Proof. Denote by O(Ĝ) ⊆ Â the algebraic direct sum of the matrix algebras Âα associated
to all α ∈ Irr(G), and recall that we can canonically identify O(G) with a subspace of
A∗.

(1)⇒(2): By Remark 3.3, the subspace C0 = O(Ĝ) ⊲ C of C is dense. We show that
C0 ⊆ C is a subalgebra. Let c, d ∈ C and υ, ω ∈ O(G). Then

(υ ⊲ c)(ω ⊲ d) = (idC ⊗υ ⊗ ω)(δ(c)12δ(d)13),

where we use the leg notation on δ(c) and δ(d). Now, we find finitely many υ′i, ω
′
i ∈ O(Ĝ)

such that

υ(a)ω(b) =
∑

i

(υ′i ⊗ ω′
i)((a⊗ 1A)∆(b))

for all a, b ∈ A, and then

(υ ⊲ c)(ω ⊲ d) =
∑

i

(idC ⊗υ′i ⊗ ω′
i)((δ(c) ⊗ 1A)(id⊗∆)(δ(d)))

=
∑

i

(idC ⊗υ′i ⊗ ω′
i)(δ ⊗ idA)((c ⊗ 1A)δ(d)) =

∑

i

υ′i ⊲ (c(ω
′
i ⊲ d)) ∈ C0.

Next, we show that δ(C0) is contained in the algebraic tensor product C ⊗ O(G).

Let ω ∈ O(Ĝ) and c ∈ C. Since O(G) has a basis of elements (uαi,j)α,i,j satisfying

∆(uαi,j) =
∑

k u
α
ik⊗uαkj [33, Proposition 5.1], we can find finitely many υ1, . . . , υn ∈ O(Ĝ)

and a1, . . . , an ∈ O(G) such that

(idA⊗ω)(∆(b)) =

n∑

i=1

υi(b)ai

for all b ∈ O(G), and then

δ(ω ⊲ c) = (idC ⊗ idA⊗ω)(δ ⊗ idA)δ(c)

= δ(1C )(idC ⊗(idA⊗ω)∆)δ(c) = δ(1C) ·
n∑

i=1

(υi ⊲ c)⊗ ai

lies in the algebraic tensor product of C with O(G)). Using a basis for O(Ĝ) consisting

of functionals (φα
i,j)α,i,j such that φα

i,j(u
β
k,l) = δα,βδi,kδj,l, see [33, §6], we see that δ(C0)

is contained in the algebraic tensor product C0 ⊗O(G).
To finish the proof, note that with ω, c as above, (3.4) implies

ε ⊲ (ω ⊲ c) = (idC ⊗ε)(δ(1C )) · (ω ⊲ c) = ω ⊲ c.

(2)⇒(1): Since C0 ⊆ C is dense, the unit of C0 has to be 1C , whence δ(1C ) lies in the
algebraic tensor product C ⊗ O(G) and (id⊗ε)δ(1C ) = 1C . To prove weak continuity,
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we show that for every c ∈ C0, there exists some ω ∈ A∗ such that ω ⊲ c = c. So, take
c ∈ C0 and write δ(c) =

∑n
i=1 di⊗ai with di ∈ C0 and ai ∈ O(G). By Hahn-Banach, the

restriction of ε to the finite-dimensional subspace of A spanned by a1, . . . , an extends to
a bounded linear functional ω ∈ A∗ that satisfies ω ⊲ c = ε ⊲ c = c. �

6. Restriction

Like partial actions of groups and partial (co)actions of Hopf algebras, partial coactions
of C∗-bialgebras can be obtained from non-partial ones by restriction.

Definition 6.1. Let δB be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra
B. We call a C∗-subalgebra C ⊆ B weakly invariant if

δB(C)(C ⊗A) ⊆ C ⊗A,

and strongly invariant if the embedding C →֒ B strict and δB(C) ⊆ M(C ⊗ A) ⊆
M(B ⊗A).

Note here that if the embedding C →֒ B is strict, then the embedding C⊗A →֒ B⊗A
is strict as well and extends to an embedding M(C ⊗A) →֒ M(B ⊗A).

Remark 6.2. (1) Every ideal C ⊆ B is weakly invariant, but not necessarily strongly
invariant.

(2) A corner C ⊆ B is strongly invariant if and only if 1C ∈ M(C) ⊆ M(B) is
strongly invariant in the sense that

δB(1C) = δB(1C)(1C ⊗ 1A),

as one can easily check. If one thinks of elements of M(B) and M(B⊗A) as 2×2-
matrices with respect to the Peirce decomposition B = 1CB + (1B − 1C)B, then
strong invariance of C means that δB(C) is contained in the upper left corner,
while weak invariance of C means that the off-diagonal part of δB(C) vanishes.

Example 6.3. Suppose that δB is the partial coaction corresponding to a disconnected
partial action ((pg)g∈Γ, (θg)g∈Γ) of a discrete group Γ on a C∗-algebra B as in Proposition
4.3, and that C ⊆ B is a direct summand. Then C is automatically weakly invariant,
but strongly invariant if and only if θg(pg−1C) ⊆ C for all g ∈ Γ.

Evidently, partial coactions can be restricted to strongly invariant C∗-subalgebras. Re-
striction to weakly invariant C∗-subalgebras is a bit more delicate unless the embedding
of the C∗-subalgebra is strict.

Proposition 6.4. Let δB be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra
B and let C ⊆ B be a weakly invariant C∗-subalgebra. Then:

(1) δB restricts to a ∗-homomorphism δC : C → M(C ⊗A).
(2) If the embedding C →֒ B is strict, then the composition of δC with the embedding

of M(C ⊗A) into M(B ⊗A) is strict and

δC(c) = δB(c)(1C ⊗ 1A) (c ∈ C).

(3) If δC is strict, then it is a partial coaction of (A,∆) on C.
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Proof. (1) This follows immediately from the definition.
(2) Suppose that the embedding C →֒ B is strict. Then so is its composition with δB

and hence also δC . To prove the formula given for δC(c), choose a bounded approximate
unit (uν)ν for C, and note that δC(c)(uν ⊗ 1A) = δB(c)(uν ⊗ 1A) converges strictly to
δC(c) in M(C ⊗A) and to δB(c)(1C ⊗ 1A) in M(B ⊗A).

(3) Let (uν)ν be as above and let c, c′ ∈ C. Then by definition of δC ,

(c′ ⊗ 1A ⊗ 1A)·(δC ⊗ idA)(δC(c)(uν ⊗ 1A))

= (c′ ⊗ 1A ⊗ 1A) · (δC ⊗ idA)(δB(c)(uν ⊗ 1A))

= (c′ ⊗ 1A ⊗ 1A) · (δB ⊗ idA)(δB(c)) · (δC(uν)⊗ 1A)

= (idC ⊗∆)((c′ ⊗ 1A)δB(c)) · (δC(uν)⊗ 1A)

= (c′ ⊗ 1A ⊗ 1A) · (idC ⊗∆)(δC(c)) · (δC(uν)⊗ 1A).

Since c′ ∈ C was arbitrary, we can conclude that

(δC ⊗ idA)(δC(c)(uν ⊗ 1A)) = (idC ⊗∆)(δC(c)) · (δC(uν)⊗ 1A).

As ν tends to infinity, δC(c)(uν ⊗ 1A) converges strictly to δC(c), and since δC and hence
also δC ⊗ idA are strict, the left hand side converges to (δC ⊗ idA)δC(c) and the right
hand side converges to (idC ⊗∆)(δC(c))(δC (1C)⊗ 1A). �

Remark 6.5. (1) As a corollary, a (partial) coaction on a C∗-algebra C restricts to a
partial coaction on every direct summand of C because every direct summand is
weakly invariant by Remark 6.2 (1).

(2) The restriction δC can be strict without the embedding C →֒ B being strict, for
example, this is the case if δB is the trivial coaction b 7→ b⊗ 1A and C ⊆ B is a
closed ideal that is not a direct summand.

Example 6.6. Let G = (A,∆) be a discrete quantum group, so that A is a c0-sum of

matrix algebras Aα with α ∈ Irr(Ĝ). Then for every subset J ⊆ Irr(Ĝ), the restriction
of ∆ to the c0-sum AJ :=

⊕
α∈J Aα yields a partial coaction. But if J is non-trivial,

then AJ is not strongly invariant: if α 6∈ J and γ ∈ J , then α ⊗ (α† ⊗ γ), where α†

denotes the dual of α, contains γ, and hence ∆(Aγ)(Aα ⊗ 1) 6= 0.

Closely related to the concept of restriction is the notion of a morphism of partial
coactions.

Definition 6.7. Let δB and δC be partial coactions of a C∗-bialgebra (A,∆) on C∗-
algebras B and C, respectively. A strong morphism from δC to δB is a strict ∗-homo-
morphism π : C → M(B) satisfying

(π ⊗ idA)δC(c) = δB(π(c)) (c ∈ C).

A weak morphism from δC to δB is a ∗-homomorphism π : C → M(B) satisfying

(π ⊗ idA)(δC (c)(c
′ ⊗ a)) = δB(π(c))(π(c

′)⊗ a) (c, c′ ∈ C, a ∈ A).

We call such a weak or strong morphism π proper if π(C) ⊆ B.

Evidently, partial coactions with strong morphisms or with proper weak morphisms
as above form categories.
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Remark 6.8. (1) Clearly, π is a strong or a weak morphism if and only if

π(ω ⊲ c) = ω ⊲ π(c) or π(ω ⊲ c)π(c′) = (ω ⊲ π(c))π(c′) (6.1)

respectively, for all ω ∈ A∗ and c, c′ ∈ C.
(2) If π is a weak or a strong morphism and proper, then its image is weakly or

strongly invariant, respectively.
(3) Suppose that δB is a partial coaction of (A,∆) on a C∗-algebra B and that C ⊆ B

is a C∗-subalgebra that is weakly or strongly invariant. If the embedding C →֒ B
is strict, then this embedding is a weak or a strong morphism with respect to the
restriction of δB to C defined above.

Let us look at the special case of partial coactions associated to disconnected partial
group actions.

Proposition 6.9. Let B and C be two C∗-algebras with disconnected partial actions
((pg)g, (βg)g) and ((qg)g, (γg)g), respectively, of a discrete group Γ. With respect to the
associated partial coactions of C0(Γ), a strict ∗-homomorphism π : B → M(C) is a strong
morphism if and only if

π(pg) = qgπ(1C) and π ◦ βg ⊆ γg ◦ π for all g ∈ Γ, (6.2)

and a weak morphism if and only if

π(1C)γg(qg−1π(1C)) = π(pg) = γg(π(pg−1)) and π ◦ βg ⊆ γg ◦ π for all g ∈ Γ. (6.3)

Proof. Denote the partial coactions by δB and δC .
(1) Suppose that π is a strong morphism. Then the definition of δB and δC implies

(π ◦ βg)(pg−1b) = (π ⊗ evg)δB(b) = (idC ⊗evg)δC(π(b)) = γg(qg−1π(b)) (6.4)

for all g ∈ Γ and b ∈ B. Taking b = 1C or b = pg−1 , we conclude that

γg(qg−1π(pg−1)) = π(pg) = γg(qg−1π(1C)),

in particular, π(pg)qg = π(pg). We use this relation on the left hand side above, apply
γg−1 , and get π(pg) = qgπ(1C). Moreover, π(pgB) ⊆ qgC, and (6.4) implies π◦βg ⊆ γg◦π.

Conversely, the first relation in (6.2) implies qg−1π(1C − pg−1) = 0, whence both sides
in (6.4) are zero for all b ∈ (1 − pg−1)B, and the second relation in (6.2) implies that
(6.4) holds for all b ∈ pg−1B. Combined, (6.2) implies (π ⊗ id)δB = δC ◦ π.

(2) Suppose that π is a strict weak morphism. As in (1), we find that

(π ◦ βg)(pg−1b) = π(1C)γg(qg−1π(b)) (6.5)

for all g ∈ Γ and b ∈ B, and similar arguments as in (1) yield the first equation in (6.3).
Now, we apply γg−1 to this relation and find that

γg−1(π(pg)) = γg−1(qgπ(1c))π(1C ) = π(pg−1).

In particular, this relation and (6.5) imply the second relation in (6.3).
Conversely, (6.3) implies that both sides of (6.5) coincide for all b ∈ pg−1B, and that

for all b ∈ (1C − pg−1)B,

π(1C)γg(qg−1π(1C − pg−1)) = π(pg)− π(pg) = 0,

whence both sides of (6.5) are zero for all b ∈ (1C − pg−1)B. But this implies that
(π ⊗ id) ◦ δB = (π(1C)⊗ 1A)(δC ◦ π). �
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7. The Bernoulli shift of a discrete quantum group

The Bernoulli shift of a discrete group Γ is its action on the power set P(Γ), which we
identify with the infinite product {0, 1}Γ, by left translation. Restriction to the subsets
containing the unit eΓ yields an important example of a partial action. To a discrete
quantum group, we now associate a quantum Bernoulli shift and obtain, by restriction,
a partial coaction that is initial in a natural sense.

The space {0, 1}Γ ∼= P(Γ) parametrizes all maps from Γ to {0, 1} or, equivalently, all
subsets of Γ, which correspond to projections in M(C0(Γ)). Given a discrete quantum
group G, it is natural to define its quantum power set as a universal quantum family of
maps from G to {0, 1} in the sense of [28] or, equivalently, as the unital C∗-algebra C that
comes with a universal projection in M(C ⊗ C0(G)). However, we need an additional
commutativity assumption.

Let G = (C0(G),∆) be a discrete C∗-quantum group with counit ε and compact dual

Ĝ.

Definition 7.1. Let C be a C∗-algebra. We call a projection p ∈ M(C ⊗ C0(G))
admissible if in M(C ⊗ C0(G)⊗ C0(G)),

(p⊗ 1) · (id⊗∆)(p) = (id⊗∆)(p) · (p ⊗ 1). (7.1)

Remark 7.2. For every partial coaction δ of C0(G) on a C∗-algebra C, the projection
δ(1C ) ∈ M(C ⊗ C0(G)) is admissible.

Proposition 7.3. Let G be a discrete C∗-quantum group. Then there exists a unital C∗-
algebra C(BG) with an admissible projection p ∈ M(C(BG)⊗C0(G)) that is universal in
the following sense: for every C∗-algebra C with an admissible projection q ∈ M(C(BG)⊗
C0(G)), there exists a unique unital ∗-homomorphism π : C(BG) → M(C) such that
q = (π ⊗ id)(p).

Proof. Write C0(G) ∼=
⊕

α Iα, where α varies in Irr(Ĝ) and each Iα is a matrix algebra.
Choose matrix units (eαij)i,j for each Iα. Denote by C(BG) the universal unital C∗-algebra

with generators 1 and (pαij)α,i,j satisfying the following relations:

(1) the finite sum pα :=
∑

i,j p
α
ij ⊗ eαij is a projection for every α ∈ Irr(Ĝ);

(2) (pα ⊗ 1)(id⊗∆)(pβ) = (id⊗∆)(pβ)(pα ⊗ 1) for all α, β ∈ Irr(Ĝ).

Then the sum p =
∑

α p
α ∈ M(C(BG)⊗C0(G)) converges strictly because each summand

pα lies in a different summand of C(BG)⊗ C0(G) ∼=
⊕

α(C(BG)⊗ Iα) and has norm at
most 1. By (1) and (2), this p is an admissible projection, and by construction, C(BG)
has the desired universal property by construction. �

We denote by C0(B
×
G
) ⊂ C(BG) the non-unital C∗-subalgebra generated by all pαi,j.

Example 7.4. If G is a classical discrete group Γ, we can identify C(BΓ) with C({0, 1}Γ).

Indeed, in that case, Irr(Γ̂) can be identified with Γ so that C(BΓ) is generated by 1 and
a family of projections pγ , where γ ∈ Γ. Denote by δγ ∈ C0(Γ) the Dirac delta function
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at γ ∈ Γ. Then p =
∑

γ p
γ ⊗ δγ and the admissibility condition takes the form


∑

γ

pγ ⊗ δγ ⊗ 1,
∑

γ,γ′

pγγ
′

⊗ δγ ⊗ δγ′


 = 0

or, equivalently, [pγ , pγ
′′

] = 0 for all γ, γ′′ ∈ Γ. Thus, C(BΓ) is commutative. Therefore,
the map that sends pγ to the projection of {0, 1}Γ onto the γth component induces an
isomorphism C(BΓ) ∼= C({0, 1}Γ). Under this isomorphism, the C∗-subalgebra C0(B

×
G
)

corresponds to C0(P(Γ) \ {∅}).

The quantum space BG comes with a natural action of G:

Proposition 7.5. There exists a unique coaction δ of C0(G) on C(BG) such that

(δ ⊗ id)(p) = (id⊗∆)(p). (7.2)

This coaction is counital and restricts to a coaction on C0(B
×
G
).

Proof. The projection q := (id⊗∆)(p) ∈ M((C(BG) ⊗ C0(G)) ⊗ C0(G)) is admissible
because

(id⊗ id⊗∆)(q) = (id⊗∆(2))(p) = (id⊗∆⊗ id)(id⊗∆)(p)

commutes with q⊗1 = (id⊗∆⊗ id)(p⊗1). The universal property of p yields a unital ∗-
homomorphism δ : C(BG) → M(C(BG)⊗C0(G)) such that (δ⊗ id)(p) = q = (id⊗∆)(p).
We have (δ ⊗ id)δ = (id⊗∆)δ because by definition of δ,

((δ ⊗ id)δ ⊗ id)(p) = (δ ⊗ id⊗ id)(id⊗∆)(p)

= (id⊗ id⊗∆)(δ ⊗ id)(p)

= (id⊗∆⊗ id)(id⊗∆)(p) = ((id⊗∆)δ ⊗ id)(p).

Next, ((id⊗ε)δ ⊗ id)(p) = (id⊗(ε⊗ id)∆)(p) = p and hence (id⊗ε)δ = id.
Finally, (7.2) implies that δ(pαij)(1 ⊗ C0(G)) ⊆ C0(B

×
G
)⊗ C0(G). �

We shall restrict the coaction δ to the direct summand of C(BG) that is given by the
following projection:

Lemma 7.6. The projection pε := (id⊗ε)(p) ∈ C(BG) is central and δ(pε) = p.

Proof. We apply id⊗ε⊗ id to (7.1) and obtain (pε⊗1)p = p(pε⊗1). Thus, pε commutes
with (id⊗ω)(p) ∈ C(BG) for every ω ∈ C0(G)∗ and hence with C(BG). Moreover,

δ(pε) = (δ ⊗ ε)(p) = (id⊗ id⊗ε)(δ ⊗ id)(p) = (id⊗ id⊗ε)(id⊗∆)(p) = p. �

Example 7.7. If G is a classical group Γ (see Example 7.4), ε is evaluation at the unit
eΓ and pε = peΓ . Therefore, restriction of the coaction δ above to the direct summand
pεC(BG) of C(BG) corresponds to restriction of the Bernoulli shift on P(Γ) to the subsets
containing the unit eΓ.

We can now define the quantum analogue of the partial Bernoulli shift:
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Definition 7.8. Let G be a discrete C∗-quantum group and write C(Bε
G
) for the direct

summand pεC(BG) of C(BG). Then the partial Bernoulli action of G is the partial coac-
tion δε of C0(G) on C(Bε

G
) obtained as the restriction of the coaction δ as in Proposition

6.4, that is,

δε(b) = δ(b)(pε ⊗ 1) for all b ∈ C(Bε
G).

Proposition 7.3 immediately implies:

Corollary 7.9. Let C be a C∗-algebra and let q ∈ M(C ⊗ C0(G)) be an admissible
projection such that (id⊗ε)(q) = 1C ∈ M(C). Then there exists a unique unital ∗-
homomorphism π : C(Bε

G
) → M(C) such that q = (π ⊗ id)(p).

The partial Bernoulli action is initial in the following sense:

Proposition 7.10. Let δC be a counital partial coaction of C0(G) on a C∗-algebra C.
Then there exists a unique unital ∗-homomorphism π : C(Bε

G
) → M(C) such that

(π ⊗ id)(p(pǫ ⊗ 1)) = δC(1C), (7.3)

and this π is a strong morphism of partial coactions, that is, (π ⊗ id) ◦ δε = δC ◦ π.

Proof. The projection δC(1C) ∈ M(C ⊗C0(G)) is admissible and δC is counital. Hence,
Corollary 7.9 yields a unique unital ∗-homomorphism π : C(Bε

G
) → M(C) such that

(π ⊗ id)(p) = δC(1C). We show that (π ⊗ id) ◦ δε = δC ◦ π. First, (7.2) and Lemma 7.6
imply

(δε ⊗ id)(p(pε ⊗ 1)) = (δ ⊗ id)(p(pǫ ⊗ 1)) · (pε ⊗ 1)

= (id⊗∆)(p) · (p⊗ 1) · (pε ⊗ 1⊗ 1).

We apply π ⊗ id⊗ id, use (7.3), and find that

((π ⊗ id)δε ⊗ id)(p(pε ⊗ 1)) = (π ⊗∆)(p(pε ⊗ 1)) · (π ⊗ id)(p(pε ⊗ 1))

= (id⊗∆)(δC(1C)) · (δC(1C)⊗ 1)

= (δC ⊗ id)δC(1C)

= (δC ◦ π ⊗ id)(p(pε ⊗ 1)).

But this relation implies (π ⊗ id) ◦ δε = δC ◦ π. �

This partial Bernoulli shift will be studied further in a forthcoming article. In par-
ticular, the partial coaction δε should give rise to a partial crossed product that can be
regarded as a quantum counterpart to the partial group algebra of a discrete group, see
[16, §10], and as a C∗-algebraic counterpart to the Hopf algebroid Hpar associated to a
Hopf algebra H in [7].

8. Dilations

Let (A,∆) be a C∗-bialgebra. Given a partial coaction of (A,∆), a natural and
important question is whether it can be identified with as the restriction of a coaction to
a weakly invariant C∗-subalgebra as in Proposition 6.4.
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Definition 8.1. Let δC be a partial coaction of (A,∆) on a C∗-algebra C. A dilation of
δC consists of a C∗-algebra B, a coaction δB of (A,∆) on B, and an embedding ι : C →֒ B
that is a weak morphism from δC to δB , that is, satisfies

δB(ι(c))(ι(c
′)⊗ a) = (ι⊗ idA)(δC(c)(c

′ ⊗ a)) (c, c′ ∈ C, a ∈ A).

Example 8.2 (Disconnected partial actions of groups). Let C be a C∗-algebra with a
disconnected partial action ((pg)g, (θg)g) of a discrete group Γ, and consider the associated
partial coaction δC of C0(Γ) as in Proposition 4.3.

A dilation of δC is given by a C∗-algebra B with a coaction of C0(Γ), that is, by an
action (αg)g∈Γ of Γ on B, and an embedding C →֒ B that is a weak morphism. Suppose
that this embedding is strict. By Proposition 6.9, it is a weak morphism if and only if

pg = 1Cαg(1C) and θg = αg

∣∣
pgC

(g ∈ Γ).

In particular, 1C commutes with αg(1C) for each g ∈ Γ. We claim that our partial
action coincides with the set-theoretic restriction ((Dg)g, (αg|Dg)g) of α to C, where
Dg = αg(C) ∩ C for each g ∈ Γ. Indeed, for every element c ∈ Dg with 0 ≤ c ≤ 1C , we
have c ≤ 1C and α−1

g (c) ≤ 1C , whence c ≤ αg(1C)1C = pg and c ∈ pgC. On the other
hand, if c ∈ pgC, then αg−1(c) = θg−1(c) ∈ C and hence c ∈ αg(C) ∩ C = Dg.

Conversely, suppose that α is an action of Γ on a C∗-algebra B that contains C and
that α is a dilation in the usual sense, so that C ⊆ B is an ideal, pgC = αg(C) ∩ C
and θg = αg|pgC for each g ∈ Γ. If the embedding C ⊆ B is strict, then C is a direct
summand, that is, C = 1CB, and then αg(C) ∩ C = αg(1C)1C for each g ∈ Γ, so that
the coaction δB corresponding to α is a dilation of δC .

The main question is, of course, which partial coactions do have a dilation. We start
with a necessary condition.

Definition 8.3. We call a partial coaction δC of (A,∆) on a C∗-algebra C regular if

(idC ⊗∆)(δC(C)) · (1C ⊗ 1A ⊗A) ⊆ M(C ⊗A)⊗A. (8.1)

Example 8.4. (1) Every coaction is easily seen to be regular.
(2) The question of regularity arises only if C is non-unital, because every partial

coaction on a unital C∗-algebra is regular.
(3) If A is a direct sum of matrix algebras, for example, if (A,∆) is a discrete quantum

group, then every partial coaction of (A,∆) is regular.

Regularity is necessary for the existence of a dilation with a strict embedding:

Lemma 8.5. If a partial coaction has a dilation (B, δB , ι), where ι is strict, then the
partial coaction is regular.

Proof. Suppose that δC is a partial coaction of (A,∆) on a C∗-algebra C with a dilation
(B, δB , ι). It suffices to show that the product

(ι⊗ idA⊗ idA)((idC ⊗∆)δC(C)) · (1B ⊗ 1A ⊗A)

lies in M(B ⊗A)⊗A. Since ι is a weak morphism, this product is equal to

(idC ⊗∆)(δB(ι(C))) · (ι(1C )⊗ 1A ⊗A),
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which by coassociativity of δB can be rewritten as

(δB ⊗ idA)(δB(ι(C))(1B ⊗A)) · (ι(1C)⊗ 1A ⊗ 1A),

and this product lies in M(B ⊗A)⊗A because δB(ι(C))(1B ⊗A) ⊆ B ⊗A. �

If (A,∆) is a regular C∗-quantum group, for example, a compact one, and if δC is
weakly continuous, then regularity of δC can be tested on the unit:

Lemma 8.6. Let (A,∆) be a regular C∗-quantum group and let δC be a weakly continuous
partial coaction of (A,∆) on a C∗-algebra C such that

(idC ⊗∆)(δC(1C)) · (1C ⊗ 1A ⊗A) ⊆ M(C ⊗A)⊗A.

Then δC is regular.

Proof. We use the same notation and a similar argument as in the proof of Proposition
3.5. By (3.3),

(idC ⊗∆)(δC(ω ⊲ c)) = (idC ⊗∆)(δC(1C)) · (idC ⊗ idA⊗ idA⊗ω)(idC ⊗∆(2))δC(c))

for all ω ∈ A∗ and c ∈ C, where ∆(2) = (∆ ⊗ idA)∆ = (idA⊗∆)∆. Since δC is weakly
continuous, we can conclude that [(idC ⊗∆)δC(C) · (1C ⊗1A⊗A)] is equal to the product
of (idC ⊗∆)(δC(1C)) with

[(idC ⊗ idA⊗ idA ⊗ω)((idC ⊗∆(2))(δC(C))(1C ⊗ 1A ⊗A⊗ 1A)) : ω ∈ A∗].

Similarly as in the proof of Proposition 3.5, we rewrite this space in the form

[(idC ⊗ idA⊗ idA⊗ω)(V34(idC ⊗(idA ⊗π)∆)(δC(C))124V
∗
34(A⊗ π̂(Â))34) : ω ∈ B(K)∗]

= [(idC ⊗ idA⊗ idA⊗ω)((A⊗ π̂(Â))34(idC ⊗(idA⊗π)∆)(δC(C))124) : ω ∈ B(K)∗]

= [((idC ⊗ idA⊗ω ◦ π)(idC ⊗∆)δC(C))⊗A : ω ∈ B(K)∗]

⊆ M(C ⊗A)⊗A.

Summarising, we find that

(idC ⊗∆)δC(C) · (1C ⊗ 1A ⊗A) ⊆ (idC ⊗∆)δC(1C) · (M(C ⊗A)⊗A).

By assumption on δC(1C), the right hand side lies in M(C ⊗A)⊗A. �

For partial actions of a group G on a space X, a canonical dilation can be constructed
as a certain quotient of the product X ×G; see [2] or [16, Theorem 3.5, Proposition 5.5].
We now give a dual construction. Although this one will be improved upon in the next
section, we decided to include it for instructive purpose, see also Example 8.8.

From now on, we almost always assume the C∗-algebra underlying our C∗-bialgebra
to have the slice map property, which holds, for example, if it is nuclear; see 2.1.

Proposition 8.7. Let δC be an injective, regular partial coaction of a C∗-bialgebra (A,∆)
on a C∗-algebra C and suppose that A has the slice map property. Denote by C ⊠ A ⊆
M(C ⊗A) the subset of all x satisfying the following conditions:

(1) [x, δC(1C)] = 0;
(2) (δC ⊗ idA)(x) = (δC(1C)⊗ 1A)(idC ⊗∆)(x) = (idC ⊗∆)(x)(δC (1C)⊗ 1A);
(3) x(1C ⊗A) and (1C ⊗A)x lie in C ⊗A;
(4) (idC ⊗∆)(x)(1C ⊗ 1A ⊗A) and (1C ⊗ 1A ⊗A)(idC ⊗∆)(x) lie in M(C ⊗A)⊗A.
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Then C ⊠ A is a C∗-algebra, idC ⊗∆ restricts to a coaction of (A,∆) on C ⊠ A, and
(C ⊠A, idC ⊗∆, δC) is a dilation of δC .

Proof. Clearly, C ⊠ A is a C∗-algebra. It contains δC(C) by (3.1) and regularity of δC .
Next, we need to show that

(idC ⊗∆)(C ⊠A)(1C ⊗ 1A ⊗A) ⊆ (C ⊠A)⊗A.

Condition (4) implies that the left hand side is contained in M(C ⊗ A) ⊗ A. Since A
has the slice map property, it suffices to show that for every y ∈ C ⊠A and ω ∈ A∗, the
element

x := (idC ⊗ idA⊗ω)(idC ⊗∆)(y) = (idC ⊗(idA ⊗ω)∆)(y)

lies in C⊠A, that is, satisfies conditions (1)–(4) above. In case of (2)–(4), we only prove
the first halfs of the statements, the others follow similarly.

(1) The element x commutes with δC(1C) because (idC ⊗∆)(y) commutes with (δC(1C)⊗
1A) by (2), applied to y.

(2) We use (1) for y and coassociativity of ∆ to see that

(δC ⊗ idA)(x) = (idC ⊗ idA⊗(idA⊗ω)∆)(δC ⊗ idA)(y)

= (idC ⊗ idA⊗(idA⊗ω)∆)((δC (1)⊗ 1A)(idC ⊗∆)(y))

= (δC(1C)⊗ 1A)(idC ⊗(idA⊗ idA⊗ω)∆(2))(y)

= (δC(1C)⊗ 1A)(idC ⊗∆)(idA⊗(idA⊗ω)∆)(y)

= (δC(1C)⊗ 1A)(idC ⊗∆)(x).

(3) Write ω = aυ with a ∈ A and υ ∈ A∗ using Cohen’s factorisation theorem, and let
a′ ∈ A. Then

x(1C ⊗ a′) = (idC ⊗ idA⊗υ)((idC ⊗∆)(y)(1C ⊗ a′ ⊗ a)).

We use the relation A⊗A = [∆(A)(A⊗A] and condition (3) on y and find that x(1C⊗a′)
lies in C ⊗A as desired.

(4) With a, a′, υ as above,

(idC ⊗∆)(x) · (1C ⊗ 1A ⊗ a′) = (idC ⊗ idA ⊗ idA⊗υ)((idC ⊗∆(2))(y) · (1C ⊗ 1A ⊗ a′ ⊗ a)).

We use the relation A⊗A = [∆(A)(A ⊗A] again and find that

(idC ⊗∆(2))(y) · (1C ⊗ 1A ⊗ a′ ⊗ a)

∈ (idC ⊗ idA⊗∆)((idC ⊗∆)(y) · (1C ⊗ 1A ⊗A)) · (1C ⊗ 1A ⊗A⊗A).

Condition (4), applied to y, implies that the expression above lies in M(C⊗A)⊗A⊗A.
Slicing the last factor with υ, we get (idC ⊗∆)(x) · (1C ⊗ 1A ⊗ a′) ∈ M(C ⊗A)⊗A. �

Example 8.8 (Case of a partial group action). Consider the partial coaction δC associ-
ated to a disconnected partial action ((pg), (θg)g) of a discrete group Γ on a C∗-algebra
C. Identify M(C⊗C0(Γ)) with Cb(Γ;M(C)) and let f ∈ Cb(Γ;M(C)). Then conditions
(1) and (4) in Proposition 8.7 are automatically satisfied by f , condition (3) is equivalent
to f ∈ Cb(Γ;C), and condition (2) corresponds to the invariance condition

θg(pg−1f(h)) = pgf(gh) (g, h ∈ Γ).
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In particular, if C = C0(X) for some locally compact, Hausdorff space X, then each pg is
the characteristic function of some clopen Dg ⊆ X, each θg is the pull-back along some
homeomorphism αg−1 : Dg → Dg−1 , and the invariance condition above translates into

f(x, gh) = f(αg−1(x), h) (g, h ∈ Γ, x ∈ Dg),

so that f descends to the quotient space of X×Γ with respect to the equivalence relation
given by (x, gh) ∼ (αg−1(x), h) for all g, h ∈ Γ and x ∈ Dg. This space is, up to the

reparameterization (x, g) 7→ (g−1, x), the globalization of the partial action ((Dg)g, (αg)g)
of Γ on X, see [16, Theorem 3.5, Proposition 5.5], and C0(X) ⊠ C0(Γ) can be identified
with a C∗-subalgebra of Cb((X × Γ)/∼).

9. Minimal dilations

Among all dilations of a fixed partial coaction δC of a C∗-bialgebra (A,∆), we now
single out a universal one, which we call the globalization of δC . More precisely, we show
that (1) every dilation of δC contains one that is minimal in a natural sense, and (2)
that all such minimal dilations are isomorphic. We need to assume, however, that δC is
regular and injective, that A has the slice map property, and, for (2), that (A,∆) is a
C∗-quantum group.

Definition 9.1. Let δC be a partial coaction of (A,∆) on a C∗-algebra C. We call a
dilation (B, δB , ι) of δC minimal if ι(C) and A∗ ⊲ ι(C) generate B as a C∗-algebra.

Remark 9.2. Let (B, δB , ι) be a minimal dilation of a partial coaction δC of (A,∆) on some
C∗-algebra C. Then ι(C) ⊆ B is an ideal because ι(C)(A∗⊲ι(C)) = ι(C)ι(A∗⊲C) ⊆ ι(C)
by (6.1). If, moreover, ι is strict, then ι(C) is a direct summand of B.

Example 9.3. If, in the situation above, (A,∆) is the C∗-bialgebra of functions on a
discrete group Γ, then the coaction δB corresponds to an action α of Γ on B, and the
dilation is minimal if and only if

∑
g∈Γ αg(ι(C)) generates B as a C∗-algebra.

Example 9.4 (Partial Bernoulli shift). Let G = (C0(G),∆) be a discrete C∗-quantum
group. Denote by δ the coaction of C0(G) on C(BG), see Section 7, by δε its restriction
to a partial coaction on C(Bε

G
), by δ× the coaction of C0(G) on C0(B

×
G
) obtained as the

restriction of δ, see Proposition 7.5, and by ι : C(Bε
G
) →֒ C0(B

×
G
) the inclusion. Then

(C0(B
×
G
), δ×, ι) is a dilation of δε because δε is a restriction of δ×, and this dilation is

minimal. Indeed, δ×(pε) = p by Lemma 7.6, whence C0(G)∗ ⊲ ι(C0(B
ε
G
)) contains pαij for

every α, i, j, and these elements generate C0(B
×
G
).

Every dilation contains a minimal one:

Proposition 9.5. Let δC be a partial coaction of (A,∆) on a C∗-algebra C with a
dilation (B, δB , ι), and suppose that A has the slice map property. Denote by B0 ⊆ B the
C∗-subalgebra generated by ι(C) and A∗ ⊲ ι(C).

(1) δB restricts to a coaction δB0
on B0, and (B0, δB0

, ι) is a minimal dilation of δC .
(2) If (A,∆) is a regular C∗-quantum group and δC is weakly continuous, then [A∗ ⊲

ι(C)] ⊆ B is a C∗-algebra. If additionally ι is strict, then B0 = [(A∗⊲ι(C))(C1B+
Cι(1C))].
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Proof. (1) To prove the first assertion, we only need to show that

δB(ι(C))(1B ⊗A) ⊆ B0 ⊗A and δB(A
∗ ⊲ ι(C))(1B ⊗A) ⊆ B0 ⊗A.

But for all c ∈ C, υ, ω ∈ A∗, both (id⊗ω)(δB(ι(c))) = ω⊲ι(c) and (id⊗ω)(δB(υ⊲ι(c))) =
ωυ ⊲ ι(c) lie in B0. Since A has the slice map property, the desired inclusions follow.

(2) We follow the proof of [9, Proposition 5.7], using the same notation and manipula-
tions as in the proof of Proposition 3.5. To shorten the notation, let U := (π⊗ id

π̂(Â))(V )

and δπ := (idB ⊗π) ◦ δB ◦ ι. Then by (3.3),

[A∗ ⊲ ι(C)] = [A∗ ⊲ ι(C(A∗ ⊲ C))]

= [(idB ⊗υ ⊗ ω)((δB ⊗ idA)((C ⊗ 1A)δC(C))) : υ, ω ∈ A∗]

= [(idB ⊗υ ⊗ ω)((δB ⊗ idA)((C ⊗ 1A)δB(C))) : υ, ω ∈ A∗]

= [(idB ⊗υ ◦ π ⊗ ω ◦ π)((δB(C)⊗ 1A)(idB ⊗∆)δB(C)) : υ, ω ∈ B(K)∗]

= [(idB ⊗υ ⊗ ω)(δπ(C)12U23δπ(C)13U
∗
23) : υ, ω ∈ B(K)∗]

= [(idB ⊗υ ⊗ ω)(δπ(C)12U23δπ(C)13(π(A) ⊗ π̂(Â))23) : υ, ω ∈ B(K)∗]

= [(idB ⊗υ ⊗ ω)(δπ(C)12(π(A) ⊗ π̂(Â))23δπ(C)13) : υ, ω ∈ B(K)∗]

= [(A∗ ⊲ ι(C))(A∗ ⊲ ι(C))].

Thus, [A∗ ⊲ ι(C)] is a C∗-algebra. If ι is strict so that ι(1C ) is well-defined, then this
C∗-algebra commutes with ι(1C), and by (6.1) the product is [ι(A∗ ⊲ C)] = ι(C). This
proves the last assertion concerning B0. �

If we apply Proposition 9.5 to the canonical dilation (C ⊠A, idC ⊗∆, δC) constructed
in Proposition 8.7, we obtain the following dilation:

Theorem 9.6. Let (A,∆) be a C∗-bialgebra, where A has the slice map property, and
let δC be an injective, regular partial coaction of (A,∆) on a C∗-algebra C. Denote by
G(C) ⊆ M(C ⊗A) the C∗-subalgebra generated by

{(idC ⊗ idC ⊗ω)(idC ⊗∆)δC(c) : ω ∈ A∗, c ∈ C} and δC(C).

Then idC ⊗∆ restricts to a partial coaction on G(C) and

G(δC) := (G(C), idC ⊗∆, δC)

is a minimal dilation of δC .

Proof. By a similar argument as in the proof of Proposition 8.7, we only need to show
that for every c ∈ C and υ, ω ∈ A∗, the elements

(idC ⊗ idA⊗υ)((idC ⊗∆)δC(c))

and

(idC ⊗ idA ⊗υ)((idC ⊗∆)((idC ⊗ idA⊗ω)(idC ⊗∆)δC(c)))

lie in G(C). In the first case, this is trivially true, and in the second case, one finds that
the element is equal to d = (idC ⊗ idA ⊗υω)((idC ⊗∆)δC(C)) ∈ G(C). �

Remark 9.7. Suppose that (A,∆) and δC are as above.
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(1) Beware that δC is strict as a map from C to M(C ⊗A), but this does not imply
that δC is strict as a map from C to G(C).

(2) If δC is weakly continuous, then (3.3) implies that G(C) ⊆ M(C ⊗A) is equal to
the C∗-subalgebra generated by {(idC ⊗ idC ⊗ω)(idC ⊗∆)δC(c) : ω ∈ A∗, c ∈ C}
and δC(1C).

Example 9.8 (Case of a partial group action). Consider the partial coaction δC associ-
ated to a disconnected partial action ((pg), (θg)g) of a discrete group Γ on a C∗-algebra
C, and identify M(C ⊗ C0(Γ)) with Cb(Γ;M(C)). In that case, G(C) is the C∗-algebra
generated by all functions of the form

fc,h = (idC ⊗ idC0(Γ)⊗evh)(idC ⊗∆)δC(c) : g 7→ θgh(ph−1g−1c),

where c ∈ C and g, h ∈ Γ. The action ρ of Γ corresponding to the coaction idC ⊗∆ is
given by right translation of functions, whence ρh′(fc,h) = fc,h′h for all h′ ∈ Γ.

We shall use the following notion of a morphism between dilations:

Definition 9.9. Let δC be a partial coaction of a C∗-bialgebra (A,∆) on some C∗-
algebra C. A morphism between dilations B = (B, δB , ι

B) and D = (D, δD, ι
D) of δC is

a ∗-homomorphism φ : B → D satisfying

φ(ιB(c)) = ιD(c) and δD(φ(b))(1D ⊗ a) = (φ⊗ idA)(δB(b)(1B ⊗ a)) (9.1)

for all c ∈ C, b ∈ B and a ∈ A. Evidently, all dilations of a fixed partial coaction δC
form a category; we denote this category by Dil(δC).

Remark 9.10. The second equation in (9.1) is equivalent to the condition that φ is a
morphism of left A∗-modules, that is, ω ⊲ φ(b) = φ(ω ⊲ b) for all b ∈ B and ω ∈ A∗.

If δC is injective and regular, then the dilation G(δC ) is terminal among the minimal
ones:

Proposition 9.11. Let δC be an injective, regular partial coaction of a C∗-bialgebra
(A,∆) on a C∗-algebra C, let B = (B, δB , ι) be a minimal dilation of δC , and suppose
that A has the slice map property. Then there exists a unique morphism φB from B to
G(δC), and on the level of C∗-algebras, φB is surjective. For each b ∈ B, the image φB(b)
is the restriction of δB(b) to the ideal ι(C)⊗A ∼= C ⊗A in B ⊗A.

Proof. Uniqueness follows from the fact that B is generated by ι(C) and A∗ ⊲ ι(C).
To prove existence, define φB as in (3). Since ι is a weak morphism, φB ◦ ι = δC . The

relation (idB ⊗∆)δB = (δB ⊗ idA)δB implies that

(φB ⊗ idA)(δB(b)(b
′ ⊗ a)) = (idC ⊗∆)(φB(b))(φB(b

′)⊗ a)

for all b, b′ ∈ B and a ∈ A; in particular,

φB(ω ⊲ ι(c))φB(b) = (idC ⊗ idA⊗ω)((idC ⊗∆)δC(C))φB(b)

for all c ∈ C and ω ∈ C∗. Now, the definition of G(C) and minimality of B imply
φB(B) = G(C). �

If (A,∆) is a C∗-quantum group, then the morphism above is injective and hence an
isomorphism. To show this, we use the following observation:
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Lemma 9.12. Let δB be a coaction of a C∗-quantum group (A,∆) on a C∗-algebra B
and let b, b′ ∈ M(B). Then δB(b)(b

′ ⊗ 1A) = 0 if and only if (b⊗ 1A)δB(b
′) = 0.

Proof. Choose a modular multiplicative unitary W for (A,∆) so that ∆(a) = W (a⊗1)W ∗

for all a ∈ A. Then

(δB ⊗ idA)(δB(b)) · (δB(b
′)⊗ 1A) = (idB ⊗∆)(δB(b)) · (δB(b

′)⊗ 1A)

= W23(δB(b)⊗ 1A)W
∗
23(δB(b

′)⊗ 1A).

Since δB ⊗ idA is injective and W is unitary, we can conclude that δB(b)(b
′ ⊗ 1A) = 0 if

(δB(b)⊗ 1A)W
∗
23(δB(b

′)⊗ 1A) = 0. (9.2)

A similar argument shows that (b⊗ 1A)δB(b
′) = 0 if and only if

(δB(b)⊗ 1A)W23(δB(b
′)⊗ 1A) = 0. (9.3)

Now, both (9.2) and (9.3) are equivalent to the condition δB(b)(1B ⊗ Â)δB(b
′) = 0. �

We can now prove claim (2) stated in the introduction to this section:

Proposition 9.13. Let δC be an injective, regular partial coaction of a C∗-quantum
group (A,∆) on a C∗-algebra C, suppose that A has the slice map property, and let B be
a minimal dilation of δC . Then the morphism φB from B to G(δC ) is an isomorphism.

Proof. Write B = (B, δB , ι). It suffices to show that φB is injective on the level of C∗-
algebras. On the direct summand ιC(C) ⊆ B, the morphism φB is given by ιC(c) 7→ δC(c)
and hence injective. Since B is minimal, the direct summand (1B − ι(1C))B of B is
generated by (1B − ι(1C))(A

∗ ⊲ ι(C)). Given a non-zero b ∈ (1B − ι(1C))B, we therefore
find some c ∈ C such that δB(ι(c))(b ⊗ 1A) is non-zero, and then (ι(c) ⊗ 1A)δB(b) is
non-zero by the lemma above, whence φB(b) is non-zero. �

Corollary 9.14. Let (A,∆) be a C∗-quantum group and suppose that A has the slice map
property. Then all minimal dilations of an injective, regular partial coaction of (A,∆)
are isomorphic.
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