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Abstract

This thesis is concerned with quantum groupoids in the setting of operator algebras.
It consists of a brief introduction to quantum groupoids, a synopsis of the articles [I.1]–
[II.2] listed below, and the articles themselves in the form of appendices.

[I.1] T. Timmermann. The relative tensor product and a minimal fiber product in
the setting of C∗-algebras. J. Operator Theory 68(2):101-140, 2012.

[I.2] T. Timmermann. C∗-pseudo-multiplicative unitaries, Hopf C∗-bimodules and
their Fourier algebras. J. Inst. Math. Jussieu 11(1):189-220, 2012.

[I.3] T. Timmermann. A definition of compact C∗-quantum groupoids. Contemp.
Math. 503:267-290, 2009.

[I.4] T. Timmermann. Coactions of Hopf C∗-bimodules. J. Operator Theory 68(1):19-
66, 2012.

[II.1] T. Timmermann. Free dynamical quantum groups and the dynamical quantum
group SUq(2). Banach Center Publications 98:311-341, 2012.

[II.2] T. Timmermann. Measured quantum groupoids associated to proper dynamical
quantum groups. arXiv:1206.6744, prelim. accepted by J. Noncommut. Geom.

The articles [I.1]–[I.4] lay foundations for the theory of quantum groupoids in the
setting of C∗-algebras, while the articles [II.1] and [II.2] are concerned with dynamical
quantum groups in the algebraic setting and connections to the setting of operator
algebras. The logical dependence of the articles is depicted in the diagram below, where
dotted lines indicate the provision of examples:

[I.1]

��
[I.2]

xx �� &&

[II.1]

��
[I.3]

//
[I.4] [II.2]
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A brief introduction to quantum groupoids

This section gives a brief introduction to the concept of a quantum groupoid as it is
used in this thesis and lists the related approaches found in the literature.

Quantum groupoids can be thought of as the “push-out” in the following diagram:

groups //

��

groupoids

��
quantum groups //

quantum groupoids

(∗)

They generalize groupoids and quantum groups in a similar way like the latter generalize
groups. To explain these statements, let us traverse the arrows in this diagram.

If one thinks of a group as describing the symmetries of one object, then groupoids
capture the symmetries of a parameterized family of objects. For example, the former
act on vector spaces and the latter on parameterized families or bundles of vector spaces.
Formally, a groupoid is a small category where every morphism is invertible and thus
consists of a set G0 of objects or units, a set G of morphisms, two maps from G to G0

assigning to each morphism its source and range, and a multiplication that assigns to
each composable pair of morphisms the composition.

The passage from groups to quantum groups follows two principles that quantum
physics, algebraic geometry and non-commutative geometry have in common, namely,

(1) “classical” (phase) spaces are replaced by “quantum” algebras (of observables)
which usually do not commute and

(2) “classical” objects yield “quantum” counterparts via contravariant functors from
certain classes of spaces to suitable algebras of functions.

Thus, a quantum group is not a set G with a multiplication map G × G → G, but
an algebra A with a homomorphism A → A ⊗ A called comultiplication that satisfies
several conditions. The precise form of the latter depends on the context. In the algebraic
setting, one usually assumes existence of a counit and antipode which correspond to the
unit element and the inversion of a group and lead to the notion of a Hopf algebra. In
the setting of operator algebras, one usually demands existence of a left- and a right-
invariant weight which correspond to a left and a right Haar measure of a group, and
then constructs a counit and antipode which may be unbounded maps.

Applying the same paradigm to groupoids instead of groups, one finds that a quantum
groupoid should consist of algebras B and A corresponding to the sets of objects and
morphisms, respectively, two maps s, r : B → A corresponding to the source and range
map, and a comultiplication ∆: A→ A∗A satisfying several conditions. The precise form
of these conditions and the definition of the fiber product A ∗ A depend on the context
and are not easy to guess from the analogy with groupoids unless B is commutative and
r(B) and s(B) are central in A. The main variants of such quantum groupoids are the

− weak Hopf algebras [9], [45], [51], where the algebra B is separable and hence
semi-simple and the target of the comultiplication is a subalgebra of A⊗A;

− Hopf algebroids [8], [11], [40], [74], which provide a general algebraic framework
beyond the case where B is semi-simple;
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− weak multiplier Hopf algebras [67], [68] and multiplier Hopf algebroids [61], where
in contrast to the variants above the algebras A and B need no longer be unital;

− measured quantum groupoids [20], [19], [39] in the setting of von Neumann al-
gebras.

For example, every groupoid G yields a quantum groupoid (B,A, s, r,∆), where B
and A are suitable algebras of functions on G and s, r,∆ are the transposes of the source
map, range map and the multiplication map of G, respectively. If the groupoid is (i) fi-
nite, (ii) infinite, (iii) algebraic, (iv) locally compact and Hausdorff, or (v) measured, one
should take those functions that are (i) arbitrary, (ii) finitely supported, (iii) regular, (iv)
continuous and vanishing at infinity, or (v) measurable and essentially bounded, respec-

tively. Furthermore, such a groupoid yields a second quantum groupoid (B, Â, ŝ, r̂, ∆̂),

where B is as before and Â is an associated groupoid algebra. If G is finite, then

B = C(G0), A = C(G), Â = CG

and these spaces have bases (δx)x∈G0 , (δγ)γ∈G and (γ)γ∈G, respectively, such that

δx · δy = δx,yδx, δγ · δγ′ = δγ,γ′δγ , γ · γ′ =
{
γγ′, if the product is defined in G,

0, otherwise,

s(δx) =
∑

γ−1γ=x

δγ , r(δx) =
∑

γγ−1=x

δγ , ∆(δγ) =
∑

γ′γ′′=γ

δγ′ ⊗ δγ′′ ,

ŝ(δx) = x, r̂(δx) = x, ∆̂(γ) = γ ⊗ γ.

Here, the targets of ∆ and ∆̂ are certain subalgebras of A⊗A and Â⊗ Â, respectively.
Examples of genuine quantum groupoids appeared in a variety of mathematical con-

texts and guises, for example, in the form of generalized Galois symmetries for depth
2 inclusions of factors or algebras [10], [19], [20], [30], [31], [44], dynamical quantum
groups in connection with solutions of the quantum dynamical Yang-Baxter equation
[18], [24], [33], Tannaka-Krein duals of certain monoidal categories of bimodules, and in
connection with invariants of knots and 3-manifolds [42] and transverse geometry [14].

The heuristic explanation of the concept of a quantum groupoid given above suffices
for the purpose of this thesis but does not touch the following important aspect of
quantum groupoids — their close relation to certain monoidal categories of bimodules.
Indeed, each (i) group, (ii) quantum group, (iii) groupoid and (iv) quantum groupoid
has a naturally associated monoidal category of (i) representations on vector spaces, (ii)
corepresentations on vector spaces, (iii) representations on vector bundles over the base
space G0 or (iv) bimodules over the base algebra B, respectively. Many properties of the
initial object are reflected in the associated category, for example, in the “classical” cases
(i) and (iii), the monoidal categories are symmetric, whereas in the “quantum” cases (ii)
and (iv), one can only hope for a braiding; see §II. In certain cases, the initial object
can be reconstructed from the associated category; in the case of compact groups, this is
known as Tannaka-Krein duality [56]. Extensions of this duality to quantum groupoids
were studied in [28], [41], [47], and the idea to define and study quantum groupoids in
terms of the associated categories of representations is pursued in [16], [17], [22].
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I Foundations for quantum groupoids in the setting of C∗-algebras

C∗-algebras and von Neumann algebras provide the right setting to study “quantum”
counterparts of locally compact Hausdorff or measured groupoids. Indeed, for locally
compact Hausdorff spaces and measure spaces, the principles (1) and (2) above amount to
a passage to C∗-algebras or von Neumann algebras, respectively, where spaces correspond
to commutative algebras via Gelfand duality.

For groups, locally compact topologies and invariant measures determine each other
by a classical result of Weil [71]. Kustermans and Vaes showed that this result extends
to quantum groups, where the same objects can equivalently be described on the level of
universal C∗-algebras [34], reduced C∗-algebras [35] or von Neumann algebras [36]. This
equivalence breaks down if one passes to groupoids because the latter include ordinary
spaces, where topologies determine Borel structures but not vice versa. Therefore, the
study of quantum groupoids in the setting of C∗-algebras provides a refinement to the
setting of von Neumann algebras and one can only expect to pass from the former to
the latter but not backwards.

The articles [I.1]–[I.4] lay foundations for a theory of quantum groupoids in the set-
ting of C∗-algebras. The initial motivation for this work was to answer the following
questions:

(1) Every locally compact, Hausdorff groupoid G with Haar systems yields C∗-
algebras B = C0(G

0), A = C0(G) and Â = C∗r (G) with natural maps s, r : B →
M(A) and ŝ = r̂ : B →M(Â). In which sense do these form examples of quantum
groupoids?

(2) Given an action α of a locally compact Abelian group G on a C∗-algebra C,
one can form a crossed product C∗-algebra C o G with a dual action α̂ of the
dual group Ĝ = Hom(G,T), and the iterated crossed product C o G o Ĝ is
equivariantly Morita equivalent to C. This duality was extended to coactions
of quantum groups on C∗-algebras by Baaj and Skandalis [1]. For actions of
groupoids as in (1) on C∗-algebras, le Gall constructed reduced crossed products
[38], and the question is whether the latter carry a dual action and whether there
exists a duality for coactions of quantum groupoids on C∗-algebras.

In the setting of von Neumann algebras, partial answers to the corresponding questions
were obtained by Vallin [63] and Yamanouchi [75], respectively. Later, Lesieur and Enock
developed a comprehensive theory of measured quantum groupoids and actions of such
objects on von Neumann algebras, see [39] and [20], [21]. This theory uses powerful tools
like Connes’ fusion of correspondences [13] and Haagerups theory of operator-valued
weights [26], [27], which are or were not available for C∗-algebras.

The articles [I.1]–[I.4] provide answers to questions (1) and (2) and tools and concepts
for a general theory of quantum groupoids in the setting of C∗-algebras. To complete
this theory, a better understanding of operator-valued weights on C∗-algebras is needed.

I.1 Relative tensor products and fiber products in the setting of C∗-algebras.
Most approaches to quantum groupoids involve the construction of

(1) the fiber product A ∗
B
C of two algebras A and C relative to an algebra B which

embeds anti-homomorphically into A and homomorphically into C,
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(2) the relative tensor product H⊗
B
K of an A-module H and a C-module K relative

to B; this product will be an (A ∗
B
C)-module.

These constructions are needed to define the notion of a comultiplication, coaction and
corepresentation of a quantum groupoid. Variants were known in the setting of

− algebra, where (2) is obvious and (1) is due to Takeuchi [55];
− von Neumann algebras, where (2) is Connes fusion of correspondences and (1) is

given by Sauvageot’s bicommutant formula A ∗
B
C = (A′ ⊗

B
C ′)′ ⊆ L(H ∗

B
K), see

§5.B in [13] and [25], [49], [50];
− C∗-algebras, when B = C0(X) is commutative and central in A and C, where

the algebras A,C and the modules H,K correspond to bundles over X and (1)
and (2) correspond to the fiber-wise tensor products; see [5], [6].

None of these constructions suggests how to proceed in the general C∗-algebraic setting.
The article [I.1] proposes an approach which is based on an algebraic reformulation

of Connes’ fusion of correspondences. The main ideas are as follows.

(1) We fix commuting representations of the C∗-algebra B and its opposite Bop on a
Hilbert space H as a substitute for the standard form of a von Neumann algebra,
using, for example, the GNS-construction for a KMS-weight on B.

(2) We define a left or right C∗-module relative to (H, B,Bop) to be a Hilbert space
H with a closed subspace α ⊆ L(H, H) satisfying [αH] = H and [α∗α] = Bop,
[αBop] = α or [α∗α] = B, [αB] = α respectively, where B and Bop are iden-
tified with their images in L(H) and [−] denotes the closed linear span. Given
(H,α), there exists a representation ρα of B or Bop, respectively, on H such that
ρα(x)ξ = ξx for all ξ ∈ α. We define a C∗-bimodule to be a triple (H,α, β),
where (H,α) is a left and (H,β) a right C∗-module such that [ρα(B)β] = β and
[ρβ(Bop)α] = α.

(3) We define the relative tensor product of two C∗-bimodules (H,α, β) and (K, γ, δ)
as follows. Denote by Hβ ⊗ γK the separated completion of the algebraic tensor

product β ⊗ H⊗ γ with respect to the sesquilinear form given by

〈ξ ⊗ ζ ⊗ η|ξ′ ⊗ ζ ′ ⊗ η′〉 = 〈ζ|(ξ∗ξ′)(η∗η′)ζ ′〉 = 〈ζ|(η∗η′)(ξ∗ξ′)ζ ′〉.
Then γ and β yield subspaces |γ〉2 ⊆ L(H,Hβ ⊗ γK) and |β〉1 ⊆ L(K,Hβ ⊗ γK)

such that Hβ ⊗ γK and the spaces [|γ〉2α] and [|β〉1δ] form a C∗-bimodule.

(4) We define the fiber product Aβ ∗γC of two C∗-algebras A ⊆ L(H) and C ⊆ L(K)
to be the C∗-algebra formed by all T ∈ L(Hβ ⊗ γK) satisfying

T |β〉1 + T ∗|β〉1 ⊆ [|β〉1C] and T |γ〉2 + T ∗|γ〉2 ⊆ [|γ〉2A]

as subsets of L(K,Hβ ⊗ γK) or L(H,Hβ ⊗ γK), respectively.

The articles [I.2]–[I.4], [II.2] and the following results of [I.1] show that these definitions
and constructions fulfill their purpose:

(5) The fiber product describes the target of the comultiplication for the C∗-algebras
C0(G) and C∗r (G) associated to a locally compact Hausdorff groupoid G.
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(6) The definitions above carry over to the setting of von Neumann algebras, where
norm closures get replaced by σ-weak closures. Then the spaces α and β above
are determined by the representations ρα and ρβ, the relative tensor product
can be identified with Connes’ fusion of correspondences and the fiber product
reduces to Sauvageot’s construction.

(7) If B = Bop = C0(X) for some locally compact, Hausdorff space X and H =
L2(X,µ) for some measure µ, then the subcategory of all C∗-bimodules (H,α, β)
with α = β is monoidally equivalent to the category of all continuous bundles
of Hilbert spaces on X with the fibrewise tensor product, and the fiber product
contains Blanchard’s represented C0(X)-tensor product introduced in [6].

I.2 C∗-pseudo-multiplicative unitaries. A main motivation for the development of
the theory of quantum groups in the setting of operator algebras was to extend the
classical Pontryagin duality of locally compact Abelian groups to the non-Abelian case.
Fundamental to this generalization and the whole theory of locally compact quantum
groups is the notion of a multiplicative unitary introduced by Baaj and Skandalis in
[1]. In the theory of measured quantum groupoids of Enock, Lesieur and Vallin, the
corresponding concept of a pseudo-multiplicative unitary was introduced by Vallin [64].
Briefly, (pseudo-)multiplicative unitaries are used to pass from a locally compact quan-
tum group or measured quantum groupoid to its generalized Pontryagin dual and, in
the quantum group case, to switch between the level of reduced or universal C∗-algebras
and von Neumann algebras; see [35], [36], [37], [39], [52], [73] and [59].

In more detail, a multiplicative unitary is a unitary operator V on the tensor product
H⊗H of some Hilbert space H with itself satisfying the pentagon equation V12V13V23 =
V23V12, where each Vij acts on H ⊗H ⊗H like V at the positions i and j.

To every reasonable quantum group (A,∆), one can associate a multiplicative unitary
V on the L2-space for the right Haar weight which, roughly, is given by a⊗b 7→ ∆(a)(1⊗
b); see [35], [36], [37]. This unitary generalizes the canonical pairing of a locally compact

Abelian group G with its dual group Ĝ = Hom(G,T), regarded as a function on Ĝ ×
G that is represented on L2(G) ⊗ L2(G) using partial Fourier transformation. In the
case where A = C0(G) for a locally compact group G, the formula above reduces to
(V f)(x, y) = f(xy, y) for all f ∈ L2(G×G). The same formulas can be used to associate
pseudo-multiplicative unitaries to measured (quantum) groupoids; see [39] and [64].

Conversely, if V is a multiplicative unitary for a Hilbert space H that is regular [1]

or modular [73], the spaces AV = [{(ω ⊗ ι)(V ) : ω ∈ L(H)∗}] and ÂV = [{(ι ⊗ ω)(V ) :

ω ∈ L(H)∗}] are C∗-subalgebras of L(H) and carry comultiplications ∆V and ∆̂V given

by ∆V : a 7→ V (a ⊗ 1)V ∗ and ∆̂V : â 7→ V ∗(1 ⊗ a)V , respectively. Here, [−] denotes
the norm closure, L(H)∗ the space of normal functionals on L(H), and ω ⊗ ι and ι⊗ ω
certain slice maps. For the multiplicative unitary associated to a locally compact group
G or quantum group, one recovers C0(G) and C∗r (G) or the initial quantum group and
its generalized Pontryagin dual, respectively. Corresponding results hold for pseudo-
multiplicative unitaries; see [39].

The article [I.2] introduces C∗-pseudo-multiplicative unitaries for the study of quan-
tum groupoids in the setting of C∗-algebras, refining the definition and some of the
constructions outlined above on the basis of the concepts developed in [I.1]:
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(1) We define a C∗-pseudo-multiplicative unitary to be a unitary V : H β̂ ⊗ αH →
Hα ⊗ βH, where H is a Hilbert space with compatible left or right C∗-module

structures α, β, β̂ relative to some triple (H, B,Bop) as in §I.1, satisfying

V [|α〉1α] = [|α〉2α], V [|β̂〉2β] = [|β̂〉1β], V [|β̂〉2β̂] = [|α〉2β̂], V [|β〉1α] = [β〉1β](†)
in L(H, Hα ⊗ βH) and V12V13V23 = V23V12. Here, the relations (†) are necessary
for the Vij to be well-defined. This definition refines or generalizes the variants
and generalizations of multiplicative unitaries considered in [6], [46], [58], [64].

(2) In [I.2], [I.3] and [II.2], we construct C∗-pseudo-multiplicative unitaries for lo-
cally compact Hausdorff groupoids, compact C∗-quantum groupoids, and proper
dynamical quantum groups with integrals, respectively. In each of these cases,
the main difficulty is to prove that the relations (†) hold.

(3) We adapt the construction of the spaces AV , ÂV and maps ∆V , ∆̂V to a general
C∗-pseudo-multiplicative unitary V . In the regular case which includes the ex-
amples mentioned in (2), the former are C∗-algebras and the latter take values

in the fiber products (AV )α ∗ β(AV ) and (ÂV )β̂ ∗ α(ÂV ) defined in §I.1.

(4) Extending corresponding definitions and results from [1], we associate in [I.2] and
in the extended preprint [60] to every C∗-pseudo-multiplicative unitary Fourier
algebras and monoidal categories of (co-)representations.

I.3 Compact C∗-quantum groupoids. The theory of locally compact quantum groups
[36] and measured quantum groupoids [39] suggest that a quantum groupoid in the set-
ting of C∗-algebras should be given by

− C∗-algebras B,A with commuting non-degenerate embeddings r : B → M(A)
and s : Bop →M(A),

− a comultiplication ∆ on A which takes values in a fiber product A ∗ A formed
with respect to s and r and which satisfies certain density conditions, and

− weights φ and ψ from A to B that are left- or right-invariant with respect to ∆,
− a KMS-weight µ on B such that the compositions ν := µ ◦ φ and ν−1 := µ ◦ ψ

are related by a modular element δ and satisfy a KMS-condition.

To develop a theory in this generality, a better understanding of unbounded operator-
valued weights on C∗-algebras would be needed.

Building on the theory developed in [I.1] and [I.2], the article [I.3] introduces quantum
groupoids in the setting of C∗-algebras that are compact in the sense that A and B are
unital and φ, ψ and µ are bounded. It assumes in addition the existence of a unitary
antipode, that is,

− an anti-automorphism R on A which satisfies R ◦ s = r, ψ ◦ R = φ and is
determined by a certain strong invariance condition.

In the theory of locally compact quantum groups and measured quantum groupoids, the
existence of such a unitary antipode is a result and not an axiom.

Examples of compact quantum groupoids in the sense of [I.3] include the algebras

A = C(G) and Â = C∗r (G) associated to a locally compact Hausdorff groupoid G, where
G has to be compact or étale with compact space of units G0, respectively. There, the
algebra B is C(G0), the weights φ and ψ are given by fibrewise integration along Haar
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systems or by the restriction of functions in Cc(G) ⊆ C∗r (G) to G0, respectively, and R
is induced by the groupoid inversion.

The main results of [I.3] are as follows. For every compact quantum groupoid, we
construct (1) a regular C∗-pseudo-fundamental unitary and, using this unitary, (2) a
generalized Pontryagin dual and (3) a completion in the form of a measured quantum
groupoid. Furthermore, we prove (4) essential uniqueness of the weights φ and ψ and
(5) triviality of the modular element δ after modification of µ.

I.4 Coactions of Hopf C∗-bimodules. Coactions of quantum groupoids generalize
coactions of quantum groups and actions of groupoids and were studied in various set-
tings, including that of weak Hopf algebras or finite quantum groupoids [53], [54], Hopf
algebroids or algebraic quantum groupoids [7], [29], and Hopf-von Neumann bimodules
or measured quantum groupoids [20], [21]. In these settings, each coaction of a quantum
groupoid on some algebra gives rise to a crossed product algebra that carries a coaction
of the generalized Pontryagin dual. Iterating this construction, one obtains a bidual
coaction that, under suitable assumptions, is Morita equivalent to the initial one.

The article [I.4] establishes a similar duality for coactions of quantum groupoids on
C∗-algebras within the framework developed in [I.1] and [I.2], and answers question (2) in
§I. It is based on the article [1] of Baaj and Skandalis, which develops the corresponding
duality for coactions of quantum groups on C∗-algebras, and results in the thesis [57].
The main definitions and results are as follows.

(1) We start with a regular C∗-pseudo-multiplicative unitary V : Hβ̂⊗αH → Hα⊗βH
with associated Hopf C∗-bimodules (AV ,∆V ) and (ÂV , ∆̂V ) (see §I.2), and a
symmetry U onH satisfying a few relations. Examples arise from locally compact
Hausdorff groupoids and compact C∗-quantum groupoids, where U is related to
the groupoid inversion or the product of the modular conjugation and the unitary
antipode, respectively.

(2) Given a coaction of (AV ,∆V ), that is, a C∗-algebra C on a left C∗-module (K, γ)
with a ∗-homomorphism δ : C → Cγ ∗ β(AV ) satisfying (δ ∗ ι) ◦ δ = (ι ∗∆V ) ◦ δ,
we obtain a crossed product C oδ ÂV = [δ(C)(1 ⊗ ÂV ] ⊆ L(Kγ ⊗ βH) with a

dual coaction δ̂ of (ÂV , ∆̂V ), given by δ(c)(1⊗ â) 7→ (δ(c)⊗ 1)(1⊗ ∆̂V (â)). The

corresponding construction for coactions of (ÂV , ∆̂V ) involves the symmetry U .
(3) Under a few natural assumptions on δ, we obtain an isomorphism between the

bidual coaction
ˆ̂
δ on C oδ ÂV oδ̂ AV and a stabilization of the coaction δ on C.

(4) Let G be a locally compact Hausdorff groupoid G. We show that then coactions
of C0(G) essentially correspond to actions of G on bundles of C∗-algebras over
G0, and that each Fell bundle on G, which is a bundle of Banach spaces over G
with a multiplication and involution that cover the multiplication and inversion
on G, yields a coaction of C∗r (G) on the reduced convolution C∗-algebra. If G is
étale, coactions of C∗r (G) essentially correspond to Fell bundles on G this way.
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II Examples of dynamical quantum groups and the passage to operator
algebras

For every group and groupoid, the associated category of representations is symmetric
in the sense that for any two representations u and v, the flip Σ on the underlying vector
spaces or bundles yields isomorphisms u ⊗ v � v ⊗ u. For non-commutative quantum
group(oid)s, the categories of corepresentations are no longer symmetric but may carry

a braiding which is a coherent family of isomorphisms R̂u,v : u⊗ v → v ⊗ u, where each

automorphism R̂ = R̂u,u satisfies the braid relation R̂12R̂23R̂12 = R̂23R̂12R̂23; see, for
example [12] or [32].

Conversely, the FRT-construction of Faddeev, Reshetikhin and Takhtajan associates
to each R-matrix, that is, each endomorphism R of Cn⊗Cn satisfying the Yang-Baxter
equation R12R13R23 = R23R13R12, a bialgebra and possibly a quantum group with a
fundamental corepresentation u and a braiding such that R = R̂u,uΣ [48].

For example, this construction yields the Hopf ∗-algebra O(SUq(2)) of Soibelman,
Vaksman [62] and Woronowicz [72] which is probably the most fundamental and best-
studied quantum group. This is the universal algebra generated by the entries of a
matrix

u = (uij)i,j =

(
α −qγ∗
γ α∗

)
(‡)

with the single condition that u is unitary. The comultiplication is given by ∆(uij) =∑
k uik ⊗ ukj so that u is a corepresentation.
The FRT-construction was extended by Etingof and Varchenko to dynamical R-

matrices arising in mathematical physics; see [23], [24]. Instead of a bialgebra or quantum
group, this generalization yields a dynamical quantum group with a corepresentation on
a dynamical vector space. More precisely,

− “dynamical” refers to a fixed action of a group Γ on a commutative algebra B,
− a dynamical vector space is a Γ-graded B-bimodule V =

⊕
γ Vγ , where vb =

γ(b)v if v ∈ Vγ ,
− a dynamical quantum group over (B,Γ) is a quantum groupoid (B,A, r, s,∆),

where
– B is commutative and equipped with an action of a group Γ as above,
– A is graded by Γ× Γ such that ar(b)s(b′) = r(γ(b))s(γ′(b′))a if a ∈ Aγ,γ′ ,
– ∆ maps A to A⊗̃A =

( ∑
γ,γ′,γ′′

Aγ,γ′ ⊗Aγ′,γ′′
)
/(s(b)⊗ 1− 1⊗ r(b) : b ∈ B).

Applying this construction to a trigonometric dynamicalR-matrix, Koelink and Rosen-
gren obtained in [33] a dynamical analogue of the quantum group O(SUq(2)), where B
is the field of meromorphic functions on the complex plane, the group Γ = Z acts by
shifts, and A is generated by r(B), s(B) and the entries of a corepresentation u as in (‡).
Here, the relations imposed on the generators involve special meromorphic functions and
the matrix u is longer unitary.

II.1 Free dynamical quantum groups and the dynamical SUq(2). The main
results of the article [II.1] are as follows.
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(1) The non-dynamical quantum group O(SUq(2)) belongs to the family of free or-
thogonal quantum groups. The latter were introduced along with free unitary quantum
groups by Wang [70] and Wang and Van Daele [66] and have been studied intensely;
see, for example, [2], [3], [4], [15], [69]. Briefly, the free orthogonal quantum group with
parameter F ∈ GLn(C) is the universal quantum group (A,∆) with a matrix u ∈Mn(A)
such that ∆(uij) =

∑
k uik ⊗ ukj and u = FūF−1, that is, u is a corepresentation of

(A,∆) and F intertwines u and its conjugate ū.
The article [II.1] introduces dynamical analogues of the free orthogonal and free uni-

tary quantum groups and shows that the dynamical analogue of O(SUq(2)) of Koelink
and Rosengren is an example of a free orthogonal dynamical quantum group.

(2) Koelink and Rosengren remarked that in a sense, the dynamical analogue of
O(SUq(2)) contains the non-dynamical O(SUq(2)), O(SUq−1(2)) and further quantum
groups as limit cases. In the article [II.1], we make this precise in three steps. First,
we extend the assignment that associates to a fixed dynamics (B,Γ) the category of
dynamical quantum groups over (B,Γ) to a functor that associates to each equivariant
homomorphism π of commutative algebras a base change functor π∗ on dynamical quan-
tum groups. Second, we refine the definition of the dynamical analogue of O(SUq(2)),
replacing the field B of meromorphic functions by a smaller algebra B′. Finally, we show
that the limit cases above correspond to base changes, applied to the refined analogue
of O(SUq(2)) and certain homomorphisms from B′ to C.

(3) The free orthogonal and free unitary quantum groups of Wang and Van Daele can
easily be defined on the level of universal C∗-algebras. In [II.1], we show that the same
is possible for their dynamical analogues. The main step is to construct a C∗-algebraic
analogue of the product A⊗̃A which appears as the target of the comultiplication.

II.2 Measured quantum groupoids and proper dynamical quantum groups.
To every quantum group in the algebraic setting that has a positive left- or right-invariant
functional, that is, an analogue of a left or right Haar measure, one can associate a locally
compact quantum group in the setting of operator algebras. The basic idea is to use the
GNS-construction for the functional. To show that this construction yields bounded op-
erators and to extend the comultiplication, however, one needs a multiplicative unitary,
see also §I.2.

For quantum groupoids, the connection between the algebraic and the operator-
algebraic setting had only been studied in the finite-dimensional case [43], [65]. In
the article [II.2], we carry the construction above over to dynamical quantum groups
that are compact or, borrowing terminology from groupoids, proper in a certain sense.

The motivating example for the construction in [II.2] is the dynamical analogue
(B,A, r, s,∆) ofO(SUq(2)) mentioned above. Studying its representation theory, Koelink
and Rosengren obtained in [33] a Peter-Weyl decomposition of A as a direct sum of ma-
trix coefficients of irreducible corepresentations. The subspace of A corresponding to
the trivial corepresentation is r(B)s(B) ∼= B⊗B, and the projection onto this subspace
is bi-invariant with respect to the comultiplication in a suitable sense.

The main ideas and results of the article [II.2] are as follows.

(1) We fix a dynamical quantum group that is equipped with a left- and a right-
invariant map φ, ψ : A → B and a functional µ : B → C that is quasi-invariant
with respect to the action of Γ and satisfies µ ◦ φ = µ ◦ ψ. In the case of the
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dynamical analogue of O(SUq(2)), suitable maps φ and ψ can be obtained from
the bi-invariant projection A → r(B)s(B). We then establish the existence of
a modular automorphism θ on A satisfying ν(aa′) = ν(a′θ(a)) for all a, a′ ∈ A,
where ν := µ ◦ φ = µ ◦ ψ.

(2) We assume that µ and ν are positive and faithful. Then they yield natural inner
products on B and A and corresponding Hilbert space completions H and H.
We furthermore assume that left multiplication on B ⊆ H extends to a represen-
tation B → L(H). Then the second main result is the existence of C∗-pseudo-
multiplicative unitaries V : Hα⊗ β̂H → Hβ ⊗ αH and W : Hβ ⊗ αH → Hα⊗ β̂H,

where, roughly, the subspaces α, β, β̂ ⊆ L(H, H) are spanned by operators of
the form b 7→ r(b)a, b 7→ s(b)a or b 7→ ar(b) associated to elements a ∈ A,
and V and W ∗ are suitable closures of the maps a ⊗ a′ 7→ ∆(a)(1 ⊗ a′) and
a⊗ a′ 7→ ∆(a′)(a⊗ 1). For some background, see §I.1 and §I.2.

(3) Using the C∗-pseudo-multiplicative unitaries V and W , we obtain completions
of the dynamical quantum group and a generalized Pontryagin dual on the level
of C∗-algebras and von Neumann algebras. In particular, we show that the
GNS-representation for ν is via bounded operators and that the comultiplication
extends to the completion.

(4) Under mild assumptions on the algebra B and the functional µ, we lift the maps
φ, ψ to the level of von Neumann algebras and obtains a measured quantum
groupoid in the sense of Enock and Lesieur [20], [39].
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advances in operator algebras (Orléans, 1992).
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[10] G. Böhm and K. Szlachányi. Hopf algebroid symmetry of abstract Frobenius extensions of depth 2.

Comm. Algebra, 32(11):4433–4464, 2004.
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[60] T. Timmermann. C∗-pseudo-multiplicative unitaries and Hopf C∗-bimodules. Technical report,
arXiv.0908.1850, 2009.

[61] T. Timmermann and A. Van Daele. Regular multiplier hopf algebroids. basic theory and examples.
35 pages, in preparation.

[62] L. L. Vaksman and Y. S. Soibelman. An algebra of functions on the quantum group SU(2). Funkt-
sional. Anal. i Prilozhen., 22(3):1–14, 96, 1988.

[63] J.-M. Vallin. Bimodules de Hopf et poids opératoriels de Haar. J. Operator Theory, 35(1):39–65,
1996.

[64] J.-M. Vallin. Unitaire pseudo-multiplicatif associé à un groupöıde. Applications à la moyennabilité.
J. Operator Theory, 44(2):347–368, 2000.
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Abstract. We introduce a relative tensor product of C∗-bimodules and a spatial
fiber product of C∗-algebras that are analogues of Connes’ fusion of correspondences
and the fiber product of von Neumann algebras introduced by Sauvageot, respectively.
These new constructions form the basis for our approach to quantum groupoids in the
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1. Introduction

The relative tensor product of Hilbert modules over von Neumann algebras was intro-
duced by Connes in an unpublished manuscript [4], [10], [20] and later used by Sauvageot
to define a fiber product of von Neumann algebras relative to a common (commutative)
von Neumann subalgebra [21]. These constructions and Haagerups theory of operator-
valued weights on von Neumann algebras [12], [13] form the basis for the theory of
measured quantum groupoids developed by Enock, Lesieur and Vallin [8], [9], [18], [30],
[31].

In this article, we introduce a new notion of a bimodule in the setting of C∗-algebras,
construct relative tensor products of such bimodules, and define a fiber product of C∗-
algebras represented on such bimodules. These constructions form the basis for a series
of articles on quantum groupoids in the setting of C∗-algebras, individually address-
ing fundamental unitaries [29], axiomatics of the compact case [25], and coactions of
quantum groupoids on C∗-algebras [28]. Moreover, our previous approach to quantum
groupoids in the setting of C∗-algebras [27] embeds functorially into this new framework
[26], and the latter overcomes the serious restrictions of the former one.

Already in the definition of a quantum groupoid, the relative tensor product and
a fiber product appear as follows. Roughly, such an object consists of the following
ingredients: an algebra B, thought of as the functions on the unit space, an algebra
A, thought of as functions on the total space, a homomorphism r : B → A and an
antihomomorphism s : B → A corresponding to the range and the source map, and a
comultiplication ∆: B → A ∗

B
A corresponding to the multiplication of the quantum

groupoid. Here, A ∗
B
A is a fiber product whose precise definition depends on the class

of the algebras involved. In the setting of operator algebras, A acts naturally on some
bimodule H and product A ∗

B
A is a certain subalgebra of operators acting on a relative

tensor product H ⊗
B
H. This relative tensor product is important also because it forms

the domain or range of the fundamental unitary of the quantum groupoid.
Let us now sketch the problems and constructions studied in this article.
The first problem is the construction of a tensor product H⊗

B
K of modules H,K over

some algebra B. In the algebraic setting, H ⊗
B
K is simply a quotient of the full tensor

productH⊗K. In the setting of von Neumann algebras, H andK are Hilbert spaces, and
Connes explained that the right tensor product is not a completion of the algebraic one
but something more complicated. If B is commutative and of the form B = L∞(X,µ),
then the modules H,K can be disintegrated into two measurable fields of Hilbert spaces
in the form H =

∫ ⊕
X Hxdµ(x) and K =

∫ ⊕
X Kxdµ(x), and H ⊗

B
K is obtained by taking

tensor products of the fibers and integrating again: H ⊗
B
K =

∫ ⊕
X Hx ⊗ Kxdµ(x). For

the situation where B is a C∗-algebra, we propose an approach that is based on the
internal tensor product of Hilbert C∗-modules and essentially consists of an algebraic
reformulation of Connes’ fusion. Central to this approach is a new notion of a bimodule
in the setting of C∗-algebras.
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The second problem is the construction of a fiber product A ∗
B
C of two algebras A,C

relative to a subalgebra B. If B is central in A and the opposite Bop is central in C, this
fiber product is just a relative tensor product. In the algebraic setting, it coincides with
the tensor product of modules; in the setting of operator algebras, it can be obtained
via disintegration and a fiberwise tensor product again. This approach was studied by
Sauvageot for Neumann algebras [21], and by Blanchard [1] for C∗-algebras.

The case where the subalgebra B(op) is no longer central in A or C is more diffi-
cult. In the algebraic setting, the fiber product was introduced by Takeuchi [24] and
is, roughly, the largest subalgebra of the relative tensor product A ⊗

B
C where compo-

nentwise multiplication is still well defined. In the setting of von Neumann algebras,
Sauvageot’s definition of the fiber product carries over to the general case and takes the
form A ∗

B
C = (A′ ⊗

B
C ′)′, where A and C are represented on Hilbert spaces H and K,

respectively, and A′ ⊗
B
C ′ acts on Connes’ relative tensor product H ⊗

B
K. Here, it is

important to note that A′⊗
B
C ′ is a completion of an algebraic tensor product spanned by

elementary tensors, but in general, A ∗
B
C is not. Similarly, in the setting of C∗-algebras,

one can not start from some algebraic tensor product and define the fiber product to be
some completion; rather, a new idea is needed. We propose such a new fiber product
for C∗-algebras represented on the new class of modules mentioned above. Unfortu-
nately, several important questions concerning this construction remain open, but the
applications in [25], [28], [29] already prove its usefulness.

This article is organized as follows.
The introduction ends with a short summary on terminology and some background

on Hilbert C∗-modules.
Section 2 is devoted to the relative tensor product in the setting of C∗-algebras. It

starts with some motivation, then presents a new notion of modules and bimodules in
the setting of C∗-algebras, and finally gives the construction and its formal properties
like functoriality, associativity and unitality.

Section 3 introduces a minimal fiber product of C∗-algebras. It begins with an
overview and then proceeds to C∗-algebras represented on the class of modules and
bimodules introduced in Section 2. The fiber product is first defined and studied for
such represented C∗-algebras, including a discussion of functoriality, slice maps, lack
of associativity, and unitality. A natural extension to non-represented C∗-algebras is
indicated at the end.

Section 4 relates our constructions for the setting of C∗-algebras to the corresponding
constructions for the setting of von Neumann algebras. Adapting our constructions
to von Neumann algebras, one recovers Connes fusion and Sauvageot’s fiber product;
moreover, the constructions are related by functors going from the C∗-level to the W ∗-
level. The section ends with a categorical interpretation of Sauvageot’s fiber product.

Section 5 shows that for a commutative base B = C0(X), the relative tensor product
of the new class of modules corresponds to the fiberwise tensor product of continuous
Hilbert bundles over X, and the fiber product of represented C∗-algebras is related to
the relative tensor product of continuous C0(X)-algebras studied by Blanchard.

We use the following conventions and notation.
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Given a category C, we write A,B ∈ C to indicate that A,B are objects of C, and
denote by C(A,B) the associated set of morphisms.

Given a subset Y of a normed space X, we denote by [Y ] ⊂ X the closed linear span
of Y .

All sesquilinear maps like inner products on Hilbert spaces are assumed to be conjugate-
linear in the first component and linear in the second one.

Given a Hilbert space H and an element ξ ∈ H, we define ket-bra operators |ξ〉 : C→
H, λ 7→ λξ, and 〈ξ| = |ξ〉∗ : H → C, ξ′ 7→ 〈ξ|ξ′〉.

We shall make extensive use of (right) Hilbert C∗-modules; a standard reference is
[16].

Let A and B be C∗-algebras. Given Hilbert C∗-modules E and F over B, we denote
by L(E,F ) the space of all adjointable operators from E to F . Let E and F be Hilbert
C∗-modules over A and B, respectively, and let π : A → L(F ) be a ∗-homomorphism.
Then the internal tensor product E ⊗π F is a Hilbert C∗-module over B [16, §4] and
the closed linear span of elements η ⊗π ξ, where η ∈ E and ξ ∈ F are arbitrary, and
〈η⊗π ξ|η′⊗π ξ′〉 = 〈ξ|π(〈η|η′〉)ξ′〉 and (η⊗π ξ)b = η⊗π ξb for all η, η′ ∈ E, ξ, ξ′ ∈ F , b ∈ B.
We denote the internal tensor product by “=” and drop the index π if the representation
is understood; thus, E = F = E =π F = E ⊗π F .

We define a flipped internal tensor product F π<E as follows. We equip the algebraic
tensor product F � E with an product 〈ξ � η|ξ′ � η′〉 := 〈ξ|π(〈η|η′〉)ξ′〉 and a module
structure via (ξ � η)b := ξb � η, form the separated completion, and obtain a Hilbert
C∗-B-module F π<E which is the closed linear span of elements ξπ<η, where η ∈ E and
ξ ∈ F are arbitrary, and 〈ξπ<η|ξ′π<η′〉 = 〈ξ|π(〈η|η′〉)ξ′〉 and (ξπ<η)b = ξbπ<η for all
η, η′ ∈ E, ξ, ξ′ ∈ F , b ∈ B. As above, we usually drop the index π and simply write “<”

instead of “π<”. Evidently, there exists a unitary Σ: F = E
∼=−→ E < F , η = ξ 7→ ξ < η.

Let E1, E2 be Hilbert C∗-modules over A, let F1, F2 be Hilbert C∗-modules over B
with ∗-homomorphisms πi : A→ L(Fi) for i = 1, 2, and let S ∈ L(E1, E2), T ∈ L(F1, F2)
such that Tπ1(a) = π2(a)T for all a ∈ A. Then there exists a unique operator S = T ∈
L(E1 = F1, E2 = F2) such that (S = T )(η = ξ) = Sη = Tξ for all η ∈ E1, ξ ∈ F1, and
(S = T )∗ = S∗ = T ∗ [7, Proposition 1.34].

2. The relative tensor product in the setting of C∗-algebras

2.1. Motivation. The aim of this section is to construct a relative tensor product of
suitably defined left and right modules over a general C∗-algebra B such that i) the
construction shares the main properties of the ordinary tensor product of bimodules
over rings like functoriality and associativity and ii) the modules admit representations
of C∗-algebras that do not commute with the module structures. The latter condition
will be needed to construct fiber products of C∗-algebras; see Section 3.

The internal tensor product of Hilbert C∗-modules meets condition i) but not ii)
because C∗-algebras represented on such modules necessarily commute with the right
module structure. An approach to quantum groupoids based on the internal tensor
product was developed in [27] but remained restricted to very special cases.

What we are looking for is an analogue of Connes’ fusion of correspondences. Here,
B is a von Neumann algebra, and left and right modules are Hilbert spaces equipped
with suitable representation or antirepresentation of B, respectively. The relative tensor
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product of a right module H and a left module K is then constructed as follows. Choose
a normal, semi-finite, faithful (n.s.f.) weight µ on B, construct a B-valued inner product
〈 · | · 〉µ on the dense subspace H0 ⊆ H of all bounded vectors, and define H ⊗

µ
K to

be the separated completion of the algebraic tensor product H0 � K with respect to
the sesquilinear form given by 〈ξ � η|ξ′ � η′〉 = 〈η|〈ξ|ξ′〉µη′〉. The definition of bounded
vectors involves the GNS-space H := Hµ for µ which — by Tomita-Takesaki theory — is
bimodule over B, and each bounded vector ξ ∈ H0 gives rise to a map L(ξ) ∈ L(HB, HB)
of right B-modules such that 〈ξ|ξ′〉µ = L(ξ)∗L(ξ′) ∈ B ⊆ L(H).

Example 2.1. Assume that B = L∞(X,µ) for some nice measure space (X,µ), and
denote the weight on B given by integration by µ as well. Then H = L2(X,µ), and we can
disintegrate H and K into measurable fields (Hx)x and (Kx)x of Hilbert spaces over X

such that H ∼=
∫ ⊕
X Hxdµ(x) and K ∼=

∫ ⊕
X Kxdµ(x). Each vector ξ of H or K corresponds

to a measurable section x 7→ ξ(x) with square-integrable norm function |ξ| : x 7→ ‖ξx‖,
and is bounded with respect to µ if and only if this norm function is essentially bounded.
Then for all ξ, ξ′ ∈ H0, x ∈ X, η, η′ ∈ K,

〈ξ|ξ′〉µ(x) = 〈ξ(x)|ξ′(x)〉Hx ,

〈ξ � η|ξ′ � η′〉 =

∫

X
〈ξ(x)|ξ′(x)〉〈η(x)|η′(x)〉dµ(x),

and H ⊗
µ
K ∼=

∫ ⊕
X Hx ⊗Kxdµ(x). Note that the sesquilinear form above need not extend

to H � K because the integrand need not be in L1(X,µ) for arbitrary ξ, ξ′ ∈ H and
η, η′ ∈ K.

For our purpose, the following algebraic description of H ⊗
µ
K is useful. This rela-

tive tensor product can be identified with the separated completion of algebraic tensor
product

L(HB, HB)� H� L(BH,BK)(2.1)

with respect to the sesquilinear form

〈S � ζ � T |S′ � ζ ′ � T ′〉 = 〈ζ|S∗S′T ∗T ′ζ ′〉 = 〈ζ|T ∗T ′S∗S′ζ ′〉,
where L(HB, HB) and L(BH,BK) are all bounded maps of right or left B-modules,
respectively. We adapt this definition to the setting of C∗-algebras, making the following
modifications:

(A) The construction above depends on the choice of some n.s.f. weight µ or, more
precisely, the triple (Hµ, πµ(B), πµ(B)′), but any other µ yields a triple which is
unitarily equivalent. In the setting of C∗-algebras, such a canonical triple does
not exist but has to be chosen.

(B) The module structure of H and K can equivalently be described in terms of
(anti)representations of B or in terms of the spaces L(HB, HB) and L(BH,BK).
In the setting of C∗-algebras, this equivalence breaks down, and we shall make
suitable closed subspaces of intertwiners the primary object. In the commutative
case, a representation corresponds to a measurable field of Hilbert spaces, and
the subspaces fix a continuous structure.
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(C) If H and K are bimodules, then so is H⊗
µ
K. Here, a bimodule structure on H is

given by the additional choice of a representation of some von Neumann algebra
A that commutes with the antirepresentation of B or, equivalently, satisfies
AL(HB, HB) = L(HB, HB). If we pass to C∗-algebras, then commutation is too
weak, and we shall adopt the second condition, where L(HB, HB) is replaced by
the subspace of intertwiners mentioned above.

2.2. Modules and bimodules over C∗-bases. Observation (A) leads us to adopt the
following terminology.

Definition 2.2. A C∗-base b = (K,B,B†) consists of a Hilbert space H and commuting
nondegenerate C∗-algebras B,B† ⊆ L(K), respectively. The opposite of b is the C∗-
base b† := (K,B†,B). A C∗-base (H,A,A†) is equivalent to b if AdV (A) = B and
AdV (A†) = B† for some unitary V ∈ L(H,K).

Clearly, the Hilbert space C and twice the algebra C ≡ L(C) form a trivial C∗-base
t = (C,C,C).

Example 2.3. Let µ be a proper, faithful KMS-weight on a C∗-algebra A [15] with
GNS-space Hµ, GNS-representation πµ : A → L(Hµ), modular conjugation Jµ : Hµ →
Hµ, and opposite GNS-representation πµop : Aop → L(Hµ), a 7→ Jµπµ(a∗)Jµ. Then
the triple (Hµ, πµ(A), πµop(A

op)) is a C∗-base. Its opposite is equivalent to the C∗-base
associated to the opposite weight µop on Aop. Indeed, Hµ can be considered as the GNS-
space for µop via the opposite GNS-map Λµop : Nµop → Hµ, aop 7→ JµΛµ(a∗), and then
Jµopπµop(A

op)Jµop = πµ(A).

Let b = (K,B,B†) be a C∗-base. We define C∗-modules over b as indicated in
comment (B).

Definition 2.4. A C∗-b-module Hα = (H,α) is a Hilbert space H with a closed subspace
α ⊆ L(K, H) satisfying [αK] = H, [αB] = α, [α∗α] = B. A semi-morphism between
C∗-b-modules Hα and Kβ is an operator T ∈ L(H,K) satisfying Tα ⊆ β. If addition-
ally T ∗β ⊆ α, we call T a morphism. We denote the set of all (semi-)morphisms by
L(s)(Hα,Kβ).

Evidently, the class of all C∗-a-modules forms a category with respect to all semi-
morphisms, and a C∗-category in the sense of [11] with respect to all morphisms.

Lemma 2.5. (i) Let H,K be Hilbert spaces and I ⊆ L(H,K) such that [IH] = K.
Then there exists a unique normal, unital ∗-homomorphism ρI : (I∗I)′ → (II∗)′

such that ρI(x)S = Sx for all x ∈ (I∗I)′, S ∈ I.
(ii) Let H,K,L be Hilbert spaces and I ⊆ L(H,K), J ⊆ L(K,L) such that [IH] =

K, [JK] = L, and J∗JI ⊆ I. Then ρI((I
∗I)′) ⊆ (J∗J)′ and ρJ ◦ ρI = ρJI .

Proof. (i) Uniqueness is evident. Let x ∈ (I∗I)′ and S1, . . . , Sn ∈ I, ξ1, . . . , ξn ∈ H.
Since x∗x commutes with each S∗i Sj , the matrix (S∗i Sjx

∗x)i,j ∈Mn(L(H)) is dominated
by ‖x∗x‖(S∗i Sj)i,j , and

‖
∑

i

Sixξi‖2 =
∑

i,j

〈ξi|S∗i Sjx∗xξj〉 ≤ ‖x‖2
∑

i,j

〈ξi|S∗i Sjξj〉 = ‖x‖2‖
∑

i

Siξi‖2.
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Hence, there exists an operator ρI(x) ∈ L(K) as claimed. One easily verifies that the
assignment x 7→ ρI(x) is a ∗-homomorphism. It is normal because [IH] = K and for all
S, T ∈ I, ξ, η ∈ K, the functional x 7→ 〈Sξ|ρI(x)Tη〉 = 〈ξ|xS∗Tη〉 is normal.

(ii) Let x ∈ (I∗I)′. Then ρI(x) ∈ J∗J since S∗TρI(x)R = S∗TRx = ρI(x)S∗TR for
all S, T ∈ J , R ∈ I, and ρJI(x) = ρJ(ρI(x)) because ρJI(x)TR = TRx = ρJ(ρI(x))TR
for all T ∈ J , R ∈ I. �
Lemma 2.6. Let Hα be a C∗-b-module.

(i) α is a Hilbert C∗-B-module with inner product (ξ, ξ′) 7→ ξ∗ξ′.
(ii) There exist isomorphisms α=K→ H, ξ= ζ 7→ ξζ, and K<α→ H, ζ< ξ 7→ ξζ.

(iii) There exists a unique normal, unital and faithful representation ρα : B′ → L(H)
such that ρα(x)(ξζ) = ξxζ for all x ∈ B′, ξ ∈ α, ζ ∈ K.

(iv) Let Kβ be a C∗-b-module and T ∈ Ls(Hα,Kβ). Then Tρα(x) = ρβ(x)T for all
x ∈ B′. If additionally T ∈ L(Hα,Kβ), then left multiplication by T defines an
operator in LB(α, β), again denoted by T .

Proof. Assertions (i) and (ii) are obvious, and (iii) follows from the preceding lemma. To
prove (iv), let x ∈ B′, ξ ∈ α, ζ ∈ K. Then Tξ ∈ β and Tρα(x)ξζ = Tξxζ = ρβ(x)Tξζ. �
Example 2.7. Let Z be a locally compact Hausdorff space, µ a Radon measure on Z
of full support, and H = (Hz)z a continuous bundle of Hilbert spaces on Z with full
support. Then the Hilbert space K = L2(Z, µ) together with the C∗-algebras B = B† =

C0(Z) ⊆ L(K) forms a C∗-base. Let H =
∫ ⊕
Z Hzdµ(z) and α = m(Γ0(H)), where for

each section ξ ∈ Γ0(H), the operator m(ξ) ∈ L(K, H) is given by pointwise multiplication,
m(ξ)f = (ξ(z)f(z))z∈Z . Then Hα is a C∗-b-module and ρα : B′ = L∞(Z, µ)→ L(H) is
given by pointwise multiplication of sections by functions. Every C∗-b-module arises in
this way from a continuous bundle; see Section 5.

Let also a = (H,A,A†) be a C∗-base. We define C∗-(a†, b)-bimodules as indicated in
(C).

Definition 2.8. A C∗-(a†, b)-module is a triple αHβ = (H,α, β), where H is a Hilbert

space, (H,α) a C∗-a†-module, (H,β) a C∗-b-module, and [ρα(A)β] = β and [ρβ(B†)α] =

α. The set of (semi-)morphisms between C∗-(a†, b)-modules αHβ and γKδ is the inter-
section L(s)(αHβ, γKδ) := L(s)(Hα,Kγ) ∩ L(s)(Hβ,Kδ).

Remark 2.9. By Lemma 2.6, we have [ρα(A), ρβ(B†)] = 0 for every C∗-(a†, b)-module

αHβ.

Again, the class of all C∗-(a†, b)-modules forms a category with respect to all semi-
morphisms, and a C∗-category with respect to all morphisms.

Example 2.10. (i) HA is a C∗-a-module, ρA(x) = x for all x ∈ A′, and A†HA is a
C∗-(a†, a)-module because [ρA†(A)A] = [AA] = A and [ρA(A†)A†] = A†.

(ii) Let Hβ be a C∗-b-module, let t = (C,C,C) be the trivial C∗-base, and let α =
L(C, H). Then αHβ is a C∗-(t, b)-module.

(iii) Let (Hi)i be a family of C∗-(a†, b)-modules, where Hi = (Hi, αi, βi) for each
i. Denote by �iαi ⊆ L

(
H,⊕iHi

)
the norm-closed linear span of all operators

of the form ζ 7→ (ξiζ)i, where (ξi)i is in the algebraic direct sum
⊕alg

i αi, and
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similarly define �iβi ⊆ L
(
K,⊕iHi

)
. Then the triple �iHi :=

(
⊕iHi,�iαi,�iβi

)

is a C∗-(a†, b)-module, for each j, the canonical inclusions ιj : Hj → ⊕iHi and
projection πj : ⊕i Hi → Hj are morphisms Hj → �iHi and �iHi → Hj, and
with respect to these maps, �iHi is the direct sum of the family (Hi)i.

The following example shows how bimodules arise from conditional expectations.

Example 2.11. Let B be a C∗-algebra with a KMS-state µ and associated C∗-base b
(Example 2.3), let A be a unital C∗-algebra containing B such that 1A ∈ B, and let
φ : A→ B be a faithful conditional expectation such that ν := µ ◦ φ is a KMS-state and
φ◦σνt = σµt ◦φ for all t ∈ R. Fix a GNS-construction πν : A→ L(Hν) for ν with modular
conjugation Jν : Hν → Hν , and define πopν : Aop → L(Hν) by a 7→ Jνπν(a∗)Jν . Then the
inclusion B ↪→ A extends to an isometry ζ : K = Hµ ↪→ Hν = H, and we obtain a C∗-
(b†, b)-module αHβ, where H = Hν , α = [Jνπν(A)ζ], β = [πν(A)ζ], and ρα ◦ πµop = πopν ,
ρβ ◦ πµ = πν . Moreover, πν(A) + πopν ((A ∩ B′)op) ⊆ L(Hα), πνop(A

op) + πν(A ∩ B′) ⊆
L(Hβ). For details, see [25, §2–3].

2.3. The relative tensor product. The concepts introduced above allow us to adapt
the algebraic formulation of Connes’ fusion to the setting of C∗-algebras as follows. Let
b = (K,B,B†) be a C∗-base, Hβ a C∗-b-module, and Kγ a C∗-b†-module. Then the
relative tensor product of Hβ and Kγ is the Hilbert space

Hβ⊗
b
γK := β = K < γ,

which is spanned by elements ξ = ζ < η, where ξ ∈ β, ζ ∈ K, η ∈ γ, the inner product
being given by 〈ξ = ζ < η|ξ′ = ζ ′ < η′〉 = 〈ζ|ξ∗ξ′η∗η′ζ ′〉 = 〈ζ|η∗η′ξ∗ξ′ζ ′〉 for all ξ, ξ′ ∈ β,
ζ, ζ ′ ∈ K, η, η′ ∈ γ.

Example 2.12. (i) If b is the trivial C∗-base t = (C,C,C), then β = L(C, H),
γ = L(C,K), and Hβ⊗

b
γK ∼= H ⊗K via ξ = ζ < η 7→ ξζ ⊗ η1 = ξ1⊗ ηζ.

(ii) Let Z be a locally compact Hausdorff space, µ a Radon measure on Z of full
support, H = (Hz)z and K = (Kz)z continuous bundles of Hilbert spaces on Z
with full support, and Hα,Kβ the associated C∗-b-modules as defined in Example
2.7. One easily checks that then we have an isomorphism

Hβ⊗
b
γK →

∫ ⊕

Z
Hz ⊗Kz dµ(z), m(ξ) = ζ <m(η) 7→ (ξ(z)ζ(z)⊗ η(z))z∈Z .

Let us list some easy observations and a few definitions.

(i) The isomorphisms in Lemma 2.6 (ii), applied to Hβ and Kγ , respectively, yield
the following identifications which we shall use without further notice:

β =ργ K
∼= Hβ⊗

b
γK ∼= Hρβ<γ, ξ = ηζ ≡ ξ = ζ < η ≡ ξζ < η.

(ii) For each ξ ∈ β and η ∈ γ, there exist bounded linear operators

|ξ〉1 : K → β =ργ K = Hβ⊗
b
γK, ω 7→ ξ = ω,

|η〉2 : H → Hρβ<γ = Hβ⊗
b
γK, ω 7→ ω < η,
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whose adjoints 〈ξ|1 := |ξ〉∗1 and 〈η|2 := |η〉∗2 are given by

〈ξ|1 : ξ′ = ω 7→ ργ(ξ∗ξ′)ω, 〈η|2 : ω < η′ 7→ ρβ(η∗η′)ω.

We put |β〉1 := {|ξ〉1 | ξ ∈ β} ⊆ L(K,Hβ⊗
b
γK) and similarly define 〈β|1, |γ〉2,

〈γ|2.
(iii) For all S ∈ ρβ(B†)′ and T ∈ ργ(B)′, we have operators

S < id ∈ L(Hρβ<γ) = L(Hβ⊗
b
γK), id =T ∈ L(β =ργ K) = L(Hβ⊗

b
γK).

If these operators commute, we let S ⊗
b
T := (S < id)(id =T ) = (id =T )(S < id).

The commutativity condition holds in each of the following cases:
(a) S ∈ Ls(Hβ); then (S ⊗

b
T )(ξ = ω) = Sξ = Tω for each ξ ∈ β, ω ∈ K;

(b) T ∈ Ls(Kγ); then (S ⊗
b
T )(ω < η) = Sω < Tη for each ω ∈ H, η ∈ γ;

(c) (B†)′ = B′′; then for all ξ, ξ′ ∈ β and η, η′ ∈ γ, the elements η∗Tη′ ∈ B′ and
ξ∗Sξ′ ∈ (B†)′ commute, and if ζ, ζ ′ ∈ K and ω = ξ= ζ<η, ω′ = ξ′= ζ ′<η′,
then

〈ω|(id =T )(S < id)ω′〉 = 〈ζ|(η∗Tη′)(ξ∗Sξ′)ζ ′〉
= 〈ζ|(ξ∗Sξ′)(η∗Tη′)ζ ′〉 = 〈ω|(S < id)(id =T )ω′〉.

Let a = (H,A,A†) and c = (L,C,C†) be further C∗-bases. Then the relative tensor
product of bimodules over (a†, b) and (b†, c) is a bimodule over (a†, c):

Proposition 2.13. Let H = αHβ be a C∗-(a†, b)-module, K = γKδ a C∗-(b†, c)-module,
and

α / γ := [|γ〉2α] ⊆ L(H, Hβ⊗
b
γK), β . δ := [|β〉1δ] ⊆ L(L, Hβ⊗

b
γK).(2.2)

Then H⊗
b
K := (α/γ)(Hβ⊗

b
γK)(β.δ) is a C∗-(a†, c)-module and

ρ(α/γ)(x) = ρα(x) < id for all x ∈ (A†)′, ρ(β.δ)(y) = id =ρδ(y) for all y ∈ C′.(2.3)

Proof. The pair (Hβ⊗
b
γK,α/γ) is a C∗-a†-module since [α∗〈γ|2|γ〉2α] = [α∗ρβ(B†)α] =

A†, [|γ〉2αA†] = [|γ〉2α], and [|γ〉2αH] = [|γ〉2H] = Hβ⊗
b
γK. Likewise, (Hβ⊗

b
γK,β . δ)

is a C∗-c-module. For all x ∈ (A†)′, ζ ∈ H, θ ∈ α, η ∈ γ, we have |η〉2θ ∈ α/γ and hence

ρ(α/γ)(x)(θζ < η) = ρ(α/γ)(x)|η〉2θζ
= |η〉2θxζ = ρα(x)θζ < η = (ρα(x) < id)(θζ < η).

The first equation in (2.3) follows, and a similar agument proves the second one. Finally,

(α/γ)(Hβ⊗
b
γK)(β.δ) is a C∗-(a†, c)-module because [ρ(α/γ)(A)|β〉1δ] = [|ρα(A)β〉1δ] =

[|β〉1δ] and [ρ(β.δ)(C
†)|γ〉2α] = [|γ〉2α]. �

In the situation above, we call H⊗
b
K the relative tensor product of H and K. Note the

following commutative diagram of Hilbert spaces and closed spaces of operators between
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them:

H α
))

α/γ ..

Kβ
ss

γ
++

Lδ
uu

β.δpp

H |γ〉2
**

K|β〉1
tt

Hβ⊗
b
γK

Given a C∗-b-module H = Hβ and a C∗-(b†, c)-module K = γKδ, we abbrevi-
ate Hβ⊗

b
γKδ := (Hβ⊗

b
γK)β.δ. Likewise, we write αHβ⊗

b
γK for (Hβ⊗

b
γK)α/γ and

αHβ⊗
b
γKδ for α/γ(Hβ⊗

b
γK)β.δ.

The relative tensor product is functorial, associative, unital, and compatible with
direct sums in the following sense:

Proposition 2.14. Let H = αHβ and H1 = α1H
1
β1
,H2 = α2H

2
β2

be C∗-(a†, b)-modules,

K = γKδ, K1 = γ1K
1
δ1

, K2 = γ2K
2
δ2
C∗-(b†, c)-modules, and L = εLφ a C∗-(c†, d)-module.

(i) S ⊗
b
T ∈ L

(
H1 ⊗

b
K1,H2 ⊗

b
K2
)

for all S ∈ L(H1,H2), T ∈ L(K1,K2).

(ii) The composition of the isomorphisms (Hβ ⊗
b
γKδ)⊗c εL ∼= (Hβ ⊗

b
γK)ρ(β.δ)<ε ∼=

β =ργ Kρδ<ε and β =ργ Kρδ<ε ∼= β =ρ(γ/ε) (Kδ ⊗
c
εL) ∼= Hβ ⊗

b
(γKδ ⊗

c
εL) is an

isomorphism of C∗-(a†, c)-modules aa,b,c,d(L,K,H) : (H⊗
b
K)⊗

c
L → H⊗

b
(K⊗

c
L).

(iii) Put U := B†KB. Then there exist isomorphisms

ra,b(H) : H⊗
b
U → H, ξ = ζ < b† 7→ ξb†ζ = ρβ(b†)ξζ,

lb,c(K) : U ⊗
b
K → K, b= ζ < η 7→ ηbζ = ργ(b)ηζ.

(iv) Let (Hi)i be a family of C∗-(a†, b)-modules and (Kj)j a family of C∗-(b†, c)-
modules. For each i, j, denote by ιiH : Hi → �i′Hi

′
, ιjK : Kj → �j′Kj

′
and

πiH : �i′ Hi
′ → Hi, πjK : �j′ Kj

′ → Kj the canonical inclusions and projections,

respectively. Then there exist inverse isomorphisms �i,j(Hi ⊗
b
Kj) � (�iHi)⊗

b

(�jKj), given by (ωi,j)i,j 7→
∑

i,j(ι
i
H ⊗

b
ιjK)(ωi,j) and

(
(πiH ⊗

b
πjK)(ω)

)
i,j
←[ ω,

respectively.

Proof. (i) If S, T are as above and Hi = αiH
i
βi

, Kj = γjK
j
δj

for i, j = 1, 2, then

(S ⊗
b
T )|γ1〉2α1 = |Tγ1〉2Sα1 ⊆ |γ2〉2α2 and similarly (S ⊗

b
T )|β1〉1δ1 ⊆ |β2〉1δ2, (S ⊗

b

T )∗|γ2〉2α2 ⊆ |γ1〉2α1, (S ⊗
b
T )∗|β2〉1δ2 ⊆ |β1〉1δ1.

(ii) Straightforward.
(iii) ra,b(H) · (α /B†) = [ρβ(B†)α] = α and ra,b(H) · (β .B) = [βB] = β. For lb,c(K),

the arguments are similar.
(iv) Straightforward. �

Remark 2.15. The relative tensor product of modules and morphisms can be consid-
ered as composition in a bicategory as follows. Recall that a bicategory B consists of a
class of objects ob B, a category B(A,B) for each A,B ∈ ob B whose objects and mor-
phisms are called 1-cells and 2-cells, respectively, a functor cA,B,C : B(B,C)×B(A,B)→
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B(A,C) (“composition”) for each A,B,C ∈ ob B, an object 1A ∈ B(A,A) (“iden-
tity”) for each A ∈ ob B, an isomorphism aA,B,C,D(f, g, h) : cA,B,D(cB,C,D(h, g), f) →
cA,C,D(h, cA,B,C(g, f)) in B(A,D) (“associativity”) for each triple of 1-cells A

f−→ B
g−→

C
h−→ D in B, and isomorphisms lA(f) : cA,A,B(f, 1A)→ f and rB(f) : cA,B,B(1B, f)→ f

in B(A,B) for each 1-cell A
f−→ B in B, subject to several axioms [17]. Tedious but

straightforward calculations show that there exists a bicategory C∗-bimod such that

(i) the objects are all C∗-bases and C∗-bimod(a, b) is the category of all C∗-(a†, b)-
modules with morphisms (not semi-morphisms) for all C∗-bases a, b;

(ii) the functor ca,b,c is given by (γKδ, αHβ) 7→ αHβ ⊗
b
γKδ and (T, S) 7→ S ⊗

b
T ,

respectively, and the identity 1a is A†HA for all C∗-bases a, b, c, d;
(iii) a, r, l are as in Proposition 2.14.

3. The spatial fiber product of C∗-algebras

3.1. Background. We now use the relative tensor product to construct a fiber product
of C∗-algebras that are represented on C∗-modules over C∗-bases. To motivate our
approach, let us first review several related constructions. In each case, the task is to
construct a relative tensor product or “fiber product” of two algebras A and C with
respect to a common subalgebra B.

First, assume that we are working in the category of unital commutative rings. Then
the fiber product is just the push-out of the diagram formed by A,B,C. Explicitly, it is
the algebraic tensor product A�

B
C, where A and C are considered as modules over B,

and the multiplication is defined componentwise. In the category of commutative C∗-
algebras, the push-out is the maximal completion of the algebraic tensor product A�

B
C

and, as usual in the setting of C∗-algebras, also other interesting completions exist [1].
For example, if B = C0(X) for some locally compact Hausdorff space and if A and C are
represented on Hilbert spaces H and K, respectively, then H and K can be disintegrated
over X with respect to some measure µ (see Subsection 2.1), and the algebra A�

B
C has

a natural representation π on the relative tensor product H ⊗
µ
K =

∫ ⊕
X Hx ⊗Kxdµ(x),

leading to a minimal completion π(A�
B
C). In the setting of von Neumann algebras, H

and K are intrinsic, and the desired fiber product is π(A�
B
C)′′ ⊆ L(H ⊗

µ
K). Note that

all of these constructions do not depend on commutativity of A and C and make sense
as long as B is central in A and in C.

Next, consider the case where A,B,C are non-commutative, B is a subalgebra of
A, and the opposite Bop is a subalgebra of C. Then one can consider A and C as
modules over B via right multiplication, and form the algebraic tensor product A�

B
C,

but componentwise multiplication is well defined only on the subspace A×
B
C ⊆ A�

B
C

which consists of all elements
∑

i ai � ci satisfying
∑

i bai � ci =
∑

i ai � bopci for all
b ∈ B. This subspace was first considered by Takeuchi and provides the right notion of
a fiber product for the algebraic theory of quantum groupoids [2], [32]. In the setting of
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C∗-algebras, the Takeuchi product A ×
B
C may be 0 even when we expect a nontrivial

fiber product on the level of C∗-algebras; therefore, the latter can not be obtained as the
completion of the former. In the setting of von Neumann algebras, a fiber product can
be constructed as follows [21]. If A and C act on Hilbert spaces H and K, respectively,
one can form the Connes fusion H ⊗

µ
K with respect to some weight µ on B and the

actions of B on H and Bop on K which — by functoriality — carries a representation
π : A′ � C ′ → L(H ⊗

µ
K), and the desired fiber product is A ∗

µ
C = π(A′ � C ′)′. A

categorical interpretation of this construction is given in 4.3.
We modify the last construction to define a fiber product for C∗-algebras A and C as

follows.

(A) We assume that A and C are represented on a C∗-b-module Hβ and a C∗-b†-
module Kγ , respectively, where b = (K,B,B†) is a C∗-base, such that ρβ(B)

and ργ(B†) take the places of B and Bop, respectively.
(B) OnHβ⊗

b
γK, we define two C∗-algebras Ind|γ〉2(A) and Ind|β〉1(C) which, roughly,

take the places of π(A′ � idK)′ and π(idH �C ′)′.
(C) The fiber product is then Aβ∗

b
γB = Ind|γ〉2(A) ∩ Ind|β〉1(C) ⊆ L(Hβ⊗

b
γK).

3.2. C∗-algebras represented on C∗-modules. Let b = (K,B,B†) be a C∗-base. As
indicated in step (A), we adopt the following terminology.

Definition 3.1. A C∗-B†-algebra (A, ρ), briefly written Aρ, is a C∗-algebra A with a

∗-homomorphism ρ : B† → M(A). A morphism of C∗-B†-algebras Aρ and Bσ is a ∗-
homomorphism π : A → B satisfying σ(x)π(a) = π(ρ(x)a) for all x ∈ B†, a ∈ A. We
denote the category of all C∗-B†-algebras by C∗

B†.
A (nondegenerate) C∗-b-algebra is a pair AαH = (Hα, A), where Hα is a C∗-b-module,

A ⊆ L(H) a (nondegenerate) C∗-algebra, and ρα(B†)A ⊆ A. A (semi-)morphism be-

tween C∗-b-algebras AαH , Bβ
K is a ∗-homomorphism π : A → B satisfying the condition

β = [Lπ(s)(Hα,Kβ)α], where Lπ(s)(Hα,Kβ) := {T ∈ L(s)(Hα,Kβ) | ∀a ∈ A : Ta =

π(a)T}. We denote the category of all C∗-b-algebras together with all (semi-)morphisms

by C∗b
(s).

We first give some examples of C∗-b-algebras and then study the relation between
C∗

B† and C∗b.

Example 3.2. (i) If H is a Hilbert space and A ⊆ L(H) a C∗-algebra, then AαH is
a C∗-t-algebra, where t = (C,C,C) denotes the trivial C∗-base and α = L(C, H).

(ii) Let AαH be a nondegenerate C∗-b-algebra. If we identify M(A) with a C∗-
subalgebra of L(H) in the canonical way, M(A)αH becomes a C∗-b-algebra.

(iii) Let (Ai)i be a family of C∗-b-algebras, where Ai = (Hi, Ai) for each i. Then
the c0-sum

⊕
iAi and the l∞-product

∏
iAi are naturally represented on the

underlying Hilbert space of �iHi, and we obtain C∗-b-algebras �iAi :=
(
�i

Hi,
⊕

iAi
)

and
∏
iAi :=

(
�iHi,

∏
iAi
)
. For each j, the canonical maps Aj →⊕

iAi →
∏
iAi → Aj are evidently morphisms of C∗-b-algebras Aj → �iAi →∏

iAi → Aj.



APPENDIX I.1 — RELATIVE TENSOR AND FIBER PRODUCT 27

The following example is a continuation of Example 2.11.

Example 3.3. Let B be a C∗-algebra with a KMS-state µ and associated C∗-base b,
and let A be a C∗-algebra containing B with a conditional expectation φ : A → B as

in Example 2.11. With the notation introduced before, πν(A)βH is a nondegenerate C∗-
b-algebra because ρβ(B)πν(A) = πν(B)πν(A) ⊆ πν(A), and similarly, (πopν (Aop))αH is a

nondegenerate C∗-b†-algebra [25, §2–3].

The categories C∗sb and C∗
B† are related by a pair of adjoint functors, as we shall see

now.

Lemma 3.4. Let π be a semi-morphism of C∗-b-algebras AαH and Bβ
K . Then π is normal

and π(aρα(x)) = π(a)ρβ(x) for all x ∈ B†, a ∈ A.

Proof. Let T, T ′ ∈ Lπs (Hα,Kβ), ξ, ξ′ ∈ α, ζ, ζ ′ ∈ K, a ∈ A, and x ∈ B†. Then
〈Tξζ|π(a)T ′ξ′ζ ′〉 = 〈ξζ|aT ∗T ′ξ′ζ ′〉 and

π(aρα(x))Tξζ = Taρα(x)ξζ = π(a)Tξxζ = π(a)ρβ(x)Tξζ

because Tξ ∈ β. Now, the assertions follow since K = [Lπs (Hα,Kβ)αK]. �
The preceding lemma shows that there exists a forgetful functor

Ub : C∗sb → C∗B† ,

{
AαH 7→ Aρα for each object AαH ,

π 7→ π for each morphism π.

We shall see that this functor has a partial adjoint that associates to a C∗-B†-algebra a
universal representation on a C∗-b-module. For the discussion, we fix a C∗-B†-algebra
Cσ.

Definition 3.5. A representation of Cσ in C∗sb is a pair (A, φ), where A = AαH ∈ C∗sb
and φ ∈ C∗

B†(Cσ,UA). Denote by Repb(Cσ) the category of all such representations,
where the morphisms between objects (A, φ) and (B, ψ) are all π ∈ C∗sb (A,B) satisfying
ψ = Uπ ◦ φ.

Note that Repb(Cσ) is just the comma category (Cσ ↓ Ub) [19]. Unfortunately, we
have no general method like the GNS-construction to produce representations of Cσ in
in C∗sb . In particular, we have no good criteria to decide whether there are any and,
if so, whether there exists a faithful one. However, we now show that if there are any
representations, then there also is a universal one. The proof involves the following direct
product construction.

Example 3.6. Let (Ai, φi) ∈ Repb(Cσ) for all i, where Ai = (Hi, Ai), and define
φ : C → ∏

iAi by c 7→ (φi(c))i. Then
∏
i(Ai, φi) := (

∏
iAi, φ) ∈ Repb(Cσ), and the

canonical maps Aj →
∏
iAi → Aj are morphisms between (Aj , φj) and (

∏
iAi, φ) for

each j.

Proposition 3.7. If the category Repb(Cσ) is non-empty, then it has an initial object.

Proof. Assume that Repb(Cσ) is non-empty. We first use a cardinality argument to
show that Repb(Cσ) has an initial set of objects, and then apply the direct product
construction to this set to obtain an initial object.
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Given a topological vector space X and a cardinal number c, let us call X c-separable
if X has a linearly dense subset of cardinality c. Choose a cardinal number d such that
B and C × K are d-separable, and let e := |N|∑n d

n. Then the isomorphism classes of
e-separable Hilbert C∗-B-modules form a set, and hence there exists a setR of objects in
Repb(Cσ) such that each (AαH , φ) ∈ Repb(Cσ) with e-separable α is isomorphic to some
element of R. Let (AαH , φ) = �R∈RR. We show that (φ(C)αH , φ) is initial in Repb(Cσ).

Let (Bβ
K , ψ) ∈ Repb(Cσ). We show that there exists a morphism π ∈ C∗sb (φ(C)αH , B

β
K)

such that ψ = π ◦ φ. Uniqueness of such a π is evident. Let ξ ∈ β be given. Since B
and C × K are d-separable, we can inductively choose subspaces β0 ⊆ β1 ⊆ · · · ⊆ β and
cardinal numbers d0, d1, . . . such that ξ ∈ β0, [β∗0β0] = B, d0 ≤ 2d+ 1, β0 is d0-separable
and for all n ≥ 0,

βnB ⊆ βn+1, ψ(C)βnK ⊆ [βn+1K], dn+1 ≤ |N|ddn, βn+1 is dn+1-separable.

Let β̃ := [
⋃
n βn] ⊆ β and K̃ := [β̃K] ⊆ K. By construction, [β̃∗β̃] = B, β̃B ⊆ β̃,

ψ(C)K̃ ⊆ K̃, so that (ψ(C)|K̃)β̃
K̃

is in C∗b. Define ψ̃ : C → ψ(C)|K̃ by c 7→ ψ(c)|K̃ .

Then (ψ̃(C)β̃
K̃
, ψ̃) is in Repb(Cσ). Since β̃ is e-separable, (ψ̃(C)β̃

K̃
, ψ̃) is isomorphic to

some element of R. Hence, there exists a surjection T̃ : H → K̃ such that T̃α = β̃, and
the composition with the inclusion K̃ → K gives an operator T ∈ Ls(Hα,Kβ) such that

ψ(c)T = Tφ(c) for all c ∈ C. Since ξ ∈ β̃ = Tα and ξ ∈ β was arbitrary, we can conclude
the existence of π as desired. �

Evidently, every morphism Φ between C∗-B†-algebras Cσ and Dτ yields a functor

Φ∗ : Repb(Dτ )→ Repb(Cσ),

{
(AαH , φ) 7→ (AαH , φ ◦ Φ) for objects (AαH , φ),

π 7→ π for morphisms π.

Denote by C∗r
B† the full subcategory of C∗

B† formed by all objects Cσ for which Rep(Cσ)
is non-empty.

Theorem 3.8. There exist a functor Rb : C∗r
B† → C∗sb and natural transformations

η : idC∗r
B†
→ UbRb and ε : RbUb → idC∗sb such that for every Cσ, Dτ ∈ C∗r

B†, Φ ∈
C∗r

B†(Cσ, Dτ ), AαH ∈ C∗sb ,

(i) Rb(Cσ) ∈ Repb(Cσ) is an initial object and Rb(Φ) is the unique morphism from
Rb(Cσ) to Φ∗(Rb(Dτ ));

(ii) ηCσ = φ if Rb(Cσ) = (Bβ
K , φ), and εAαH is the unique morphism from RbUb(A

α
H)

to (AαH , idA).

Moreover, Rb is left adjoint to Ub and η, ε are the unit and counit of the adjunction,
respectively.

Proof. This follows from Proposition 3.7 and [19, §IV Theorem 2]. �

We next consider C∗-algebras acting on C∗-bimodules. Let a = (H,A,A†) be a C∗-
base.

Definition 3.9. A C∗-(A,B†)-algebra is a triple (A, ρ, σ), briefly written Aρ,σ, where

Aρ is a C∗-A-algebra, Aσ is a C∗-B†-algebra, and [ρ(A), σ(B†)] = 0. A morphism of
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C∗-(A,B†)-algebras is a morphism of the underlying C∗-A-algebras and C∗-B†-algebras.
We denote the category of all C∗-(A,B†)-algebras by C∗

(A,B†).

A (nondegenerate) C∗-(a†, b)-algebra is a pair Aα,βH = (αHβ, A), where αHβ is a C∗-
(a†, b)-module, AαH is a (nondegenerate) C∗-a†-algebra, and AβH is a C∗-b-algebra. A

(semi-)morphism of C∗-(a†, b)-algebras Aα,βH and Bγ,δ
K is a ∗-homomorphism π : A→ B

satisfying γ = [Lπ(s)(αHβ, γKδ)α] and δ = [Lπ(s)(αHβ, γKδ)β], where Lπ(s)(αHβ, γKδ) :=

{T ∈ L(s)(αHβ, γKδ) | ∀a ∈ A : Ta = π(a)T}. We denote the category of all C∗-(a†, b)-

algebras together with all (semi-)morphisms by C
∗(s)
(a†,b)

.

Remark 3.10. Note that the condition on a (semi-)morphism between C∗-(a†, b)-algebras
above is stronger than just being a (semi-)morphism of the underlying C∗-a†-algebras and
C∗-b-algebras.

Examples 3.2 (ii) and (iii) naturally extend to C∗-(a†, b)-algebras, and the categories
C∗

(A,B†) and C∗s
(a†,b)

are again related by a pair of adjoint functors.

Theorem 3.11. There exists a functor U(a†,b) : C∗s
(a†,b)

→ C∗
(A,B†), given by Aα,βH 7→

Aρα,ρβ on objects and π 7→ π on morphisms. Denote by C∗r
(A,B†) the full subcategory of

C∗
(A,B†) formed by all objects Cσ,ρ for which the comma category (Cσ,ρ ↓ U(a†,b)) is non-

empty. Then the corestriction of U(a†,b) to C∗r
(A,B†) has a left adjoint R(a†,b) : C∗r

(A,B†) →
C∗s

(a†,b)
.

Proof. The proof proceeds as in the case of C∗-b-algebras with straightforward modi-
fications, so we only indicate the necessary changes for the second half of the proof of

Proposition 3.7. Given a C∗-(A,B†)-algebra Cσ,τ and a C∗-(a†, b)-algebra Bγ,δ
K with

a morphism ψ : Cσ,τ → Bργ ,ρδ , one constructs γ̃ ⊆ γ and δ̃ ⊆ δ for given ξ ∈ γ,

η ∈ δ as follows. One first fixes a cardinal number d such that A,A†,H,B,B†,H are d-
separable, and then inductively chooses cardinal numbers d0, d1, . . . and closed subspaces
γ0 ⊆ γ1 ⊆ · · · ⊆ γ and δ0 ⊆ δ1 ⊆ · · · ⊆ δ such that

ξ ∈ γ0, η ∈ δ0, [γ∗0γ0] = A†, [δ∗0δ0] = B,

d0 ≤ 2d+ 1, γ0, δ0 are d0-separable,

ρδ(B
†)γn + γnA

† ⊆ γn+1, ργ(A)γn + δnB ⊆ δn+1,

ψ(C)γnH + ψ(C)δnK ⊆ [γn+1H] ∩ [δn+1K],

dn+1 ≤ |N|d2dn, γn+1, δn+1 are dn+1-separable

for all n ≥ 0, and finally lets γ̃ := [
⋃
n γn], δ̃ := [

⋃
n δn], K̃ := [γ̃H] = [δ̃K]. �

Remark 3.12. Let Cρ,σ be a C∗-(A,B†)-algebra, Aα,βH = R(a†,b)(Cρ,σ) and let φ =
ηCρ,σ : Cρ,σ → Aρα,ρβ be the morphism given by the unit of the adjunction above. Then

(Aα, φ) ∈ Repa†(Cρ) and (Aβ, φ) ∈ Repb(Cσ) and therefore, we have semi-morphisms

Ra†(Cσ)→ AαH and Rb(Cρ)→ AβH .
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3.3. The spatial fiber product for C∗-algebras on C∗-modules. Our definition of
the fiber product of C∗-algebras represented on C∗-modules — more precisely, step (B)
in the introduction — involves the following construction.

Let H and K be Hilbert spaces, I ⊆ L(H,K) a subspace and A ⊆ L(H) a C∗-algebra
such that [IH] = K, [I∗K] = H, [II∗I] = I, I∗IA ⊆ A. We define a new C∗-algebra

IndI(A) := {T ∈ L(K) | TI + T ∗I ⊆ [IA]} ⊆ L(K).

Definition 3.13. The I-strong-∗, I-strong, and I-weak topology on L(K) are the topolo-
gies induced by the families of semi-norms T 7→ ‖Tξ‖+‖T ∗ξ‖ (ξ ∈ I), T 7→ ‖Tξ‖ (ξ ∈ I),
and T 7→ ‖ξ∗Tξ′‖ (ξ, ξ′ ∈ I), respectively. Given a subset X ⊆ L(K), denote by [X]I the
closure of spanX with respect to the I-strong-∗ topology.

Evidently, the multiplication in L(K) is separately continuous with respect to the
topologies introduced above, and the involution T 7→ T ∗ is continuous with respect to
the I-strong-∗ and the I-weak topology. Define ρI : (I∗I)′ → L(K) as in Lemma 2.5.

Lemma 3.14. (i) [I∗ IndI(A)I] ⊆ A and IndI(A) = [IAI∗]I .
(ii) IndI(M(A)) ⊆M(IndI(A)).

(iii) IndI(A) ⊆ L(K) is nondegenerate if and only if A ⊆ L(H) is nondegenerate.
(iv) If A ⊆ L(H) is nondegenerate, then A′ ⊆ (I∗I)′ and IndI(A) ⊆ ρI(A′)′.

Proof. (i) First, [I∗ IndI(A)I] ⊆ [I∗IA] ⊆ A by definition and [IAI∗]I ⊆ IndI(A) be-
cause [IAI∗]II ⊆ [IAI∗I] ⊆ [IA]. To see that [IAI∗]I ⊇ IndI(A), choose a bounded
approximate unit (uν)ν for the C∗-algebra [II∗] and observe that for each T ∈ IndI(A),
the net (uνTuν)ν lies in the space [II∗ IndI(A)II∗] ⊆ [IAI∗] and converges to T in the

I-strong-∗ topology because limν T
(∗)uνξ = T (∗)ξ ∈ [IA] for all ξ ∈ I and limν uνω = ω

for all ω ∈ [IA].
(ii) If S ∈ IndI(M(A)) and T ∈ IndI(A), then ST ∈ IndI(A) because STI ⊆ [SIA] ⊆

[IM(A)A] = [IA] and T ∗S∗I ⊆ [TIM(A)] ⊆ [IAM(A)] = [IA].
(iii) If IndI(A) ⊆ L(K) is nondegenerate, then we have [AH] ⊇ [I∗ IndI(A)IH] =

[I∗ IndI(A)K] = [I∗K] = H. Conversely, if A is nondegenerate, then [IAI∗] and hence
also IndI(A) is nondegenerate.

(iv) Assume that A is nondegenerate. Then I∗I ⊆ M(A) ⊆ L(H) and hence A′ ⊆
(I∗I)′. For all x ∈ IndI(A), y ∈ A′, S, T ∈ I, we have S∗xρI(y)T = S∗xTy = yS∗xT =
S∗ρI(y)xT because S∗xT ∈ A, and since [IH] = K, we can conclude that xρI(y) =
ρI(y)x. �

Let b = (K,B,B†) be a C∗-base, AβH a C∗-b-algebra, and Bγ
K a C∗-b†-algebra. We

apply the construction above to A, B and |γ〉2 ⊆ L(H,Hβ⊗
b
γK), |β〉1 ⊆ L(K,Hβ⊗

b
γK),

respectively, and define the fiber product of AβH and Bγ
K to be the C∗-algebra

Aβ∗
b
γB := Ind|γ〉2(A) ∩ Ind|β〉1(B)

= {T ∈ L(Hβ⊗
b
γK) | T (∗)|γ〉2 ⊆ [|γ〉2A] and T (∗)|β〉1 ⊆ [|β〉1B]}.
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The spaces of operators involved are visualized as arrows in the following diagram:

H

A
��

|γ〉2 // Hβ⊗
b
γK

Aβ∗
b
γB

��

K
|β〉1oo

B
��

H
|γ〉2 // Hβ⊗

b
γK K

|β〉1oo

Even in very special situations, it seems to be difficult to give a more explicit description
of the fiber product. The main drawback of the definition above is that apart from
special situations, we do not know how to produce elements of the fiber product.

Let a = (H,A,A†) and c = (L,C,C†) be further C∗-bases.

Proposition 3.15. Let A = Aα,βH be a C∗-(a†, b)-algebra and B = Bγ,δ
K a C∗-(b†, c)-

algebra. Then A ∗
b
B := (αHβ ⊗

b
γKδ, Aβ∗

b
γB) is a C∗-(a†, c)-algebra.

Proof. The product X := ρ(α/γ)(A
†)(Aβ∗

b
γB) is contained in Aβ∗

b
γB because

X|β〉1 ⊆ [|ρα(A)β〉1B] = [|β〉1B], X∗|β〉1 = (Aβ∗
b
γB)|ρα(A)β〉1 ⊆ [|β〉1B],

X|γ〉2 ⊆ [|γ〉2ρα(A)A] ⊆ [|γ〉2A], X∗|γ〉2 = (Aβ∗
b
γB)|γ〉2ρα(A) ⊆ [|γ〉2A]

by equation (2.3). A similar argument proves ρ(β.δ)(C
†)(Aβ∗

b
γB) ⊆ Aβ∗

b
γB. �

In the situation above, we call A∗
b
B the fiber product of A and B. Forgetting α or δ, we

obtain a C∗-c-algebra Aβ∗
b
γBδ := AβH ∗b B

γ,δ
H := (Hβ⊗

b
γKδ, Aβ∗

b
γB) and a C∗-a†-algebra

αAβ∗
b
γB = Aα,βH ∗

b
Bγ
K .

Denote by A′ ⊆ L(H) and B′ ⊆ L(K) the commutants of A and B, respectively, and
let

A(β) := A ∩ L(Hβ), B(γ) := B ∩ L(Kγ), X := (A(β) ⊗
b

id) + (id⊗
b
B(γ)),

Ms(A
(β) ⊗

b
B(γ)) := {T ∈ L(Hβ⊗

b
γK) | TX,XT ⊆ A(β) ⊗

b
B(γ)}.

Lemma 3.16. The following relations hold:

(i) 〈β|1(Aβ∗
b
γB)|β〉1 ⊆ B, 〈γ|2(Aβ∗

b
γB)|γ〉2 ⊆ A and M(A)β∗

b
γM(B) ⊆M(Aβ∗

b
γB).

(ii) A(β) ⊗
b
B(γ) ⊆ Aβ∗

b
γB.

(iii) If [A(β)β] = β and [B(γ)γ] = γ, then Aβ∗
b
γB is nondegenerate and Ms(A

(β) ⊗
b

B(γ)) ⊆ Aβ∗
b
γB.

(iv) If ρβ(B†) ⊆ A, then idH ⊗
b
B(γ) ⊆ Aβ∗

b
γB. If ργ(B) ⊆ B, then A(β) ⊗

b
idK ⊆

Aβ∗
b
γB.

(v) id(Hβ⊗
b
γK) ∈ Aβ∗

b
γB if and only if ρβ(B†) ⊆ A and ργ(B) ⊆ B.

(vi) If Aα,βH is a C∗-(a†, b)-algebra and Bγ,δ
K a C∗-(b†, c)-algebra such that ρα(A) +

ρβ(B†) ⊆ A and ργ(B) + ρδ(C
†) ⊆ B, then ρ(α/γ)(A) + ρ(β.δ)(C

†) ⊆ Aβ∗
b
γB.
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(vii) If Aβ∗
b
γB is nondegenerate, then the C∗-algebra [β∗Aβ] ∩ [γ∗Bγ] ⊆ L(K) is

nondegenerate.
(viii) If A and B are nondegenerate, then A′ ⊆ ρβ(B†)′, B′ ⊆ ργ(B)′, and Aβ∗

b
γB ⊆

ρ|γ〉2(A′) ∩ ρ|β〉1(B′) = (A′ ⊗
b

idK)′ ∩ (idH ⊗
b
B′)′.

Proof. (i) Immediate from Lemma 3.14.

(ii) Follows from (A(β)⊗
b
B(γ))|β〉1 ⊆ [|A(β)β〉1B(γ)] ⊆ [|β〉1B] and (A(β)⊗

b
B(γ))|γ〉2 ⊆

[|B(γ)γ〉1A(β)] ⊆ [|γ〉2A].

(iii) Assume [A(β)β] = β and [B(γ)γ] = γ. Then A(β)⊗
b
B(γ) ⊆ Aβ∗

b
γB is nondegenerate

and for each T ∈ Ms(A
(β) ⊗

b
B(γ)), we have T |β〉1 ⊆ [T (A(β) ⊗

b
id)|β〉1] ⊆ [(A(β) ⊗

b

B(γ))|β〉1] ⊆ [|β〉1B] and similarly T ∗|β〉1 ⊆ [|β〉1B], T |γ〉2 + T ∗|γ〉2 ⊆ [|γ〉2A].

(iv) If ργ(B) ⊆ B, then (A(β) ⊗
b

idK)|γ〉2 = |γ〉2A(β) and [(A(β) ⊗
b

idK)|β〉1] ⊆ |β〉1 =

[|βB〉1] = [|β〉1ργ(B)] ⊆ [|β〉1B]. The second assertion follows similarly.

(v) If id(Hβ⊗
b
γK) ∈ Aβ∗

b
γB, then ρβ(B†) = [〈γ|2|γ〉2] ⊆ A, ργ(B) = [〈β|1|β〉1] ⊆ B by

i). Conversely, if the last two inclusions hold, then |γ〉2 = [|γB†〉2] = [|γ〉2ρβ(B†)] ⊆
[|γ〉2A] and similarly |β〉1 ⊆ [|β〉1B], whence id(Hβ⊗

b
γK) ∈ Aβ∗

b
γB.

(vi) Immediate from (iv).
(vii) The C∗-algebra C := [β∗Aβ]∩ [γ∗Bγ] contains the space β∗〈γ|2(Aβ∗

b
γB)|γ〉2β =

γ∗〈β|1(Aβ∗
b
γB)|β〉1γ. Hence, [CK] ⊇ [β∗〈γ|2(Aβ∗

b
γB)(Hβ⊗

b
γK)] = K if Aβ∗

b
γB is non-

degenerate.
(viii) Immediate from Lemma 3.14. �
Even in the case of a trivial C∗-base, we have no explicit description of the fiber

product.

Example 3.17. Let H and K be Hilbert spaces, β = L(C, H), γ = L(C,K), b = t the
trivial C∗-base (C,C,C), and identify Hβ⊗

b
γK with H ⊗K as in Example 2.12.

(i) Let A ⊆ L(H) and B ⊆ L(K) be nondegenerate C∗-algebras. Then A(β) = A,

B(γ) = B, and by Lemma 3.16, Aβ∗
b
γB contains the minimal tensor product

A⊗B ⊆ L(H ⊗K) and Ms(A⊗B) = {T ∈ L(H ⊗K) | T (∗)(1⊗B), T (∗)(A⊗
1) ⊆ A ⊗ B}. If A or B is non-unital, then idH⊗K 6∈ Aβ∗

b
γB by Lemma

3.16 and so M(A ⊗ B) 6⊆ Aβ∗
b
γB. In Example 5.3 (iii), we shall see that also

Aβ∗
b
γB *M(A⊗B) is possible.

(ii) Assume that H = K = l2(N) and identify β = γ = L(C, H) with H. Then the
flip Σ: H ⊗ H → H ⊗ H, ξ ⊗ η 7→ η ⊗ ξ, is not contained in L(H)β∗

b
γL(H).

Indeed, let (ξν)ν be an orthonormal basis for H and let η ∈ H be non-zero.
Then 〈ξν |1Σ|η〉1 = |η〉〈ξν | for each ν and hence

∑
ν〈ξν |1Σ|η〉1 does not converge

in norm. On the other hand, one easily verifies that
∑

ν〈ξν |1S converges in
norm for each S ∈ [|H〉1L(H)]. Hence, Σ|η〉1 6∈ [|H〉1L(H)].
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3.4. Functoriality and slice maps. We show that the fiber product is functorial, and
consider various slice maps. The results concerning functoriality were stated in slightly
different form in [25], [28], [29] with proofs referring to unpublished material. We use the
opportunity to rectify this situation. As before, let a = (H,A,A†), b = (K,B,B†), c =
(L,C,C†) be C∗-bases.

Lemma 3.18. Let π be a (semi-)morphism of C∗-b-algebras AβH and CλL, let γKδ be a

C∗-(b†, c)-module, and let I := Lπ(s)(Hβ, Lλ)⊗
b

id ⊆ L(Hβ⊗
b
γK,Lλ⊗

b
γK).

(i) The pairs X := (Hβ⊗
b
γKδ, (I

∗I)′) and Y := (Lλ⊗
b
γKδ, (II

∗)′) are nondegener-

ate C∗-c-algebras.
(ii) There is a unique ρI ∈ Mor(s)(X ,Y) satisfying ρI(x)S = Sx for all x ∈

(I∗I)′, S ∈ I.
(iii) There is a unique linear contraction jπ : [|γ〉2A] → [|γ〉2C] given by |η〉2a 7→

|η〉2π(a).
(iv) Ind|γ〉2(A) ⊆ (I∗I)′ and ρI(x)|η〉2 = jπ(x|η〉2) for all x ∈ Ind|γ〉2(A), η ∈ γ.

(v) Let Bγ
K be a C∗-b†-algebra. Then Aβ∗

b
γB ⊆ (I∗I)′ and ρI(Aβ∗

b
γB) ⊆ Cλ ∗

b
γB.

Proof. (i) First, (I∗I)′ and (II∗)′ are nondegenerate C∗-algebras, and second, ρ(β.δ)(C
†) =

id β⊗
b
γρδ(C

†) ⊆ (I∗I)′ and ρ(λ.δ)(C
†) = id λ⊗

b
γρδ(C

†) ⊆ (II∗)′.

(ii) There exists a unique ∗-homomorphism ρI : (I∗I)′ → (II∗)′ satisfying the formula
above by Lemma 2.5, and this is a (semi-)morphism because [I(β . δ)] = [λ . δ] by
assumption on π.

(iii) For all η1, . . . , ηn ∈ γ and a1, . . . , an ∈ A, we have

‖
∑

j

|ηj〉2π(aj)‖2 = ‖
∑

i,j

π(a∗i )ρλ(η∗i ηj)π(aj)‖

≤ ‖
∑

i,j

a∗i ρβ(η∗i ηj)aj‖ = ‖
∑

j

|ηj〉2aj‖2

by Lemma 3.4. The claim follows.
(iv) The first assertion follows from Lemma 3.14 and the relation I∗I ⊆ A′ ⊗

b
id =

ρ|γ〉2(A′), and the second one from the fact that for all x ∈ Ind|γ〉2(A), η ∈ γ, S ∈
Lπ(s)(Hβ, Lλ), we have ρI(x)|η〉2S = ρI(x)(S ⊗

b
id)|η〉2 = (S ⊗

b
id)x|η〉2 = jπ(x|η〉2)S.

(v) First, Aβ∗
b
γB ⊆ (I∗I)′ by Lemma 3.16. The second assertion follows from the

relations

ρI(Aβ∗
b
γB)|γ〉2 ⊆ ρI(Ind|γ〉2(A))|γ〉2 ⊆ jπ([|γ〉2A]) = [|γ〉2C],

ρI(Aβ∗
b
γB)|λ〉1 = ρI(Aβ∗

b
γB)[I|β〉1] ⊆ [I(Aβ∗

b
γB)|β〉1] ⊆ [I|β〉1B] = [|λ〉1B]. �

Theorem 3.19. Let φ be a (semi-)morphism of C∗-(a, b)-algebras A = Aα,βH and C =

Cκ,λL , and ψ a (semi-)morphism of C∗-(b†, c)-algebras B = Bγ,δ
K and D = Dµ,ν

M . Then
there exists a unique (semi-)morphism of C∗-(a, c)-algebras φ ∗ ψ from A ∗

b
B to C ∗

b
D
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such that

(φ ∗ ψ)(x)R = Rx for all x ∈ Aβ∗
b
γB and R ∈ IMJH + JLIK ,

where IX = Lφ(s)(Hβ, Lλ) ⊗
b

idX and JY = idY ⊗
b
Lψ(s)(Kγ ,Mµ) for X ∈ {K,M}, Y ∈

{H,L}.

Proof. By Lemma 3.18, we can define φ ∗ ψ to be the restriction of ρIM ◦ ρJH or
of ρJL ◦ ρIK to Aβ∗

b
γB. Uniqueness follows from the fact that [IMJH(Hβ⊗

b
γK)] =

[JLIK(Hβ⊗
b
γK)] = Lλ⊗

b
µM . �

Remark 3.20. Let AβH , CλL be C∗-b-algebras, Bγ
K , Dµ

M C∗-b†-algebras and let φ ∈
Mor(AβH ,M(C)λL), ψ ∈ Mor(Bγ

K ,M(D)µM ) such that [φ(A)C] = C, [ψ(B)D] = D. Then
there exists a ∗-homomorphism φ ∗

b
ψ : Aβ∗

b
γB → M(C)λ∗

b
µM(D) ↪→ M(Cλ ∗

b
µD), but

in general, we do not know whether this is nondegenerate.

Next, we briefly discuss two kinds of slice maps on fiber products. For applications
and further details, see [29]. The first class of slice maps arises from a completely positive
map on one factor and takes values in operators on a certain KSGNS-construction, that
is, an internal tensor product with respect to a completely positive linear map [16, §4–§5].

Proposition 3.21. Let AβH be a C∗-b-algebra, Kγ a C∗-b†-module, L a Hilbert space,

φ : [A + ρβ(B†)] → L(L) a c.p. map, and θ = φ ◦ ρβ : B† → L(L). Then there exists a
unique c.p. map φ ∗ id : Ind|γ〉2(A) → L(Lθ<γ) such that for all ζ, ζ ′ ∈ L, η, η′ ∈ γ, x ∈
Ind|γ〉2(A),

〈ζ < η|(φ ∗ id)(x)(ζ ′ < η′)〉 = 〈ζ|φ(〈η|2x|η′〉2)ζ ′〉.(3.1)

If Bγ
K is a C∗-b†-algebra, then

(φ ∗ id)(Aβ∗
b
γB) ⊆ (φ(A)′θ<(B′ ∩ L(Kγ))′ ⊆ L(Lθ<γ).

Proof. Let x = (xij)i,j ∈ Mn(Ind|γ〉2(A)) be positive, let ζ1, . . . , ζn ∈ L, η1, . . . , ηn ∈ γ,
where n ∈ N, and let d = diag(|η1〉2, . . . , |ηn〉2). Then 0 ≤ (〈ηi|2xij |ηj〉2)i,j = d∗xd ≤
‖x‖d∗d and hence 0 ≤ (φ(〈ηi|2xij |ηj〉2))i,j ≤ ‖x‖φ(d∗d) and

0 ≤
∑

i,j

〈ζi|φ(〈ηi|2xij |ηj〉2)ζj〉 ≤ ‖x‖
∑

i,j

〈ζi < ηi|ζj < ηj〉.

Hence, there exists a map φ ∗ id as claimed. The verification of the assertion concerning
Bγ
K is straightforward. �

Remark 3.22. If CλL is a C∗-b†-algebra and φ|A is a semi-morphism of C∗-b†-algebras,
then the map φ ∗ id extends the fiber product φ ∗ id defined in Theorem 3.19.

Second, we show that the fiber product is functorial with respect to the following class

of maps. A spatially implemented map of C∗-b-algebras AβH and CλL is a map φ : A→ C
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admitting sequences (Sn)n and (Tn)n in L(Lλ, Hβ) such that

(i)
∑

n

S∗nSn and
∑

n

T ∗nTn converge in norm, (ii) φ(a) =
∑

n

S∗naTn for all a ∈ A.
(3.2)

Note that condition (i) implies norm-convergence of the sum in (ii). Evidently, such
a map is linear, it extends to a normal map φ̄ : A′′ → C ′′, its norm is bounded by
‖∑n S

∗
nSn‖1/2 · ‖

∑
n T
∗
nTn‖1/2, and the composition of spatially implemented maps is

spatially implemented again.

Proposition 3.23. Let φ be a spatially implemented map of C∗-b-algebras AβH and CλL,

and let Bγ,δ
K be a C∗-(b†, c)-algebra. Then there exists a spatially implemented map from

AβH ∗b B
γ,δ
K to CλH ∗

b
Bγ,δ
K such that 〈η|2(φ ∗ id)(x)|η′〉2 = φ(〈η|2x|η′〉2) for all x ∈ Aβ∗

b
γB,

η, η′ ∈ γ.

Proof. Uniqueness is clear. Fix sequences (Sn)n, (Tn)n as in (3.2) and let S̃n := Sn⊗
b

idK ,

T̃n := Tn ⊗
b

idK for all n. Then S̃n, T̃n ∈ L(Lλ⊗
b
γKδ, Hβ⊗

b
γKδ) for all n, we have

‖∑n S̃
∗
nS̃n‖ = ‖∑n S

∗
nSn‖, ‖

∑
n T̃
∗
n T̃n‖ = ‖∑n T

∗
nTn‖, and the map φ ∗ id : Aβ∗

b
γB →

L(Lλ⊗
b
γK) given by x 7→∑

n T̃
∗
nxS̃n has the desired properties. Indeed, let x ∈ Aβ∗

b
γB,

η, η′ ∈ γ. Then S̃n|η〉2 = |η〉2Sn and T̃n|η′〉2 = |η′〉2Tn for all n, and hence 〈η|2(φ ∗
id)(x)|η′〉2 = φ(〈η|2x|η′〉2). It remains to show that (φ ∗ id)(x) ∈ Cλ∗

b
γB. Consider

the expression (φ ∗ id)(x)|η′〉2 =
∑

n S̃
∗
nx|η′〉2Tn. This sum converges in norm and each

summand lies in [|γ〉2L(H)] because x|η′〉2 ∈ [|γ〉2A] and [S̃∗n|γ〉2] = [|γ〉2S∗n]. Since
〈η′′|2(φ ∗ id)(x)|η′〉2 ∈ C for each η′′ ∈ γ, we can conclude that the sum lies in [|γ〉2C].

Finally, consider the expression (φ ∗ id)(x)|ξ〉1 =
∑

n S̃nxT̃n|ξ〉1, where ξ ∈ λ. Again,

the sum converges in norm and each summand lies in [|λ〉1B] because S̃∗nxT̃n|ξ〉1 =

S̃∗nx|Tnξ〉1 ∈ S̃∗n(Aβ∗
b
γB)|β〉1 ⊆ [S̃∗n|β〉1B] ⊆ [|λ〉1B]. �

Remark 3.24. (i) The map φ ∗ id constructed above is a “slice map” in the case
where CλL = L(K)BK and Sn, Tn ∈ β ⊆ L(KB, Hβ) for all n. Then, we can identify
Cλ∗

b
γB with a C∗-subalgebra of L(K), and φ ∗ id is just the map Aβ∗

b
γB → B

given by x 7→∑
n〈Sn|1X|Tn〉1.

(ii) Assume that the extension φ̃ : [A + ρβ(B†)] → C given by x 7→ ∑
n S
∗
nxTn is

completely positive. Here, we use the notation of the proof above. Then the
map φ̃∗ id constructed in Proposition 3.21 extends the map φ∗ id of Proposition
3.23 because then θ = ρλ and hence 〈η|2(φ̃ ∗ id)(x)|η′〉2 = φ̃(〈η|2x|η′〉2) for all
x ∈ Aβ∗

b
γB and η, η′ ∈ γ.

Of course, slice maps of the form id ∗φ can be constructed in a similar way.

3.5. Further categorical properties. The fiber product of C∗-algebras is neither as-
sociative, unital, nor compatible with infinite sums.
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We first discuss non-associativity. Let A = Aα,βH be a C∗-(a†, b)-algebra, B = Bγ,δ
K

a C∗-(b†, c)-algebra, and C = Cε,φL a C∗-(c†, d)-algebra. Then we can form the fiber
products (A∗

b
B)∗

c
C and A∗

b
(B∗

c
C). The following example shows that these C∗-algebras

need not be identified by the canonical isomorphism aa,b,c,d(εLφ, γKδ, αHβ) of Proposition
2.14. A similar phenomenon occurs in the purely algebraic setting with the Takeuchi
×R-product [24].

Example 3.25. Let a = b = c = d be the trivial C∗-base, H = l2(N), α = L(C, H),
A = B = C = L(H)α,αH . Identify Hα⊗

b
αKα⊗

c
αL ∼= α ⊗ H ⊗ α with H ⊗ H ⊗ H via

|ξ〉= ζ< |η〉 ≡ ξ⊗ ζ⊗ η, fix an orthonormal basis (en)n∈N of H, and define T ∈ L(H⊗3)
by

T (ek ⊗ el ⊗ em) =

{
ek ⊗ el ⊗ em for all k, l,m ∈ N s.t. m ≤ k + l,

el ⊗ ek ⊗ em for all k, l,m ∈ N s.t. m > k + l.

We show that T belongs to the underlying C∗-algebra of (A∗
b
B)∗

c
C, but not of A∗

b
(B∗

c
C).

For each ξ ∈ H and ω ∈ H⊗2, we define |ξ〉1, |ξ〉3 ∈ L(H⊗2, H⊗3) and |ω〉12 ∈
L(H,H⊗3) by υ 7→ ξ ⊗ υ, υ 7→ υ ⊗ ξ, and ζ 7→ ω ⊗ ζ, respectively. Then for all
k, l,m ∈ N,

T |ek ⊗ el〉12 = |ek ⊗ el〉12Pl+k + |el ⊗ ek〉12(id−Pl+k),
where Pl+k :=

∑

m≤k+l

|em〉〈em|,

T |em〉3 = |em〉3(id +Σm), where Σm :=
∑

k,l
k+l<m

|el ⊗ ek − ek ⊗ el〉〈ek ⊗ el|,

and therefore,

T |H⊗2〉12 ∈ [|H⊗2〉12L(H)],

T |α〉3 ∈ [|α3〉(id +K(H)⊗K(H))] ⊆ [|α〉3(L(H)α∗
b
αL(H))].

Since T = T ∗, we can conclude that T belongs to (L(H)α∗
b
αL(H)α)∗

b
αL(H). However,

T |e0〉1 = |e0〉1Q+
∑

l

|el〉1Ql, where Q =
∑

m≤l
|el ⊗ em〉〈el ⊗ em|

and Ql =
∑

m>l

|e0 ⊗ em〉〈el ⊗ em|,

and |e0〉1Q ∈ [|α〉1L(H ⊗H)], but
∑

l |el〉1Ql 6∈ [|α〉1L(H ⊗H)] because the sum
∑

l

Q∗lQl =
∑

l

∑

m>l

|el ⊗ em〉〈el ⊗ em|

does not converge in norm. Therefore, we have T |e0〉1 6∈ [|α〉1L(H ⊗ H)] and T 6∈
L(H)α∗

b
(αL(H)α∗

b
αL(H)).
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We next discuss unitality. A unit for the fiber product relative to b would be a

C∗-(b†, b)-algebra U = UB†,B
K such that for all C∗-(a†, b)-algebras A = Aα,βH and all

C∗-(b†, c)-algebras B = Bγ,δ
K , we have A = Adr(A ∗

b
U) and B = Adl(U ∗

b
B), where

r = ra,b(αHβ) and l = lb,c(γKδ) (see Proposition 2.14). The relations r|β〉1 = β, r|B†〉2 =

ρβ(B†), l|γ〉2 = γ, l|B〉1 = ργ(B) imply

Adr(Aβ ∗
b
B†U) = Indβ(U) ∩ Indρβ(B†)(A),

Adl(UB ∗
b
γB) = Indργ(B)(B) ∩ Indγ(U).

(3.3)

If B† and B are unital, then Indρβ(B†)(A) = A and Indργ(B)(B) = B, and then the

C∗-(b†, b)-algebra L(K)B
†,B

K is a unit for the fiber product on the full subcategories of

all Aα,βH and Bγ,δ
K satisfying A ⊆ Indβ(L(K)) and B ⊆ Indγ(L(K)).

Remark 3.26. (i) If A ⊆ Indα(L(H)) and B ⊆ Indγ(L(L)), then we have Aβ∗
b
γB ⊆

Ind(α/γ)(L(H)) ∩ Ind(β.δ)(L(K)).

(ii) Indβ(B†) = L(Hβ), and if B† is unital, then Adr(Aβ ∗
b
B†B

†) = A ∩ L(Hβ) =

A(β).
(iii) Adr(BB∗

b
B†B

†) = L(KB) ∩ L(KB†) = M(B) ∩M(B†).

We finally discuss compatibility with sums and products. First, the fiber product
is compatible with finite sums in the following sense. Let (Ai)i be a finite family of
C∗-(a†, b)-algebras and (Bj)j a finite family of C∗-(b†, c)-algebras. For each i, j, denote

by ιiA : Ai → �i′Ai
′
, ιjB : Bj → �j′Bj

′
and πiA : �i′ Ai

′ → Ai, πjB : �j′ Bj
′ → Bj the

canonical inclusions and projections, respectively. One easily verifies that there exist

inverse isomorphisms �i,jAi∗
b
Bj � (�iAi)∗

b
(�jBj), given by (xi,j)i,j 7→

∑
i,j(ι

i
A∗

b
ιjB)(xi,j)

and
(
(πiA ∗

b
πjB)(y)

)
i,j
←[ y, respectively. However, the fiber product is neither compatible

with infinite sums nor infinite products:

Example 3.27. Let t = (C,C,C) be the trivial C∗-base.

(i) For each i, j ∈ N, let Ai and Bj be the C∗-t-algebra CC
C

. Identify
⊕

i,j CC⊗
t
CC

with l2(N×N) in the canonical way. Then
⊕

i,j(Ai∗tB
j) corresponds to C0(N×

N), represented on l2(N×N) by multiplication operators, but (
⊕

iAi)∗t (
⊕

j Bj) ∼=
C0(N)∗

t
C0(N) is strictly larger and contains, for example, the characteristic

function of the diagonal {(x, x) | x ∈ N} (see Example 5.3).
(ii) Let H = l2(N), α = L(C, H), and let A and Bj be the C∗-t-algebra K(H)αH

for all j. Identify Hα⊗
t
αH with H ⊗ H as in Example 2.12 (i), choose an

orthonormal basis (ek)k∈N of H, and put yj := |ej ⊗ e0〉〈e0 ⊗ e0| ∈ K(H ⊗H)
for each j ∈ N. Then y := (yj)j ∈

∏
j A∗tB

j because yj ∈ K(H)⊗K(H) ⊂ A∗
t
Bj

for all j ∈ N, but with respect to the canonical identification
⊕

j H ⊗ H ∼=
H⊗

(⊕
j ⊗H

)
, we have y 6∈ A∗

t
(
∏
j Bj) because y|e0〉1 corresponds to the family
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(|ej〉1|e0〉〈e0|)j ∈
∏
j L(H,H⊗H) ⊆ L(

⊕
j H,

⊕
j H⊗H) which is not contained

in the space [|α〉1L(
⊕

j H)].

3.6. A fiber product of non-represented C∗-algebras. The spatial fiber product
of C∗-algebras represented on C∗-modules yields a fiber product of non-represented C∗-
algebras as follows.

Let b = (K,B,B†) be a C∗-base. In Subsection 3.2, we constructed a functor
Rb : C∗r

B† → C∗sb that associates to each C∗-B†-algebra a universal representation in form

of a C∗-b-algebra. Replacing b by b†, we obtain a functor Rb† : C∗rB → C∗sb , and com-
position of these with the spatial fiber product gives a fiber product of non-represented
C∗-algebras in form of a functor

C∗rB† ×C∗rB
Rb×Rb†−−−−−→ C∗sb ×C∗sb† → C∗, (Cσ, Dτ ) 7→ Rb(Cσ) ∗

b
Rb†(Dτ ),

where C∗ denotes the category of C∗-algebras and ∗-homomorphisms. In categorical
terms, this is the right Kan extension of the spatial fiber product on C∗sb × C∗s

b† along
the product of the forgetful functors Ub ×Ub† : C∗sb ×C∗s

b† → C∗r
B† ×C∗rB [19, §X].

Given further C∗-bases a = (H,A,A†) and c = (L,C,C†), we similarly obtain a functor

C∗r(A,B†) ×C∗r(B,C†)
R

(a†,b)×R(b†,c)−−−−−−−−−−→ C∗s(a†,b) ×C∗s(b†,c) → C∗s(a†,c)
U

(a†,c)−−−−→ C∗r(A,C†),

and, using Remark 3.12, a natural transformation between the compositions in the square

C∗r
(A,B†) ×C∗r

(B,C†)
//

��

C∗r
(A,C†)

��qy
C∗r

B† ×C∗rB // C∗,

,

where the vertical maps are the forgetful functors.

4. Relation to the setting of von Neumann algebras

In this section, let N be a von Neumann algebra with a n.s.f. weight µ, denote by
Nµ, Hµ, πµ, Jµ the usual objects of Tomita-Takesaki theory [23], and define the antirep-
resentation πopµ : N → L(Hµ) by x 7→ Jµπµ(x∗)Jµ.

4.1. Adaptation to von Neumann algebras. The definitions and constructions pre-
sented in Sections 2 and 3 can be adapted to a variety of other settings. We now briefly
explain what happens when we pass to the setting of von Neumann algebras. Instead
of a C∗-base, we start with the triple b = (K,B,B†), where K = Hµ, B = πµ(N), and

B† = Jµπµ(N)Jµ. Next, we define W ∗-b-modules, W ∗-(b†, b)-modules, their relative
tensor product, W ∗-b-algebras, and the fiber product by just replacing the norm closure
[ · ] by the closure with respect to the weak operator topology [ · ]w everywhere in Sections
2 and 3. We then recover Connes’ fusion of Hilbert bimodules over N and Sauvageot’s
fiber product as follows.

MODULES. Let H be some Hilbert space. If (H, ρ) is a right N -module, then

α = L((K, πopµ ), (H, ρ)) := {T ∈ L(K, H) | ∀x ∈ N : Tπopµ (x) = ρ(x)T}
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satisfies [αK] = H, [α∗α]w = B, αB ⊆ α, and ρα ◦ πopµ (see Lemma 2.5) coincides with
ρ. Conversely, if α ⊆ L(K, H) is a weakly closed subspace satisfying the three preceding
equations, then (H, ρα ◦ πopµ ) is a right N -module and α = L((K, πopµ ), (H, ρα ◦ πopµ ))
[22]. We thus obtain a bijective correspondence between right N -modules and W ∗-b-
modules. This correspondence is an isomorphism of categories since for every other
right N -module (K,σ), an operator T ∈ L(H,K) intertwines ρ and σ if and only if Tα
is contained in β := L((K, πopµ ), (K,σ)). For W ∗-b-modules, the notions of morphisms
and semi-morphisms coincide.

ALGEBRAS. Let H, ρ, α be as above and let A ⊆ L(H) be a von Neumann algebra.
Then ρ(N) ⊆ A if and only if ρα(B)A ⊆ A. Thus, W ∗-b-algebras correspond with von
Neumann algebras equipped with a normal unital embedding of N . Moreover, let K,σ, β
be as above, let B ⊆ L(K) be a von Neumann algebra, assume ρ(N) ⊆ A and σ(N) ⊆ B,
and let π : A→ B be a ∗-homomorphism satisfying π ◦ ρ = σ. Then π is normal if and
only if [Lπ(Hα,Kβ)α]w = β. Indeed, the “if” part is straightforward (see Lemma 3.4),
and the “only if” part follows easily from the fact that every normal ∗-homomorphism
is the composition of an amplification, reduction, and unitary transformation [5, §4.4].

BIMODULES. Let (H, ρ) be a left N -module, let (H,σ) be a right N -module, and let
α = L((K, πµ), (H, ρ)) and β = L((K, πopµ ), (H,σ)). Then (H, ρ, σ) is an N -bimodule if
and only if ρ(N)β = β and σ(N)α = α, and thus we obtain an isomorphism between
the category of N -bimodules and the category of W ∗-(b†, b)-modules.

FUSION. The preceding considerations and (2.1) show that the relative tensor product
of W ∗-(b†, b)-modules corresponds to Connes’ fusion of N -bimodules.

FIBER PRODUCT. Let (H, ρ) be a right N -module, (K,σ) a left N -module, α =
L((K, πopµ ), (H, ρ)) and β = L((K, πµ), (K,σ)), and let A ⊆ L(H) and B ⊆ L(K) be
von Neumann algebras satisfying ρ(N) ⊆ H and σ(N) ⊆ K. One easily verifies the
equivalence of the following conditions for each x ∈ L(Hβ⊗

b
γK):

(i) x|α〉1 ⊆ [|α〉1B]w, (ii) 〈α|1x|α〉1 ⊆ B, (iii) x ∈ (idH ⊗
b
B′)′.

Consequently, the fiber product of A and B, considered as a W ∗-b-algebra and a W ∗-
b†-algebra, coincides with the fiber product (idH ⊗

b
B′)′ ∩ (A′ ⊗

b
idK)′ = (A′ ⊗

b
B′)′ of

Sauvageot.

4.2. Relation to Connes’ fusion and Sauvageot’s fiber product. Let b = (K,B,B†)
be a C∗-base such that K = Hµ, B′′ = πµ(N), (B†)′′ = πopµ (N) = B′. Denote by

C∗-mod(b†,b) the category of all C∗-(b†, b)-modules with all semi-morphisms, and by
W∗-bimod(N,Nop) the category of all N -bimodules, respectively. Lemmas 2.5 and 2.6
imply:

Lemma 4.1. There is a faithful functor F : C∗-mod(b†,b) →W∗-bimod(N,Nop), given

by αHβ 7→ (H, ρα ◦ πµ, ρβ ◦ πopµ ) on objects and T 7→ T on morphisms. �
The categories C∗-mod(b†,b) and W∗-bimod(N,Nop) carry the structure of monoidal

categories [19], and we now show that the functor F above is monoidal. Let Hβ be a

C∗-b-module, Kγ a C∗-b†-module, and let

ρ = ρβ ◦ πopµ , X = L((K, πopµ ), (H, ρ)), σ = ργ ◦ πµ, Y = L((K, πµ), (K,σ)).
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Given subspaces X0 ⊆ X and Y0 ⊆ Y , we define a sesquilinear form 〈 · | · 〉 on the
algebraic tensor product X0 � K� Y0 such that for all ξ, ξ′ ∈ X0, ζ, ζ

′ ∈ K, η, η′ ∈ Y0,

〈ξ � ζ � η|ξ′ � ζ ′ � η′〉 = 〈ζ|(ξ∗ξ′)(η∗η′)η′〉 = 〈ζ|(η∗η′)(ξ∗ξ′)η′〉
Denote by X0 =K<Y0 the Hilbert space obtained by forming the separated completion.

Lemma 4.2. Let X0 ⊆ X, Y0 ⊆ Y be subspaces satisfying [X0K] = H and [Y0K] = K.
Then the natural map X0 = K < Y0 → X = K < Y is an isomorphism.

Proof. Injectivity is clear. The natural map X0=K<Y0 → X=K<Y0 is surjective because
both spaces coincide with the separated completion of the algebraic tensor productH�Y0

with respect to the sesquilinear inner form given by 〈ω�η|ω′�η′〉 = 〈ω|ρβ(η∗η′)ω′〉, and
a similar argument shows that the natural map X=K<Y0 → X=K<Y is surjective. �

We conclude that Connes’ original definition of the relative tensor product Hρ⊗
µ
σK

via bounded vectors coincides with the algebraic one given in (2.1) and with the relative
tensor product Hβ⊗

b
γK.

Theorem 4.3. There exists a natural isomorphism between the compositions in the
square

C∗-mod(b†,b) ×C∗-mod(b†,b)

−⊗
b
−

//

F×F
��

C∗-mod(b†,b)

nv
F
��

W∗-bimod(N,Nop) ×W∗-bimod(N,Nop) −⊗
µ
−
//W∗-bimod(N,Nop),

given for each object (αHβ, γKδ) ∈ C∗-mod(b†,b) ×C∗-mod(b†,b) by the natural map

Hβ⊗
b
γK = β = K < γ → X = K < Y = Hρ⊗

µ
σK.(4.1)

With respect to this isomorphism, the functor F : C∗-mod(b†,b) →W∗-bimod(N,Nop) is
monoidal.

Proof. Lemma 4.2 implies that the map (4.1) is an isomorphism. Evidently, this map is
natural with respect to αHβ and γKδ. The verification of the assertion concerning F is
now tedious but straightforward. �

Denote by C∗s,nd
(b†,b)

the category formed by all C∗-(b†, b)-algebrasAα,βH satisfying ρα(B)+

ρβ(B†) ⊆ A and all semi-morphisms, and by W∗
(N,Nop) the category of all von Neumann

algebras A equipped with a normal, unital embedding and anti-embedding ι
(op)
A : N → A

such that [ιA(N), ιopA (N)] = 0, together with all morphisms preserving these (anti-
)embeddings. Lemma 3.4 implies:

Proposition 4.4. There exists a faithful functor G : C∗s,nd
(b†,b)

→ W∗
(N,Nop), given by

(αHβ, A) 7→ (A′′, ρα ◦ πµ, ρβ ◦ πopµ ) on objects and φ 7→ φ′′ on morphisms, where φ′′

denotes the normal extension of φ. �
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By Lemma 3.16, A ∗
b
B ∈ C∗s,nd

(b†,b)
for all A,B ∈ C∗s,nd

(b†,b)
, but C∗s,nd

(b†,b)
is not a monoidal

category with respect to the fiber product because the latter is not associative (see
Subsection 3.5).

Proposition 4.5. There exists a natural transformation

C∗s,nd
(b†,b)

×C∗s,nd
(b†,b)

−∗
b
−

//

G×G
��

C∗s,nd
(b†,b)

G
��px

W∗
(N,Nop) ×W∗

(N,Nop) −∗
µ
−
//W∗

(N,Nop),

given for each object Aα,βH and Bγ,δ
K by conjugation with the isomorphism (4.1).

Proof. Immediate from Theorem 4.3 and Lemma 3.16. �
4.3. A categorical interpretation of the fiber product of von Neumann alge-
bras. We keep the notation introduced above, denote by Hilb the category of Hilbert
spaces and bounded linear operators, and call a subcategory of W∗-mod(N,Nop) a ∗-
subcategory if it is closed with respect to the involution T 7→ T ∗ of morphisms.

Definition 4.6. A category over W∗-mod(N,Nop) is a category C equipped with a functor
UC : C →W∗-mod(N,Nop) such that UCC is a ∗-subcategory of W∗-mod(N,Nop). Let
(C,UC) be such a category. We loosely refer to C as a category over W∗-mod(N,Nop)

without mentioning UC explicitly, and denote by HC the composition of UC with the
forgetful functor W∗-mod(N,Nop) → Hilb. We call an object G ∈ C separating if it
satisfies [HCC(G,X)(HCG)] = HCX for each X ∈ C.

We denote by Cat(N,Nop) the category of all categories over W∗-mod(N,Nop) having
a separating object, where the morphisms between objects (C,UC) and (D,UD) are all
functors F : C→ D satisfying UDF = UC.

Example 4.7. For each A ∈W∗
(N,Nop), denote by W∗-modA the category of all nor-

mal, unital representations π : A → L(H) for which π ◦ ιA and π ◦ ιopA are faithful, and
all intertwiners. This is a category over W∗-mod(N,Nop), where UA : W∗-modA →
W∗-mod(N,Nop) is given by (L, π) 7→ (L, π ◦ ιA, π ◦ ιopA ) on objects and T 7→ T on mor-
phisms. The only non-trivial thing to check is that W∗-modA has a separating object;
by [3, Lemma 2.10] or [23, IX Theorem 1.2 (iv)], one can take the GNS-representation
for a n.s.f. weight on A.

Each morphism φ : A→ B in W∗
(N,Nop) yields a functor φ∗ : W∗-modB →W∗-modA,

given by (L, π) 7→ (L, π ◦ φ) on objects and T 7→ T on morphisms.

Remark 4.8. In the definition above, Cat(N,Nop)(C,D) need not be a set, and this may
cause problems. There are several possible solutions: we can fix a “universe” to work
in, or replace the category W∗-mod(N,Nop) by a small subcategory and require categories
over W∗-mod(N,Nop) to be small, too. It is clear how to modify the preceding example
in that case.

Proposition 4.9. There exists a contravariant functor Mod : W∗
(N,Nop) → Cat(N,Nop)

given by A 7→ Mod(A) := (W∗-modA,UA) on objects and by φ 7→ Mod(φ) := φ∗ on
morphisms. �



42 THOMAS TIMMERMANN

For each category C ∈ Cat(N,Nop), choose a separating object GC. Fix some C ∈
Cat(N,Nop), let U = UC, H = HC, G = GC, (H, ρ, σ) = UG, and define End(C) :=
H(C(G,G))′ ⊆ L(H). Then ρ(N) + σ(N) ⊆ End(C) because H(C(G,G)) ⊆ (ρ(N) +
σ(N))′, and we can consider End(C) as an element of W∗

(N,Nop) with respect to ρ and
σ.

Lemma 4.10. There exists a morphism ηC : C→Mod(End(C)) in Cat(N,Nop), given

by X 7→ (UX, ρX) on objects and T 7→ HT on morphisms, where ρX = ρHC(G,X) for

each X ∈ C. In particular, ρX(End(C)) ⊆ H(C(X,X))′ for each X ∈ C.

Proof. Let X ∈ C and (K,φ, ψ) = UX. Then Lemma 2.5, applied to I := HC(G,X) ⊆
L(HG,HX), gives a normal representation ρI : (I∗I)′ → L(K). Since I∗I ⊆ HC(G,X)
by assumption on C, we have End(C) ⊆ (I∗I)′ and can define ρX = ρI |End(C). Each
element of I intertwines ρ with φ and σ with ψ, whence UX = (K, ρI ◦ ρ, ρI ◦ σ) =
UEnd(C)(ηCX).

Let Y ∈ C, T ∈ C(X,Y ), J := HC(G, Y ). Then H(T )ρI(S) = ρJ(S)H(T ) for all
S ∈ End(G) because H(T )I ∈ J , and therefore H(T ) is a morphism from (HX, ρX) to
(HY, ρY ). By definition, HEnd(C)(ηC(T )) = HT . �

Remark 4.11. If G′ ∈ C is another separating object, ρG
′
: H(C(G,G))′ → H(C(G′, G′))′

is an isomorphism with inverse ρHC(G′,G).

We shall eventually show that the assignment C 7→ End(C) extends to a functor
End : Cat(N,Nop) → W∗

(N,Nop) that is adjoint to Mod. The key is a more careful
analysis of functors from a category C ∈ Cat(N,Nop) to categories of the form Mod(A),
where A ∈ W∗

(N,Nop). Such functors themselves can be considered as objects of a
category as follows.

For all C,D ∈ Cat(N,Nop), the elements of Cat(N,Nop)(C,D) are the objects of a cat-
egory, where the morphisms are all natural transformations with the usual composition.

Similarly, for all A,B ∈ Cat(N,Nop), the morphisms in W∗
(N,Nop)(A,B) can be consid-

ered as objects of a category, where the morphisms between φ, ψ are all b ∈ B satisfying
bφ(a) = ψ(a)b for all a ∈ A, and where composition is given by multiplication.

Proposition 4.12. Let A ∈ W∗
(N,Nop) and C ∈ Cat(N,Nop). Then there exists an

isomorphism ΦC,A : Cat(N,Nop)(C,Mod(A)) → W∗
(N,Nop)(A,End(C)) with inverse

ΨC,A := Φ−1
C,A such that

(i) ΦC,A(F) is defined by FGC = (HCGC,ΦC,A(F)) for each functor F : C →
Mod(A) and ΦC,A(α) = αGC

for each α ∈ Cat(N,Nop)(C,Mod(A));
(ii) ΨC,A(π) = Mod(π) ◦ ηC : C → Mod(End(C)) → Mod(A) for each object π

and ΨC,A(S) = (ρX(S))X∈C for each morphism S in W∗
(N,Nop)(A,End(C)).

Explicitly, ΨC,A(π) is given by X 7→ (HCX, ρ
X ◦ π) on objects and T 7→ HCT on

morphisms.
The proof of Proposition 4.12 involves the following result.

Lemma 4.13. Write UCGC = (HCGC, ρ, σ). Then the assignments α 7→ αGC
and

(ρX(S))X∈C ←[ S are inverse bijections between all natural transformations α of HC (or
ηC) and all elements S ∈ End(GC) (or S ∈ End(GC) ∩ (ρ(N) + σ(N))′, respectively).
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Proof. A family of morphisms (αX : HCX → HCX)X∈C is a natural transformation
of HC if and only if αXT = TαX for all X ∈ C and T ∈ HC(GC, X), that is, if
αX = ρX(αGC

) and αGC
∈ End(C). Such a family is a natural transformation of ηC

if and only if additionally, αX = ρX(αGC
) is a morphism of UCX for each X ∈ C or,

equivalently, if αGC
∈ (ρ(N) + σ(N))′. �

Proof of Proposition 4.12. Lemma 4.13 implies that Ψ := ΨC,A is well defined by (ii).
Let us show that Φ := ΦC,A is well defined by (i). For each F as above, the im-
age HMod(A)(F(C(GC, GC))) = HC(C(GC, GC)) consists of intertwiners for Φ(F) and
hence (Φ(F))(A) ⊆ HC(C(GC, GC))′ = End(C). Likewise, for each α as above, αGC

intertwines HC(C(GC, GC)) and hence αGC
∈ End(C). Finally, Φ(α◦β) = αGC

◦βGC
=

Φ(α)Φ(β) for all composable α, β.
Next, Φ ◦Ψ = id because for each π as above, Ψ(π)(GC) = (HCGC, ρ

GC ◦ π) so that
Φ(Ψ(π)) = ρGC ◦ π = π, and for each S as above, the component of (ρX(S))X∈C at
X = GC is ρGC(S) = S.

Finally, we prove Ψ ◦Φ = id. Let F be as above and define φX by FX = (HCX,φ
X)

for each X ∈ C. Then Φ(F) = φGC , and for each a ∈ A, the family (φX(a))X∈C is
a natural transformation of HMod(A) ◦ F = HC which coincides by Lemma 4.13 with

(ρX(φGC(a)))X∈C. Therefore, FX = (HCX,φ
X) = (HCX, ρ

X ◦ Φ(F)) = Ψ(Φ(F))(X)
for each X ∈ C. On morphisms, Ψ(Φ(F)) and F coincide anyway. For each α as above,
Ψ(Φ(α)) = (ρX(αGC

))X∈C = α by Lemma 4.13. �

Corollary 4.14. (i) Let A ∈ W∗
(N,Nop) and consider idA as an object of C :=

Mod(A). Then ΦC,A(idC) : A→ End(Mod(A)) is an isomorphism in W∗
(N,Nop)

with inverse εA := ρidA.
(ii) Let A,B ∈W∗

(N,Nop). Then the isomorphism Mod(A,B) obtained by composing

(ε−1
B )∗ : W∗

(N,Nop)(A,B)→W∗
(N,Nop)(A,End(Mod(B)))

with

ΨMod(B),A : W∗
(N,Nop)(A,End(Mod(B)))→ Cat(N,Nop)(Mod(B),Mod(A)),

is given by φ 7→Mod(φ) on objects and b 7→ (π(b))(L,π) on morphisms.
(iii) Let C,D ∈ Cat(N,Nop). Then the functor End(C,D) obtained by composing

(ηD)∗ : Cat(N,Nop)(C,D)→ Cat(N,Nop)(C,Mod(End(D)))

with

ΦC,End(D) : Cat(N,Nop)(C,Mod(End(D)))→W∗
(N,Nop)(End(D),End(C))

is given by F 7→ ρFGC on objects and α 7→ HD(αGC
) on morphisms.

Proof. Assertions (i) and (iii) follow immediately from the definitions and Proposition
4.12.

Let us prove (ii). For each object φ, we have GMod(B) = (HMod(B), ε
−1
B ) and

ΦMod(B),A(Mod(φ)) = ε−1
B ◦ φ, whence ΨMod(B),A(ε−1

B ◦ φ) = Mod(φ), and for each
morphism b, the family α := (π(b))(L,π) is a natural transformation and ΦMod(B),A(α) =

αGMod(B)
= ε−1

B (b). �
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The relative tensor product on W∗-mod(N,Nop) yields a product on the category
Cat(N,Nop) as follows. Let C,D ∈ Cat(N,Nop). Then C×D and the functor

UC×D = (−⊗
µ
−) ◦ (UC ×UD) : C×D→W∗-mod(N,Nop),

form a category over W∗-mod(N,Nop) with separating object (GC, GD). Thus, we obtain
a monoidal structure on Cat(N,Nop), given by (C,D) 7→ C×D on objects and (F,G) 7→
F×G on morphisms.

Corollary 4.15. For all A,B,C ∈W∗
(N,Nop), there exists an isomorphism

Ξ: W∗
(N,Nop)(A,B ∗

µ
C)→ Cat(N,Nop)(Mod(B)×Mod(C),Mod(A))

such that

(i) for each object π, the functor Ξ(π) : Mod(B) ×Mod(C) → Mod(A) is given
by ((L, τ), (M,υ)) 7→ (L⊗

µ
M, (τ ∗

µ
υ) ◦ π) and (S, T ) 7→ S⊗

µ
T ;

(ii) for each morphism x : π1 → π2, the transformation Ξ(b) : Ξ(π1) → Ξ(π2) is
given by Ξ(b)((L,τ),(M,υ)) = (τ ∗

µ
υ)(x).

Proof. Let B := Mod(B), C := Mod(C), D := B × C. Then G := (GB, GC) is
separating and

ρG : End(D)→ HD(D(G,G))′ = (End(B)′⊗
µ

End(C)′)′

= End(B)∗
µ
End(C) ∼= B ∗

µ
C

is an isomorphism by Remark 4.11.
Let X = (L, τ) ∈ B and Y = (M,υ) ∈ C. Then ρ(X,Y ) = (τ ∗

µ
υ)◦ρG by Lemma 2.5 be-

cause τ ∗
µ
υ = ρJ , where J = HB(B(GB, X))⊗

µ
HC(C(GC, Y )), and J ·HD(D(GD, G)) ⊆

HD(D(GD, (X,Y ))). Now, the assertion follows from Proposition 4.12. �
The categories W∗

(N,Nop) and Cat(N,Nop) are enriched over the monoidal category
Cat of small categories [14], or, equivalently, are 2-categories, meaning that the mor-
phisms between fixed objects are themselves objects of a small category, as explained
before Proposition 4.12, and that the composition of morphisms between fixed objects
extends to a functor, where

B
ψ1
))

ψ2

55⇓ c C ◦ A
φ1
))

φ2

55⇓ b B = A

ψ1◦φ1
++

ψ2◦φ2

33⇓ψ2(b)c C in W∗
(N,Nop),(4.2)

C
G1 ))

G2

55⇓β D ◦ B
F1
))

F2

55⇓α C = B

G1◦F1

++

G2◦F2

33⇓βF2
◦G1α D in Cat(N,Nop).(4.3)

Recall that a contravariant functor between two enriched categories C,D consists of
an assignment F : ob C → ob D and, for each pair of objects X,Y ∈ C, a functor
F(X,Y ) : C(X,Y )→ D(FY,FX) that is compatible with composition in a natural sense.
We now show that the assignments Mod,End defined above are functors in this sense
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and that the isomorphisms in Proposition 4.12 form part of an adjunction between Mod
and End. For background on enriched categories, see [14].

Theorem 4.16. The assignments Mod and End define two contravariant functors
Mod : W∗

(N,Nop) → Cat(N,Nop) and End : Cat(N,Nop) → W∗
(N,Nop) of enriched cate-

gories. The isomorphisms (ΦC,A)C,A define an adjunction whose unit is (ηC)C∈Cat(N,Nop)

and counit is (εA)A∈W∗
(N,Nop)

.

Proof. We first show that Mod and End are functors of enriched categories. By Corol-
lary 4.14, it suffices to prove this for End. Consider a diagram as in (4.3) and let
a = End(B,C)(α), b = End(C,D)(β), c = End(B,D)(βF2 ◦G1α). We have to show that
then the cells

End(C)

End(B,C)(F1)
,,

⇓a

End(B,C)(F2)

22 End(B) ◦ End(D)

End(C,D)(G1)
,,

⇓b

End(C,D)(G2)

22 End(C)

and

End(D)

End(B,D)(G1F1)
,,

End(B,D)(G2F2)

22⇓c End(B)

are equal. By definition, a = HC(αGB
), b = HD(βGC

), and by Lemma 4.13,

c = HD(βF2GB
·G1(αGB

)) = ρF2GB(HD(βGC
)) ·HC(αGB

) = End(F2)(b) · a.
It remains to show that for all morphisms φ : A→ B in W∗

(N,Nop) and F : C→ D in
Cat(N,Nop), the diagram

Cat(N,Nop)(D,Mod(B))
ΦD,B //

��

W∗
(N,Nop)(B,End(D))

��
Cat(N,Nop)(C,Mod(A))

ΦC,A //W∗
(N,Nop)(A,End(C))

commutes, where the vertical maps are induced by F and Mod(A,B)(φ) on the left and
φ and End(C,D)(F) on the right, respectively, or, more precisely, that for each object G
and each morphism α in Cat(N,Nop)(D,Mod(B)),

End(C,D)(F) ◦ ΦD,B(G) ◦ φ = ΦC,A(Mod(A,B)(φ) ◦G ◦ F),

End(C,D)(F)(α) = Mod(A,B)(φ)(αF).

The second equation holds because of Lemma 4.13 and the relation

End(C,D)(F)(αGC
) = ρFGC(αGD

) = αFGC
= Mod(A,B)(φ)(αFGC

)

first one holds because by Corollary 4.14,

End(C,D)(F) ◦ ΦD,B(G) ◦ φ = ρFGC ◦ ΦD,B(G) ◦ φ,
(Mod(A,B)(φ) ◦G ◦ F)(GC) = (HCGC, ρ

FGC ◦ ΦD,B(G) ◦ φ). �



46 THOMAS TIMMERMANN

5. The special case of a commutative base

Let Z be a locally compact Hausdorff space with a Radon measure µ of full support,
and identify C0(Z) with multiplication operators on L(L2(Z, µ)). Then the relative
tensor product and the fiber product over the C∗-base b = (L2(Z, µ), C0(Z), C0(Z)) can
be related to the fiberwise product of bundles as follows.

Denote by Modb, ModC0(Z), and BdlZ the categories of all C∗-b-modules with all
morphisms, of all Hilbert C∗-modules over C0(Z), and of all continuous Hilbert bundles
over Z; for the precise definition of the latter, see [6]. Each of these categories carries a
monoidal structure, where the product

(i) of E,F ∈ModC0(Z) is the separated completion of E � F with respect to the
inner product 〈ξ � η|ξ′ � η′〉 = 〈ξ|ξ′〉〈η|η′〉, denoted by E ⊗

C0(Z)
F ;

(ii) of E ,F ∈ BdlZ is the fibrewise tensor product of E and F ;
(iii) of Hβ,Kγ ∈Modb is (Hβ⊗

b
γK,β ./ γ), where β ./ γ := [|γ〉2β] = [|β〉1γ]; here,

note that βHβ, γKγ are C∗-(b, b)-modules.

There exist equivalences of monoidal categories

Modb

U
�
F

ModC0(Z)

B
�
Γ0

BdlZ

such that for each E ∈ModC0(Z), F ∈ BdlZ , Hβ ∈Modb,

(i) UHβ = β ∈ModC0(Z);

(ii) FE = (E ⊗C0(Z) L
2(Z, µ), l(E)), where l(ξ)η = ξ ⊗C0(Z) η for each ξ ∈ E, η ∈

L2(Z, µ);
(iii) BE =

⊔
z∈Z Ez and Γ0(BE) = {(ξz)z | ξ ∈ E}, where Ez is the completion of

E with respect to the inner product (ξ, η) 7→ 〈ξ|η〉(z), and ξ 7→ ξz denotes the
quotient map E → Ez;

(iv) the operations on the space of sections Γ0(F) ∈ModC0(Z) are defined fiberwise.

The equivalence on the left is easily verified, and the equivalence on the right is
explained in [6]. Compare also Examples 2.7 and 2.12 (ii).

Denote by C∗C0(Z) the category of all continuous C0(Z)-algebras with full support

[6], where the morphisms between A,B ∈ C∗C0(Z) are all C0(Z)-linear nondegenerate

∗-homomorphisms π : A → M(B), and by C̃∗b the category of all C∗-b-algebras AβH
satisfying [ρβ(C0(Z))A] = A and [Aβ] = β, where the morphisms between AβH , Bγ

K ∈ C̃∗b
are all π ∈ C∗b(A

β
H ,M(B)γK) satisfying [π(A)B] = B. Then there exists a functor

C̃∗b → C∗C0(Z), given by AβH 7→ (A, ρα) and π 7→ π, and this functor has a full and

faithful left adjoint which embeds C∗C0(Z) into C̃∗b [28, Theorem 6.6].

We finally consider the fiber product of commutative C∗-b-algebras and start with
preliminaries. Let Z be a locally compact space, E a Hilbert C∗-module over C0(Z),
and BE =

⊔
z∈Z Ez the corresponding Hilbert bundle. The topology on BE is generated

by all open sets of the form UV,η,ε = {ζ|z ∈ V, ζ ∈ Ez, ‖ηz − ζ‖Ez < ε}, where V ⊆ Z is
open, η ∈ E, ε > 0. Denote by q :

⊔
z∈Z L(Ez) → Z the natural projection and define



APPENDIX I.1 — RELATIVE TENSOR AND FIBER PRODUCT 47

for each η, η′ ∈ E maps

ωη,η′ :
⊔

z∈Z
L(Ez)→ C, T 7→ 〈ηq(T )|Tη′q(T )〉,

υ(∗)
η :

⊔

z∈Z
L(Ez)→

⊔

z∈Z
Ez, T 7→ T (∗)ηq(T ).

The weak topology (strong-*-topology) on
⊔
z∈Z L(Ez) is the weakest one that makes q

and all maps of the form ωη,η′ (of the form υ
(∗)
η ) continuous.

Let A be a commutative C∗-algebra, let π : C0(Z) → M(A) be a ∗-homomorphism,

and let χ ∈ Â. Then we identify E ⊗φ∗ A ⊗χ C with Ez, where z ∈ Z corresponds

to χ ◦ π ∈ Ĉ0(Z), via η ⊗π a ⊗χ λ 7→ λχ(a)ηz. A map T : Â → ⊔
z∈Z L(Ez) is weakly

vanishing (strong-∗-vanishing) at infinity if for all η, η′ ∈ E, the map ωη,η′ ◦T (the maps

χ 7→ ‖υ(∗)
η (T (χ))‖) vanish at infinity.

Lemma 5.1. Let AβH be a C∗-b-algebra, Kγ a C∗-b†-module, x ∈ L(Hβ⊗
b
γK). As-

sume that A is commutative, [ρβ(C0(Z))A] = A, and 〈γ|2x|γ〉2 ⊆ A. Define Fx : Â →⊔
z∈Z L(γz) by χ 7→ (χ ∗ id)(x). Then:

(i) Fx is weakly continuous, weakly vanishing at infinity.
(ii) x ∈ Ind|γ〉2(A) if and only if Fx is strong-∗ continuous, strong-∗-vanishing at

infinity.

Proof. First, note that for all η, η′ ∈ γ and χ ∈ Â,

χ(〈η|2x|η′〉2) = 〈1(χ◦ρβ)<η|(χ ∗ id)(x)(1(χ◦ρβ)<η′)〉 = 〈η(χ◦ρβ)|Fx(χ)η′(χ◦ρβ)〉.

(i) For each η′, η ∈ γ, the map χ 7→ 〈η(χ◦ρβ)|Fx(χ)η′(χ◦ρβ)〉 equals 〈η|2x|η′〉2 ∈ A.

(ii) Assume that Fx is strong-∗ continuous vanishing at infinity and let η ∈ γ. Then
the map χ 7→ Fx(χ)η(χ◦ρβ) lies in Γ0(γ =ρβ A). Hence, there exists an ω ∈ γ =ρβ

A such that Fx(χ)η(χ◦ρβ) = ωχ for all χ ∈ Â. We identify γ =ρβ A with [|γ〉2A] ⊆
L(H,Hβ⊗

b
γK) in the canonical manner and find that x|η〉2 = ω because χ(〈η′|2x|η〉2) =

〈η′(χ◦ρβ)|ω(χ◦ρβ)〉 = χ(〈η′|2ω) for all χ ∈ Â, η′ ∈ γ. Since η ∈ γ was arbitrary, we can

conclude x|γ〉2 ⊆ [|γ〉2A]. A similar argument, applied to x∗ instead of x, shows that
x∗|γ〉2 ⊆ [|γ〉2A], and therefore x ∈ Ind|γ〉2(A). Reversing the arguments, we obtain the
reverse implication. �

Let X be a locally compact Hausdorff space with a continuous surjection p : X → Z
and a family of Radon measures φ = (φz)z∈Z such that (i) suppφz = Xz := p−1(z)
for each z ∈ Z and (ii) the map φ∗(f) : z 7→

∫
Xz
fdφz is continuous for each f ∈

Cc(X). Define a Radon measure νX on X such that
∫
X f dνX =

∫
Z φ∗(f)dµ for all

f ∈ Cc(X). Then there exists a unique map jX : Cc(X)→ L(L2(Z, µ), L2(X, νX)) such
that jX(f)h = fp∗(h) and jX(f)∗g = φ∗(fg) for all f, g ∈ Cc(X), h ∈ Cc(Z). Similarly,
let Y be a locally compact Hausdorff space with a continuous map q : Y → Z and a
family of measures ψ = (ψz)z∈Z satisfying the same conditions as X, p, φ, and define
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a Radon measure νY on Y and an embedding jY : Cc(Y ) → L(L2(Z, µ), L2(Y, νY )) as
above. Let

H := L2(X, νX), β := [jX(Cc(X))], A := C0(X) ⊆ L(L2(X, νX) = L(H),

K := L2(Y, νY ), γ := [jY (Cc(Y ))], B := C0(Y ) ⊆ L(L2(Y, νY )) = L(K).

Then Hβ, Kγ are C∗-b-modules and AβH , Bγ
K are C∗-b-algebras, as one can easily check.

Considering β and γ as Hilbert C∗-modules over C0(Z), we can canonically identify
βz ∼= L2(Xz, φz) and γz ∼= L2(Yz, ψz). Finally, define a Radon measure ν on Xp×

Z
qY

such that for all h ∈ Cc(Xp×
Z
qY ),

∫

Xp×
Z
qY
hdν =

∫

Z

∫

Xz

∫

Yz

h(x, y) dψz(y) dφz(x) dµ(z).

Proposition 5.2. (i) There exists a unitary U : Hβ⊗
b
γK → L2(Xp×

Z
qY, ν) such

that (U(jX(f) = h < jY (g)))(x, y) = f(x)h(p(x))g(y) for all f ∈ Cc(X), g ∈
Cc(Y ), h ∈ Cc(Z), (x, y) ∈ Xp×

Z
qY .

(ii) AdU (Aβ∗
b
γB) is the C∗-algebra of all f ∈ L∞(Xp×

Z
qY, ν) that have represen-

tatives fX , fY such that the maps X → TotL(γ) and Y → TotL(β) given by
x 7→ fX(x, ·) ∈ L∞(Yp(x), ψp(x)) and y 7→ fY (·, y) ∈ L∞(Xq(y), φq(y)) respec-
tively, are strong-∗ continuous vanishing at infinity.

Proof. The proof of assertion (i) is straightforward, and assertion (ii) follows immediately
from Proposition Lemma 3.16 (viii) and Lemma 5.1 (ii). �
Example 5.3. (i) Let X,Y be discrete, Z = {0}, and let φ0, ψ0 be the counting

measures on X,Y , respectively. Then

C0(X)β∗
b
γC0(Y ) ∼= {f ∈ Cb(X × Y ) |f(x, · ) ∈ C0(Y ) for all x ∈ X,

f( · , y) ∈ C0(X) for all y ∈ Y }.
This follows from Proposition 5.2 and the fact that for each f ∈ Cb(X × Y ),
the maps X → L(l2(Y )), x 7→ f(x, · ), and Y → L(l2(X)), y 7→ f( · , y), are
strong-∗ continuous vanishing at infinity if and only if f( · , y) ∈ C0(X) and
f(x, · ) ∈ C0(Y ) for each y ∈ Y and x ∈ X.

(ii) Let X = N, Z = {0}, and let φ0 be the counting measure. Then

C0(N)β∗
b
γC0(Y ) ∼= {f ∈ Cb(N× Y ) | (f(x, ·))x is a sequence in C0(Y )

that converges strongly to 0 ∈ L(L2(Y, ψ0))}
because for each f ∈ L∞(N × Y ), the map Y → L(l2(N)), y 7→ f( · , y), is
strong-∗ continuous vanishing at infinity if and only if f(x, · ) ∈ C0(Y ) for all
x ∈ N.

(iii) Let X = Y = [0, 1], Z = {0}, and let φ0 = ψ0 be the Lebesgue measure. For each
subset I ⊆ [0, 1], denote by χI its characteristic function. Then the function f ∈
L∞([0, 1]× [0, 1]) given by f(x, y) = 1 if y ≤ x and f(x, y) = 0 otherwise belongs
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to C([0, 1])β∗
b
γC([0, 1]) because the functions [0, 1] → L∞([0, 1]) ⊆ L(L2([0, 1]))

given by x 7→ f(x, · ) = χ[0,x] and y 7→ f( · , y) = χ[y,1] are strong-∗ continuous.

In particular, we see that C([0, 1])β∗
b
γC([0, 1]) * C([0, 1] × [0, 1]) = C([0, 1]) ⊗

C([0, 1]).
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APPENDIX I.2

C∗-PSEUDO-MULTIPLICATIVE UNITARIES,

HOPF C∗-BIMODULES, AND THEIR FOURIER ALGEBRAS

THOMAS TIMMERMANN

J. Inst. Math. Jussieu 11(1):189-220, 2012.

Abstract. We introduce C∗-pseudo-multiplicative unitaries and concrete Hopf C∗-
bimodules for the study of quantum groupoids in the setting of C∗-algebras. These uni-
taries and Hopf C∗-bimodules generalize multiplicative unitaries and Hopf C∗-algebras
and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-
bimodules studied by Enock, Lesieur and Vallin. To each C∗-pseudo-multiplicative
unitary, we associate two Fourier algebras with a duality pairing and in the regular
case two Hopf C∗-bimodules. The theory is illustrated by examples related to locally
compact Hausdorff groupoids. In particular, we obtain a continuous Fourier algebra
for a locally compact Hausdorff groupoid.
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1. Introduction

Multiplicative unitaries, which were first systematically studied by Baaj and Skandalis
[3], are fundamental to the theory of quantum groups in the setting of operator algebras
and to generalizations of Pontrjagin duality [28]. First, one can associate to every locally
compact quantum group a multiplicative unitary [13, 14, 17]. Out of this unitary, one
can construct two Hopf C∗-algebras, where one coincides with the initial quantum group,
while the other is the generalized Pontrjagin dual of the quantum group. The duality
manifests itself by a pairing on dense Fourier subalgebras of the two Hopf C∗-algebras.
These Hopf C∗-algebras can be completed to Hopf–von Neumann algebras and are re-
duced in the sense that they correspond to the regular representations of the quantum
group and of its dual, respectively.
Much of the theory of quantum groups has been generalized for quantum groupoids in
a variety of settings, for example, for finite quantum groupoids in the setting of finite-
dimensional C∗-algebras by Böhm, Szlachányi, Nikshych and others [5, 6, 7, 18] and
for measurable quantum groupoids in the setting of von Neumann algebras by Enock,
Lesieur and Vallin [9, 10, 11, 16]. Fundamental for the second theory are the Hopf–von
Neumann bimodules and pseudo-multiplicative unitaries introduced by Vallin [32, 33].
In this article, we introduce generalizations of multiplicative unitaries and Hopf C∗-
algebras that are suited for the study of locally compact quantum groupoids in the
setting of C∗-algebras, and extend some of the results on multiplicative unitaries that
were obtained by Baaj and Skandalis in [3]. In particular, we associate to every regular
C∗-pseudo-multiplicative unitary two Hopf C∗-bimodules and two Fourier algebras with
a duality pairing.
Our concepts are related to their von Neumann-algebraic counterparts as follows. In
the theory of quantum groups, one can use the multiplicative unitary to pass between
the setting of von Neumann algebras and the setting of C∗-algebras and thus obtains
a bijective correspondence between measurable and locally compact quantum groups.
This correspondence breaks down for quantum groupoids — already for ordinary spaces,
considered as groupoids consisting entirely of units, a measure does not determine a
topology. In particular, one can not expect to pass from a measurable quantum groupoid
in the setting of von Neumann algebras to a locally compact quantum groupoid in the
setting of C∗-algebras in a canonical way. The reverse passage, however, is possible, at
least on the level of the unitaries and the Hopf bimodules.
Fundamental to our approach is the framework of modules, relative tensor products
and fiber products in the setting of C∗-algebras introduced in [25]. That article also
explains in detail how the theory developed here can be reformulated in the setting
of von Neumann algebras, where we recover Vallin’s notions of a pseudo-multiplicative
unitary and a Hopf–von Neumann bimodule, and how to pass from the level of C∗-
algebras to the setting of von Neumann algebras by means of various functors.
The theory presented here overcomes several restrictions of our former generalizations of
multiplicative unitaries and Hopf C∗-algebras [27]; see also [26]. It was applied already
in [31] to the definition and study of compact C∗-quantum groupoids, and in [30] to the
study of reduced crossed products for coactions of Hopf C∗-bimodules on C∗-algebras and
to an extension of the Baaj-Skandalis duality theorem. In [29], we furthermore associate
to every C∗-pseudo-multiplicative unitary a C∗-tensor category of (co)representations
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and two universal Hopf C∗-bimodules that are related to the reduced Hopf C∗-bimodules
studied here similarly like the universal to the reduced C∗-algebra of a group or groupoid.
This work was supported by the SFB 478 “Geometrische Strukturen in der Mathematik”1

and initiated during a stay at the “Special Programme on Operator Algebras” at the
Fields Institute in Toronto, Canada, in July 2007.
Organization. This article is organized as follows. We start with preliminaries, summa-
rizing notation, terminology and some background on Hilbert C∗-modules.
In Section 2, we recall the notion of a multiplicative unitary and define C∗-pseudo-
multiplicative unitaries. This definition involves C∗-modules over C∗-bases and their
relative tensor product, which were introduced in [25] and which we briefly recall. As
an example, we construct the C∗-pseudo-multiplicative unitary of a locally compact
Hausdorff groupoid. We shall come back to this example frequently.
In Section 3, we associate to every well behaved C∗-pseudo-multiplicative unitary two
Hopf C∗-bimodules. These Hopf C∗-bimodules are generalized Hopf C∗-algebras, where
the target of the comultiplication is no longer a tensor product but a fiber product that
is taken relative to an underlying C∗-base. Inside these Hopf C∗-bimodules, we identify
dense convolution subalgebras which can be considered as generalized Fourier algebras,
and construct a dual pairing on these subalgebras. To illustrate the theory, we apply all
constructions to the unitary associated to a groupoid G, where one recovers the reduced
groupoid C∗-algebra of G on one side and the function algebra of G on the other side.
In Section 4, we show that every C∗-pseudo-multiplicative unitary satisfying a certain
regularity condition is well behaved. This condition is satisfied, for example, by the
unitaries associated to groupoids and by the unitaries associated to compact quan-
tum groupoids. Furthermore, we collect some results on proper and étale C∗-pseudo-
multiplicative unitaries.
Terminology and notation. Given a subset Y of a normed space X, we denote by [Y ] ⊂ X
the closed linear span of Y . We call a linear map φ between normed spaces contractive
or a linear contraction if ‖φ‖ ≤ 1.
All sesquilinear maps like inner products of Hilbert spaces are assumed to be conjugate-
linear in the first component and linear in the second one. Let H,K be Hilbert spaces.
We denote by X ′ the commutant of a subset X ⊆ L(H). Given a C∗-subalgebra A ⊆
L(H) and a ∗-homomorphism π : A→ L(K), we put

Lπ(H,K) := {T ∈ L(H,K) | Ta = π(a)T for all a ∈ A}.(1)

We shall use some theory of groupoids; for background, see [22] or [20]. Given a groupoid
G, we denote its unit space by G0, its range map by r, its source map by s, and let
Gr×rG = {(x, y) ∈ G×G | r(x) = r(y)}, Gs×rG = {(x, y) ∈ G×G | s(x) = r(y)} and
Gu = r−1(u), Gu = s−1(u) for each u ∈ G0.
We shall make extensive use of (right) Hilbert C∗-modules and the internal tensor prod-
uct; a standard reference is [15]. Let A and B be C∗-algebras. Given Hilbert C∗-modules
E and F over B, we denote by LB(E,F ) the space of all adjointable operators from E
to F . Let E and F be C∗-modules over A and B, respectively, and let π : A → LB(F )
be a ∗-homomorphism. Recall that the internal tensor product E ⊗π F is the Hilbert
C∗-module over B which is the closed linear span of elements η ⊗π ξ, where η ∈ E and

1funded by the Deutsche Forschungsgemeinschaft (DFG)
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ξ ∈ F are arbitrary and 〈η ⊗π ξ|η′ ⊗π ξ′〉 = 〈ξ|π(〈η|η′〉)ξ′〉 and (η ⊗π ξ)b = η ⊗π ξb
for all η, η′ ∈ E, ξ, ξ′ ∈ F , b ∈ B [15, §4]. We denote the internal tensor product
by “=” and drop the index π if the representation is understood; thus, for example,
E = F = E =π F = E ⊗π F .
We also define a flipped internal tensor product F π<E as follows. We equip the algebraic
tensor product F�E with the structure maps 〈ξ�η|ξ′�η′〉 := 〈ξ|π(〈η|η′〉)ξ′〉, (ξ�η)b :=
ξb � η, form the separated completion, and obtain a Hilbert C∗-module F π<E over B
which is the closed linear span of elements ξπ<η, where η ∈ E and ξ ∈ F are arbitrary
and 〈ξπ<η|ξ′π<η′〉 = 〈ξ|π(〈η|η′〉)ξ′〉 and (ξπ<η)b = ξbπ<η for all η, η′ ∈ E, ξ, ξ′ ∈ F ,
b ∈ B. As above, we drop the index π and simply write “<” instead of “π<” if the
representation π is understood. Evidently, the usual and the flipped internal tensor

product are related by a unitary map Σ: F = E
∼=−→ E < F , η = ξ 7→ ξ < η.

For each ξ ∈ E, the maps F → E = F and F → F < E given by η 7→ ξ = η and
η 7→ η<ξ, respectively, are adjointable, and the adjoints are given by ξ′=η 7→ π(〈ξ|ξ′〉)η
and η < ξ′ 7→ π(〈ξ|ξ′〉)η, respectively.
Finally, let E1, E2 be Hilbert C∗-modules over A, let F1, F2 be Hilbert C∗-modules
over B with representations πi : A → LB(Fi) (i = 1, 2), and let S ∈ LA(E1, E2), T ∈
LB(F1, F2) such that Tπ1(a) = π2(a)T for all a ∈ A. Then there exists a unique operator
S=T ∈ LB(E1 =F1, E2 =F2) such that (S=T )(η= ξ) = Sη=Tξ for all η ∈ E1, ξ ∈ F1,
and (S = T )∗ = S∗ = T ∗ [8, Proposition 1.34].

2. C∗-pseudo-multiplicative unitaries

Recall that a multiplicative unitary on a Hilbert space H is a unitary V : H⊗H → H⊗H
that satisfies the pentagon equation V12V13V23 = V23V12 (see [3]). Here, V12, V13, V23 are
operators on H⊗H⊗H defined by V12 = V ⊗id, V23 = id⊗V , V13 = (Σ⊗id)V23(Σ⊗id) =
(id⊗Σ)V12(id⊗Σ), where Σ ∈ L(H ⊗H) denotes the flip η⊗ ξ 7→ ξ⊗ η. If G is a locally
compact group with left Haar measure λ, then the formula

(V f)(x, y) = f(x, x−1y)(2)

defines a linear bijection of Cc(G×G) which extends to a unitary on L2(G×G,λ⊗λ) ∼=
L2(G,λ)⊗L2(G,λ). This unitary is multiplicative, and the pentagon equation amounts
to associativity of the multiplication in G.
We shall generalize the notion of a multiplicative unitary so that it covers the example
above if we replace the group G by a locally compact Hausdorff groupoid G. In that
case, formula (2) defines a linear bijection from Cc(Gs×rG) to Cc(Gr×rG). If G is finite,
that bijection is a unitary from l2(Gs×rG) to l2(Gr×rG), and these two Hilbert spaces
can be identified with tensor products of l2(G) with l2(G) relative to the algebra C(G0).
For a general groupoid, the algebraic tensor product of modules has to be replaced by
a refined version. In the measurable setting, the appropriate substitute is the tensor
product of Hilbert modules relative to a von Neumann algebra also known as Connes’
fusion, see [33]. To take the topology of G into account, we shall work in the setting of
C∗-algebras and use the relative tensor product of C∗-modules over C∗-bases introduced
in [25].
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2.1. The relative tensor product of C∗-modules over C∗-bases. Fundamental to
the definition of a C∗-pseudo-multiplicative unitary is the relative tensor product of C∗-
modules over C∗-bases introduced in [25]. We briefly recall this construction; for further
details, see [25]. An example will appear in subsection 2.3.
C∗-modules over C∗-bases. A C∗-base is a triple (K,B,B†) consisting of a Hilbert space
K and two commuting nondegenerate C∗-algebras B,B† ⊆ L(K). A C∗-base should be
thought of as a C∗-algebraic counterpart to pairs consisting of a von Neumann algebra
and its commutant. As an example, one can associate to every faithful KMS-state µ on
a C∗-algebra B the C∗-base (Hµ, B,B

op), where Hµ is the GNS-space for µ and B and
Bop act on Hµ = Hµop via the GNS-representations [25, Example 2.9]. The opposite of

a C∗-base b = (K,B,B†) is the C∗-base b† := (K,B†,B).
Let b = (K,B,B†) be a C∗-base. A C∗-b-module is a pair Hα = (H,α), where H is a
Hilbert space and α ⊆ L(K, H) is a closed subspace satisfying [αK] = H, [αB] = α, and
[α∗α] = B ⊆ L(K). If Hα is a C∗-b-module, then α is a Hilbert C∗-module over B with
inner product (ξ, ξ′) 7→ ξ∗ξ′ and there exist isomorphisms

α= K→ H, ξ = ζ 7→ ξζ, K < α→ H, ζ < ξ 7→ ξζ,(3)

and a nondegenerate representation

ρα : B† → L(H), ρα(b†)(ξζ) = ξb†ζ for all b† ∈ B†, ξ ∈ α, ζ ∈ K.

A morphism between C∗-b-modules Hα and Kβ is an operator T ∈ L(H,K) satisfying
Tα ⊆ β and T ∗β ⊆ α. We denote the set of all morphisms by L(Hα,Kβ). If T ∈
L(Hα,Kβ), then Tρα(b†) = ρβ(b†)T for all b† ∈ B†, and left multiplication by T defines
an operator in LB(α, β) which we again denote by T .

Let b1, . . . , bn be C∗-bases, where bi = (Ki,Bi,B
†
i ) for each i. A C∗-(b1, . . . , bn)-

module is a tuple (H,α1, . . . , αn), where H is a Hilbert space and (H,αi) is a C∗-bi-
module for each i such that [ραi(B

†
i )αj ] = αj whenever i 6= j. In the case n = 2,

we abbreviate αHβ := (H,α, β). We note that if (H,α1, . . . , αn) is a C∗-(b1, . . . , bn)-

module, then [ραi(B
†
i ), ραj (B

†
j)] = 0 whenever i 6= j. The set of morphisms be-

tween C∗-(b1, . . . , bn)-modules H = (H,α1, . . . , αn), K = (K, γ1, . . . , γn) is the set
L(H,K) :=

⋂n
i=1 L(Hαi ,Kγi) ⊆ L(H,K).

The relative tensor product. Let b = (K,B,B†) be a C∗-base, Hβ C
∗-b-module, and Kγ

a C∗-b†-module. The relative tensor product of Hβ and Kγ is the Hilbert space

Hβ⊗
b
γK := β = K < γ.

It is spanned by elements ξ = ζ < η, where ξ ∈ β, ζ ∈ K, η ∈ γ, and

〈ξ = ζ < η|ξ′ = ζ ′ < η′〉 = 〈ζ|ξ∗ξ′η∗η′ζ ′〉 = 〈ζ|η∗η′ξ∗ξ′ζ ′〉

for all ξ, ξ′ ∈ β, ζ, ζ ′ ∈ K, η, η′ ∈ γ. The formula ξ = ζ < η 7→ η = ζ < ξ obviously
defines a unitary flip Σ: Hβ⊗

b
γK → Kγ⊗

b†
βH. Using the unitaries in (3) on Hβ and Kγ ,

respectively, we shall make the following identifications without further notice:

Hρβ<γ ∼= Hβ⊗
b
γK ∼= β =ργ K, ξζ < η ≡ ξ = ζ < η ≡ ξ = ηζ.
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For all S ∈ ρβ(B†)′ and T ∈ ργ(B)′, we have operators

S < id ∈ L(Hρβ<γ) = L(Hβ⊗
b
γK), id =T ∈ L(β =ργ K) = L(Hβ⊗

b
γK).

If S ∈ L(Hβ) or T ∈ L(Kγ), then (S<id)(ξ=ηζ) = Sξ=ηζ or (id =T )(ξζ<η) = ξζ<Tη,
respectively, for all ξ ∈ β, ζ ∈ K, η ∈ γ, so that we can define

S ⊗
b
T := (S < id)(id =T ) = (id =T )(S < id) ∈ L(Hβ⊗

b
γK)

for all (S, T ) in L(Hβ)× ργ(B)′ or ρβ(B†)′ × L(Kγ).
For each ξ ∈ β and η ∈ γ, there exist bounded linear operators

|ξ〉1 : K → Hβ⊗
b
γK, ω 7→ ξ = ω, |η〉2 : H → Hβ⊗

b
γK, ω 7→ ω < η,

whose adjoints 〈ξ|1 := |ξ〉∗1 and 〈η|2 := |η〉∗2 are given by ξ′ = ω 7→ ργ(ξ∗ξ′)ω and
ω < η′ 7→ ρβ(η∗η′)ω, respectively. We put |β〉1 := {|ξ〉1 | ξ ∈ β} ⊆ L(K,Hβ⊗

b
γK) and

similarly define 〈β|1, |γ〉2, 〈γ|2.
Let H = (H,α1, . . . , αm, β) be a C∗-(a1, . . . , am, b)-module and K = (K, γ, δ1, . . . , δn) a

C∗-(b†, c1, . . . , cn)-module, where ai = (Hi,Ai,A
†
i ) and cj = (Lj ,Cj ,C

†
j) for all i, j. We

put

αi / γ := [|γ〉2αi] ⊆ L(Hi, Hβ⊗
b
γK), β . δj := [|β〉1δj ] ⊆ L(Lj , Hβ⊗

b
γK)

for all i, j. Then (Hβ⊗
b
γK,α1 / γ, . . . , αm / γ, β . δ1, . . . , β . δn) is a C∗-(a1, . . . , am,

c1, . . . , cn)-module, called the relative tensor product of H and K and denoted by H⊗
b
K.

For all i, j and a† ∈ A†i , c
† ∈ C†j ,

ρ(αi/γ)(a
†) = ραi(a

†)⊗
b

id, ρ(β.δj)(c
†) = id⊗

b
ρδj (c

†).

The relative tensor product is functorial, unital and associative in the following sense.
Let H̃ = (H̃, α̃1, . . . , α̃m, β̃) be a C∗-(a1, . . . , am, b)-module, K̃ = (K̃, γ̃, δ̃1, . . . , δ̃n) a

C∗-(b†, c1, . . . , cn)-module, and S ∈ L(H, H̃), T ∈ L(K, K̃). Then there exists a unique

operator S ⊗
b
T ∈ L(H⊗

b
K, H̃ ⊗

b
K̃) satisfying (S ⊗

b
T )(ξ = ζ < η) = Sξ = ζ < Tη for all

ξ ∈ β, ζ ∈ K, η ∈ γ. Next, the triple U := (K,B†,B) is a C∗-(b†, b)-module and the
maps

lH : Hβ⊗
b
B†K→ H, ξ = ζ < b† 7→ ξb†ζ, rK : KB⊗

b
γK → K, b= ζ < η 7→ ηbζ,(4)

are isomorphisms of C∗-(a1, . . . , am, b)-modules and C∗-(b†, c1, . . . , cn)-modules H⊗
b
U →

H and U ⊗
b
K → K, respectively, natural in H and K. Finally, let d, e1, . . . , el be C∗-

bases, K̂ = (K, γ, δ1, . . . , δn, ε) a C∗-(b†, c1, . . . , cn, d)-module and L = (L, φ, ψ1, . . . , ψl)
a C∗-(d†, e1, . . . , el)-module. Then there exists a canonical isomorphism

aH,K̂,L : (Hβ⊗
b
γK)β.ε⊗

d
φL→ β =ργ Kρε<φ→ Hβ⊗

b
γ/φ(Kε⊗

d
φL)
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which is an isomorphism of C∗-(a1, . . . , am, c1, . . . , cn, e1, . . . , el)-modules (H⊗
b
K̂)⊗

d
L →

H⊗
b

(K̂ ⊗
d
L). We identify the Hilbert spaces above and denote them by Hβ⊗

b
γKε⊗

d
φL.

2.2. The definition of C∗-pseudo-multiplicative unitaries. Let b = (K,B,B†) be

a C∗-base, (H, β̂, α, β) a C∗-(b†, b, b†)-module, and V : H
β̂
⊗
b†
αH → Hα⊗

b
βH a unitary

satisfying

V (α / α) = α . α, V (β̂ . β) = β̂ / β, V (β̂ . β̂) = α . β̂, V (β / α) = β / β(5)

in L(K, Hα⊗
b
βH). Then all operators in the following diagram are well defined,

H
β̂
⊗
b†
αH β̂

⊗
b†
αH

V12 //

V23��

Hα⊗
b
βH β̂

⊗
b†
αH

V23 // Hα⊗
b
βHα⊗

b
βH,

H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

Σ23
��

(H
β̂
⊗
b†
αH)(α/α)⊗

b
βH

V12
OO

H
β̂
⊗
b†
αHβ⊗

b†
αH

V12 //
(
Hα⊗

b
βH
)

(β̂/β)
⊗
b†
αH

Σ′23
OO

(6)

where we adopted the leg notation [3] and wrote

V12 for V ⊗
b†

id, V ⊗
b

id; V23 for V ⊗
b

id, V ⊗
b†

id; Σ23 for id⊗
b†

Σ,

and where Σ′23 denotes the isomorphism

(
Hα⊗

b
βH
)

(β̂/β)
⊗
b†
αH ∼= (Hρα<β)ρ

(β̂/β)
<α ∼=−→ (Hρ

β̂
<α)ρ(α/α)<β ∼= (H

β̂
⊗
b†
αH)(α/α)⊗

b
βH

given by (ζ < ξ) < η 7→ (ζ < η) < ξ. We furthermore write V13 for Σ′23(V ⊗
b†

id)Σ23.

Definition 2.1. A C∗-pseudo-multiplicative unitary is a tuple (b, H, β̂, α, β, V ) consist-

ing of a C∗-base b, a C∗-(b†, b, b†)-module (H, β̂, α, β), and a unitary V : H
β̂
⊗
b†
αH →

Hα⊗
b
βH such that equation (5) holds and diagram (6) commutes. We frequently call

just V a C∗-pseudo-multiplicative unitary.

Remarks and Examples 2.2. i) If b is the trivial C∗-base (C,C,C), thenH
β̂
⊗
b†
αH ∼=

H ⊗H ∼= Hα⊗
b
βH, and V is a multiplicative unitary.

ii) If we consider ρ
β̂

and ρβ as representations ρ
β̂
, ρβ : B → L(Hα) ∼= LB(α), then

the map αρ
β̂
<α ∼= α / α → α . α ∼= α =ρβ α given by ω 7→ V ω is a pseudo-

multiplicative unitary on C∗-modules in the sense of [27].

iii) Assume that b = b†; then B = B† is commutative. If β̂ = α, then the pseudo-
multiplicative unitary in ii) is a pseudo-multiplicative unitary in the sense of

O’uchi [19]. If additionally β̂ = α = β, then the unitary in ii) is a continuous
field of multiplicative unitaries in the sense of Blanchard [4].
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iv) Assume that b is the C∗-base associated to a faithful proper KMS-weight µ on
a C∗-algebra B (see [25, Example 2.9]). Then µ extends to a n.s.f. weight µ̃
on JBK, and with respect to the canonical isomorphisms H

β̂
⊗
b†
αH ∼= Hρ

β̂
⊗̃̄
µop

ραH

and Hα⊗
b
βH ∼= Hρα ⊗̃̄

µ
ρβH (see [25, Corollary 2.21]), V is a pseudo-multiplicative

unitary on Hilbert spaces in the sense of Vallin [33].
v) In [31], a C∗-pseudo-multiplicative unitary is associated to every compact C∗-

quantum groupoid.
vi) The opposite of a C∗-pseudo-multiplicative unitary (b, H, β̂, α, β, V ) is the tu-

ple (b, H, β, α, β̂, V op), where V op denotes the composition ΣV ∗Σ: Hβ⊗
b†
αH

Σ−→

Hα⊗
b
βH

V ∗−−→ H
β̂
⊗
b†
αH

Σ−→ Hα⊗
b
β̂
H. A tedious but straightforward calculation

shows that this is a C∗-pseudo-multiplicative unitary.

2.3. The C∗-pseudo-multiplicative unitary of a groupoid. Let G be a locally com-
pact, Hausdorff, second countable groupoid with left Haar system λ and associated right
Haar system λ−1, and let µ be a measure on G0 with full support. We associate to this
data a C∗-pseudo-multiplicative unitary such that the underlying pseudo-multiplicative
unitary and the associated unitary on C∗-modules are the ones introduced by Vallin [33]
and O’uchi [19, 27], respectively. We focus on the aspects that are new in the present
setting.
Define measures ν, ν−1 on G by
∫

G
f dν :=

∫

G0

∫

Gu
f(x) dλu(x) dµ(u),

∫

G
fdν−1 =

∫

G0

∫

Gu

f(x) dλ−1
u (x) dµ(u)

for all f ∈ Cc(G). Thus, ν−1 = i∗ν, where i : G → G is given by x 7→ x−1. We assume
that µ is quasi-invariant in the sense that ν and ν−1 are equivalent, and denote by
D := dν/dν−1 the Radon-Nikodym derivative.
We identify functions in Cb(G

0) and Cb(G) with multiplication operators on the Hilbert
spaces L2(G0, µ) and L2(G, ν), respectively, and let

K := L2(G0, µ), B = B† := C0(G0) ⊆ L(K), b := (K,B,B†), H := L2(G, ν).

Pulling functions on G0 back to G along r or s, we obtain representations

r∗ : C0(G0)→ Cb(G) ↪→ L(H), s∗ : C0(G0)→ Cb(G) ↪→ L(H).

We define Hilbert C∗-modules L2(G,λ) and L2(G,λ−1) over C0(G0) as the respective
completions of the pre-C∗-module Cc(G), the structure maps being given by

〈ξ′|ξ〉(u) =

∫

Gu
ξ′(x)ξ(x) dλu(x), ξf = r∗(f)ξ in the case of L2(G,λ),

〈ξ′|ξ〉(u) =

∫

Gu

ξ′(x)ξ(x) dλ−1
u (x), ξf = s∗(f)ξ in the case of L2(G,λ−1)

respectively, for all ξ, ξ′ ∈ Cc(G), u ∈ G0, f ∈ C0(G0).
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Lemma 2.3. There exist embeddings j : L2(G,λ) → L(K, H) and ĵ : L2(G,λ−1) →
L
(
K, H

)
such that for all ξ ∈ Cc(G), ζ ∈ Cc(G0)
(
j(ξ)ζ

)
(x) = ξ(x)ζ(r(x)),

(
ĵ(ξ)ζ

)
(x) = ξ(x)D−1/2(x)ζ(s(x)).

Proof. Let E := L2(G,λ), Ê := L2(G,λ−1), and ξ, ξ′ ∈ Cc(G), ζ, ζ ′ ∈ Cc(G0). Then

〈
j(ξ′)ζ ′

∣∣j(ξ)ζ
〉

=

∫

G0

∫

Gu
ξ′(x)ζ ′(r(x))ξ(x)ζ(r(x)) dλu(x) dµ(u) =

〈
ζ ′
∣∣〈ξ′|ξ〉Eζ

〉
,

〈
ĵ(ξ′)ζ ′

∣∣ĵ(ξ)ζ
〉

=

∫

G
ξ′(x)ζ ′(s(x))ξ(x)ζ(s(x))D−1(x) dν(x)︸ ︷︷ ︸

= dν−1(x)

=

∫

G0

∫

Gu

ζ ′(u)ξ′(x)ξ(x)ζ(u) dλ−1
u (x) dµ(u) =

〈
ζ ′
∣∣〈ξ′|ξ〉Êζ

〉
. �

Let α := β := j(L2(G,λ)) and β̂ := ĵ(L2(G,λ−1)). Easy calculations show:

Lemma 2.4. (H, β̂, α, β) is a C∗-(b†, b, b†)-module, ρα = ρβ = r∗ and ρ
β̂

= s∗, and j

and ĵ are unitary maps of Hilbert C∗-modules over C0(G0) ∼= B. �
We define measures ν2

s,r on Gs×rG and ν2
r,r on Gr×rG by

∫

Gs×rG
f dν2

s,r :=

∫

G0

∫

Gu

∫

Gs(x)
f(x, y) dλs(x)(y) dλu(x) dµ(u),

∫

Gr×rG
g dν2

r,r :=

∫

G0

∫

Gu

∫

Gu
g(x, y) dλu(y) dλu(x) dµ(u)

for all f ∈ Cc(Gs×rG), g ∈ Cc(Gr×rG). Routine calculations show that there exist
isomorphisms Φ

β̂,α
: H

β̂
⊗
b†
αH → L2(Gs×rG, ν2

s,r) and Φα,β : Hα⊗
b
βH → L2(Gr×rG, ν2

r,r)

such that for all η, ξ ∈ Cc(G) and ζ ∈ Cc(G0),

Φ
β̂,α

(
ĵ(η) = ζ < j(ξ)

)
(x, y) = η(x)D−1/2(x)ζ(s(x))ξ(y),

Φα,β

(
j(η) = ζ < j(ξ)

)
(x, y) = η(x)ζ(r(x))ξ(y).

We shall use these isomorphisms to identify the spaces above without further notice.

Theorem 2.5. There exists a C∗-pseudo-multiplicative unitary (b, H, β̂, α, β, V ) such
that (V ω)(x, y) = ω(x, x−1y) for all ω ∈ Cc(Gs×rG) and (x, y) ∈ Gr×rG.

Proof. Straightforward calculations show that (H, β̂, α, β) is a C∗-(b†, b, b†)-module. Us-
ing left-invariance of λ, one finds that the bijection V0 : Cc(Gs×rG) → Cc(Gr×rG)
given by (V0ω)(x, y) = ω(x, x−1y) for all ω ∈ Cc(Gs×rG) and (x, y) ∈ Gr×rG extends
to a unitary V : H

β̂
⊗
b†
αH ∼= L2(Gs×rG) → L2(Gr×rG) ∼= Hα⊗

b
βH. We claim that

V (β̂ . β̂) = α . β̂. For each ξ, ξ′ ∈ Cc(G), ζ ∈ Cc(G0), and (x, y) ∈ Gs×rG,
(
V |ĵ(ξ)〉1ĵ(ξ′)ζ

)
(x, y) =

(
|ĵ(ξ)〉1ĵ(ξ′)ζ

)
(x, x−1y)

= ξ(x)ξ′(x−1y)D−1/2(x)D−1/2(x−1y)ζ(s(y)),
(
|j(ξ)〉1ĵ(ξ′)ζ

)
(x, y) = ξ(x)ξ′(y)D−1/2(y)ζ(s(y)).
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Using standard approximation arguments and the fact that D(x)D(x−1y) = D(y) for

ν2
r,r-almost all (x, y) ∈ Gr×rG (see [12] or [20, p. 89]), we find that V (β̂ . β̂) =

[T (Cc(Gr×rG))] = α . β̂, where for each ω ∈ Cc(Gr×rG),

(T (ω)ζ)(x, y) = ω(x, y)D−1/2(y)ζ(s(y)) for all ζ ∈ Cc(G0), (x, y) ∈ Gr×rG.
Similar calculations show that the remaining relations in (5) hold. Tedious but straight-
forward calculations show that diagram (6) commutes; see also [33]. Therefore, V is a
C∗-pseudo-multiplicative unitary. �

3. The legs of a C∗-pseudo multiplicative unitary

To every regular multiplicative unitary V on a Hilbert space H, Baaj and Skandalis

associate two Hopf C∗-algebras (ÂV , ∆̂V ) and (AV ,∆V ) as follows [3]. The C∗-algebras

ÂV and AV are the norm closures of the subspaces Â0
V and A0

V of L(H) given by

Â0
V := {(id ⊗̄ω)(V ) | ω ∈ L(H)∗}, A0

V := {(υ ⊗̄ id)(V ) | υ ∈ L(H)∗},(7)

and the ∗-homomorphisms ∆̂V : ÂV → M(ÂV ⊗ ÂV ) ⊆ L(H ⊗ H) and ∆V : AV →
M(AV ⊗AV ) ⊆ L(H ⊗H) are given by

∆̂V : â 7→ V ∗(1⊗ â)V, ∆V : a 7→ V (a⊗ 1)V ∗,(8)

respectively. Applied to the multiplicative unitary of a locally compact group G, this

construction yields the C∗-algebras C0(G) and C∗r (G), and ∆̂: C0(G) → M(C0(G) ⊗
C0(G)) ∼= Cb(G×G) and ∆: C∗r (G)→M(C∗r (G)⊗ C∗r (G)) are given by

∆̂(f)(x, y) = f(xy) for all f ∈ C0(G), ∆(Ux) = Ux ⊗ Ux for all x ∈ G,(9)

where U : G→M(C∗r (G)), x 7→ Ux, is the canonical embedding.
To adapt these constructions to C∗-pseudo-multiplicative unitaries, we have to generalize

the notion of a Hopf C∗-algebra and identify the targets of the comultiplications ∆̂V and
∆V . For the C∗-pseudo-multiplicative unitary of a groupoid G, we expect to obtain the

C∗-algebras ÂV = C0(G) and AV = C∗r (G) with ∗-homomorphisms ∆̂ and ∆ given

by the same formulas as in (9). Then the target of ∆̂ would be M(C0(Gs×rG)), and
C0(Gs×rG) can be identified with the relative tensor product C0(G)s∗ ⊗

C0(G0)
r∗C0(G) of

C0(G0)-algebras [4]. But the target of ∆ can not be described in a similar way, and in
general, we need to replace the balanced tensor product by a fiber product relative to
some base. In the setting of von Neumann algebras, the targets of the comultiplications
can be described using Sauvageot’s fiber product [24, 32]. The appropriate construction
in the setting of C∗-algebras is given below.

3.1. The fiber product and Hopf C∗-bimodules. Fundamental to the notion of a
Hopf C∗-bimodule is the fiber product of C∗-algebras over C∗-bases introduced in [25].
We briefly recall this construction and subsequently introduce Hopf C∗-bimodules; for
additional motivation and details, see [25]. Two examples can be found in subsection
3.4.
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Let b1, . . . , bn be C∗-bases, where bi = (Ki,Bi,B
†
i ) for each i. A (nondegenerate) C∗-

(b1, . . . , bn)-algebra consists of a C∗-(b1, . . . , bn)-module (H,α1, . . . , αn) and a (nonde-

generate) C∗-algebra A ⊆ L(H) such that ραi(B
†
i )A is contained in A for each i. We

are interested in the cases n = 1, 2 and abbreviate AαH := (Hα, A), Aα,βH := (αHβ, A).
Let A = (H, A) and C = (K, C) be C∗-(b1, . . . , bn)-algebras, where H = (H,α1, . . . , αn)
and K = (K, γ1, . . . , γn). A morphism from A to C is a ∗-homomorphism π : A →
C satisfying [Lπ(H,K)αi] = γi for each i, where Lπ(H,K) = Lπ(H,K) ∩ L(H,K).
One easily verifies that every morphism π between C∗-b-algebras AαH and CγK satisfies

π(ρα(b†)) = ργ(b†) for all b† ∈ B†.
Let b be a C∗-base, AβH a C∗-b-algebra, and Bγ

K a C∗-b†-algebra. The fiber product of

AβH and Bγ
K is the C∗-algebra

Aβ∗
b
γB :=

{
x ∈ L(Hβ⊗

b
γK)

∣∣x|β〉1, x∗|β〉1 ⊆ [|β〉1B] as subsets of L(K,Hβ⊗
b
γK),

x|γ〉2, x∗|γ〉2 ⊆ [|γ〉2A] as subsets of L(H,Hβ⊗
b
γK)

}
.

If A and B are unital, so is Aβ∗
b
γB, but otherwise, Aβ∗

b
γB may be degenerate. Clearly,

conjugation by the flip Σ: Hβ⊗
b
γK → Kγ⊗

b†
βH yields an isomorphism AdΣ : Aβ∗

b
γB →

Bγ ∗
b†
βA. If a, c are C∗-bases, Aα,βH is a C∗-(a, b)-algebra and Bγ,δ

K a C∗-(b†, c)-algebra,

then

Aα,βH ∗
b
Bγ,δ
K = (αHβ ⊗

b
γKδ, Aβ∗

b
γB)

is a C∗-(a, c)-algebra, called the fiber product of Aα,βH and Bγ,δ
K .

Let a, b, c be C∗-bases, φ a morphism of C∗-(a, b)-algebras A = Aα,βH and C = Cκ,λL , and

ψ a morphism of C∗-(b†, c)-algebras B = Bγ,δ
K and D = Dµ,ν

M . Then there exists a unique
morphism of C∗-(a, c)-algebras φ ∗

b
ψ : A ∗

b
B → C ∗

b
D such that

(φ ∗
b
ψ)(x)R = Rx for all x ∈ Aβ∗

b
γB and R ∈ IMJH + JLIK ,

where IX = Lφ(H,L)⊗
b

idX , JY = idY ⊗
b
Lψ(K,M) for X ∈ {K,M}, Y ∈ {H,L}.

The fiber product need not be associative, but whenever it appears as the target of a
comultiplication, coassociativity will compensate the non-associativity.

Definition 3.1. A comultiplication on a C∗-(b†, b)-algebra Aβ,αH is a morphism ∆ from

Aβ,αH to Aβ,αH ∗
b
Aβ,αH that is coassociative in the sense that (∆ ∗

b
id) ◦∆ = (id ∗

b
∆) ◦∆ as

maps from A to L(Hα⊗
b
βHα⊗

b
βH). A Hopf C∗-bimodule over b is a C∗-(b†, b)-algebra

with a comultiplication. A morphism of Hopf C∗-bimodules (Aβ,αH ,∆A), (Bδ,γ
K ,∆B) over

b is a morphism π from Aβ,αH to Bδ,γ
K satisfying ∆B ◦ π = (π ∗

b
π) ◦∆A.

3.2. The Hopf C∗-bimodules of a C∗-pseudo-multiplicative unitary. Let b =

(K,B,B†) be a C∗-base, (H, β̂, α, β) a C∗-(b†, b, b†)-module and V : H
β̂
⊗
b†
αH → Hα⊗

b
βH
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a C∗-pseudo-multiplicative unitary. We associate to V two algebras and, if V is well be-
haved, two Hopf C∗-bimodules as follows. Let

ÂV := [〈β|2V |α〉2] ⊆ L(H), AV := [〈α|1V |β̂〉1] ⊆ L(H),(10)

where |α〉2, |β̂〉1 ⊆ L(H,H
β̂
⊗
b†
αH) and 〈β|2, 〈α|1 ⊆ L(Hα⊗

b
βH,H) are defined as in

Subsection 2.1.

Proposition 3.2. i) ÂV op = A∗V , [ÂV ÂV ] = ÂV , [ÂVH] = H = [Â∗VH], [ÂV β] =

β = [Â∗V β], and [ÂV ρβ̂(B)] = [ρ
β̂
(B)ÂV ] = ÂV = [ÂV ρα(B†)] = [ρα(B†)ÂV ].

ii) AV op = Â∗V , [AVAV ] = AV , [AVH] = H = [A∗VH], [AV β̂] = β̂ = [A∗V β̂], and

[AV ρβ(B)] = [ρβ(B)AV ] = AV = [AV ρα(B†)] = [ρα(B†)AV ].

We shall prove some of the equations above using commutative diagrams, where the
vertices are labelled by Hilbert spaces, the arrows are labelled by single operators or
closed spaces of operators, and the composition is given by the closed linear span of all
possible compositions of operators.

Proof. i) First, ÂV op = [〈β̂|2ΣV ∗Σ|α〉2] = [〈β̂|1V ∗|α〉1] = A∗V .

Next, [ÂV ÂV ] = [〈β|2〈α|3V12|α〉3|α〉2] because the diagram below commutes:

H

|α〉2
��

ÂV

//

|α〉2
��

H

(C)

|α〉2
$$

ÂV

// H

H
β̂
⊗
b†
αH

|α〉3

//

H
β̂
⊗
b†
αH

V //

|α〉2
��

Hα⊗
b
βH

〈β|2
::

|α〉2
##

H
β̂
⊗
b†
αH

V // Hα⊗
b
βH

〈β|2
OO

Hα⊗
b
βH

〈β|2

oo

H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

V13
//

V ∗23
��

(H
β̂
⊗
b†
αH)(α/α)⊗

b
βH

〈β|3
;;

(P)
V12
// Hα⊗

b
βHα⊗

b
βH

〈β|3
OO

H
β̂
⊗
b†
αH β̂

⊗
b†
αH

V12 // Hα⊗
b
βH β̂

⊗
b†
αH

V23
OO

〈α|3

OO

Indeed, cell (C) commutes because for all ξ ∈ α, η, η′ ∈ β, ζ ∈ H,

|ξ〉2〈η′|2(ζ < η) = ρα
(
η′∗η

)
ζ < ξ = ρ(α/α)

(
η′∗η

)
(ζ < ξ) = 〈η′|3|ξ〉2(ζ < η),(11)

cell (P) is diagram (6), and the other cells commute by definition of ÂV and because of

(5). Now, [〈β|2〈α|3V12|α〉3|α〉2] = ÂV because the following diagram commutes:

H

|α〉2
��

ÂV

//

|α〉2
��

H

H
β̂
⊗
b†
αH

|α〉3

//

ρ
(β̂.β̂)

(B)
// H

β̂
⊗
b†
αH

V // Hα⊗
b
βH

〈β|2
OO

H
β̂
⊗
b†
αH β̂

⊗
b†
αH

〈α|3
OO

V12 // Hα⊗
b
βH β̂

⊗
b†
αH

〈α|3
OO
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Finally, we prove some of the remaining equations; the other ones follow similarly:

[ÂV β] = [〈β|2V |α〉2β] = [〈β|2|β〉2β] = [ρα(B†)β] = β,

[ÂV ρβ̂(B)] = [〈β|2V |α〉2ρβ̂(B)] = [〈β|2V |αB〉2] = ÂV ,

[ρ
β̂
(B)ÂV ] = [ρ

β̂
(B)〈β|2V |α〉2] = [〈β|2(ρ

β̂
(B)⊗

b
id)V |α〉2]

= [〈β|2V (id⊗
b†
ρβ(B))|α〉2] = [〈β|2V |ρβ(B)α〉2] = ÂV .

ii) This follows from i) after replacing V by V op. �

Define ∆̂V : ρβ(B)′ → L(H
β̂
⊗
b†
αH) and ∆V : ρ

β̂
(B)′ → L(Hα⊗

b
βH) by

∆̂V : y 7→ V ∗(id⊗
b
y)V, ∆V : z 7→ V (z ⊗

b†
id)V ∗.

Evidently, ∆̂V op = AdΣ ◦∆V and ∆V op = AdΣ ◦∆̂V . Moreover, if η ∈ β and ξ ∈ α, then
â := 〈η|2V |ξ〉2 lies in L(Hβ) ⊆ ρβ(B)′ by Proposition 3.2 and

∆̂V (〈η|2V |ξ〉2) = ∆̂V (â) = V ∗(1⊗
b
â)V = 〈η|3V ∗12V23V12|ξ〉3 = 〈η|3V13V23|ξ〉3.(12)

Similarly, if η ∈ α and ξ ∈ β̂, then a := 〈η|1V |ξ〉1 lies in ρ
β̂
(B)′ and

∆V (〈η|1V |ξ〉1) = ∆V (a) = V (a⊗
b†

1)V ∗ = 〈η|1V23V12V
∗

23|ξ〉1 = 〈η|1V12V13|ξ〉1.(13)

Lemma 3.3. The map ∆̂V is a morphism of the C∗-(b, b†)-algebras (ρβ(B)′)α,β̂H and
(
(ρβ(B)

β̂
⊗
b†
αρβ(B))′

)(α/α),(β̂.β̂)

H
β̂
⊗
b†
αH

, and ∆V is a morphism of the C∗-(b†, b)-algebras (ρ
β̂
(B)′)β,αH

and
(
(ρ
β̂
(B)α⊗

b
βρβ̂(B))′

)(β/β),(α.α)

Hα⊗
b
βH

.

Proof. We only prove the assertions concerning ∆̂V . First, ∆̂V (ρβ(B)′) ⊆ (ρβ(B) ⊗
b†

ρβ(B))′ because V (ρβ(B) ⊗
b†
ρβ(B))V ∗ = ρβ(B) ⊗

b
ρ
β̂
(B) ⊆ id⊗

b
ρβ(B)′ by (5). Next,

V ∗|α〉1 ⊆ L∆̂V
(
H,H

β̂
⊗
b†
αH
)

because ∆̂(y)V ∗|ξ〉1 = V ∗(id⊗
b
y)|ξ〉1 = V ∗|ξ〉1y for all

y ∈ ρ
β̂
(B)′, ξ ∈ α, and α / α = [V ∗|α〉1α] and β̂ . β̂ = [V ∗|α〉1β̂] by (5). �

Theorem 3.4. If ÂV = Â∗V , then ((ÂV )α,β̂H , ∆̂V ) is a Hopf C∗-bimodule. Similarly, if

AV = A∗V , then ((AV )β,αH ,∆V ) is a Hopf C∗-bimodule.

Proof. We only prove the first assertion, the second one follows by replacing V by V op.

Write Â = ÂV , ∆̂ = ∆̂V , and assume that Â = Â∗. By Proposition 3.2, Â := Âα,β̂H
is a C∗-(b, b†)-algebra and Â ⊆ L(Hβ) ⊆ ρβ(B)′. We claim that ∆̂(Â) ⊆ Â

β̂
∗
b†
αÂ. By

equation (12), ∆̂(Â) = [〈β|3V13V23|α〉3], and the following commutative diagram shows
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that [∆̂(Â)|α〉2] = [〈β|3V13V23|α〉3|α〉2] ⊆ [|α〉2〈β|2V |α〉2] = [|α〉2Â]:

H
|α〉2 //

|α〉2
��

H
β̂
⊗
b†
αH

V //

|α〉3
��

Hα⊗
b
βH

〈β|2 //

|α〉3
��

H

|α〉2
��

H
β̂
⊗
b†
αH

V23|α〉3 // H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

V13 // (H
β̂
⊗
b†
αH)(α/α)⊗

b
βH

〈β|3 // H
β̂
⊗
b†
αH

Similarly, one proves that [∆̂(Â)|β̂〉1] = [|β̂〉1Â], and the claim follows. By Lemma 3.3,

∆̂ is a morphism of the C∗-(b, b†)-algebras Â and Â ∗
b
Â. It only remains to show that

∆̂ is coassociative. Let â ∈ Â. Then

(∆̂ ∗
b†

id)(∆̂(â)) = V ∗12(id⊗
b

∆̂(â))V12 = V ∗12V
∗

23(id⊗
b

id⊗
b
â)V23V12.

Here, we can replace V23V12 by V ∗12V23V12 = V13V23. Therefore, (∆̂ ∗
b†

id)(∆̂(â)) equals

V23V
∗

13(id⊗
b†

id⊗
b
â)V13V23 = V23Σ23(∆̂(â)⊗

b†
id)Σ23V23 = (id ∗

b†
∆̂)(∆̂(â)). �

3.3. The Fourier algebras of a C∗-pseudo-multiplicative unitary. We first in-
troduce certain spaces of maps on C∗-algebras and slice maps on fiber products, and
then associate to every Hopf C∗-bimodule several convolution algebras and to every
C∗-pseudo-multiplicative unitary two Fourier algebras.
Let a = (H,A,A†) and b = (K,B,B†) be C∗-bases, H a Hilbert space, Hα a C∗-a-
module, Hβ a C∗-b-module, and A ⊆ L(H) a closed subspace. We denote by α∞ the
space of all sequences η = (ηk)k∈N in α for which the sum

∑
k η
∗
kηk converges in norm,

and put ‖η‖ := ‖∑k η
∗
kηk‖1/2 for each η ∈ α∞. Similarly, we define β∞. Standard

arguments show that for all η ∈ β∞, η′ ∈ α∞, there exists a bounded linear map

ωη,η′ : A→ L(H,K), T 7→
∑

k∈N
η∗kTη

′
k,

where the sum converges in norm and ‖ωη,η′‖ ≤ ‖η‖‖η′‖. We put

Ωβ,α(A) := {ωη,η′ | η ∈ β∞, η′ ∈ α∞} ⊆ L(A,L(H,K),

where L(A,L(H,K)) denotes the space of bounded linear maps from A to L(H,K). If
β = α, we abbreviate Ωβ(A) := Ωβ,α(A). It is easy to see that Ωβ,α(A) is a subspace of
L(A,L(H,K)) and that the following formula defines a norm on Ωβ,α(A):

‖ω‖ := inf
{
‖η‖‖η′‖

∣∣η ∈ β∞, η′ ∈ α∞, ω = ωη,η′
}

for all ω ∈ Ωβ,α(A).

Standard arguments show that Ωβ,α(A) is a Banach space. Moreover, if A = A∗, then
there exists an anti-linear isometry Ωβ,α(A) → Ωα,β(A), ω 7→ ω∗, such that ω∗(a) =
ω(a∗)∗ for all a ∈ A and (ωη,η′)

∗ = ωη′,η for all η ∈ β∞, η′ ∈ α∞.

Proposition 3.5. i) Let π be a morphism of C∗-b-algebras AαH and Bγ
K . Then

there exists a linear contraction π∗ : Ωγ(B)→ Ωα(A) given by ω 7→ ω ◦ π.

ii) Let π be a morphism of C∗-(a, b)-algebras Aα,βH and Bγ,δ
K . Then there exists a

linear contraction π∗ : Ωδ,γ(B)→ Ωβ,α(A) given by ω 7→ ω ◦ π.
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Proof. We only prove ii). Let I := Lπ(αHβ, γKδ) and η ∈ δ∞, η′ ∈ γ∞. Then there exists
a closed separable subspace I0 ⊆ I such that ηn ∈ [I0β] and η′n ∈ [I0α] for all n ∈ N. We
may assume that I0I

∗
0I0 ⊆ I0, and then [I0I

∗
0 ] is a σ-unital C∗-algebra and has a bounded

sequential approximate unit (uk)k of the form uk =
∑k

l=1 TlT
∗
l , where (Tl)l is a sequence

in I0 [15, Proposition 6.7]. We choose a bijection i : N×N→ N and let ξi(l,n) := T ∗l ηn ∈ β
and ξ′i(l,n) := T ∗l η

′
n ∈ α for all l, n ∈ N. Then the sum

∑
l ξ
∗
i(l,n)ξi(l,n) =

∑
l η
∗
nTlT

∗
l ηn

converges to η∗nηn for each n ∈ N in norm because ηn ∈ [I0β]. Therefore, ξ ∈ β∞ and
‖ξ‖ = ‖η‖, and a similar argument shows that ξ′ ∈ α∞ and ‖ξ′‖ = ‖η′‖. Finally,

ωξ,ξ′(a) =
∑

l,n

η∗nTlaT
∗
l η
′
n =

∑

l,n

η∗nπ(a)TlT
∗
l η
′
n =

∑

n

η∗nπ(a)η′n = ωη,η′(π(a))

for each a ∈ A, where the sum converges in norm, and hence ωη,η′ ◦ π = ωξ,ξ′ ∈ Ωβ,α(A)
and ‖ωη,η′ ◦ π‖ ≤ ‖ξ‖‖ξ′‖ = ‖η‖‖η′‖. �
For each map of the form considered above, we can form a slice map as follows [25,
Proposition 3.30]. Let Hβ be a C∗-b-module, let Kγ be a C∗-b†-module, let A ⊆ L(H)
and B ⊆ L(K) be closed subspaces, and let

Aβ ∗̄
b
γB = {x ∈ L(Hβ⊗

b
γK) | 〈β|1x|β〉1 ⊆ B, 〈γ|2x|γ〉2 ⊆ A}.

Proposition 3.6. i) There exists a linear contraction Ωβ(A) → Ω|β〉1(Aβ ∗̄
b
γB),

φ 7→ φ ∗ id, such that ωξ,ξ′ ∗ id = ωξ̃,ξ̃′ for all ξ, ξ′ ∈ β∞, where ξ̃n = |ξn〉1 and

ξ̃′n = |ξ′n〉1 for all n ∈ N.
ii) There exists a linear contraction Ωγ(B) → Ω|γ〉2(Aβ ∗̄

b
γB), ψ 7→ id ∗ψ, such that

id ∗ωη,η′ = ωη̃,η̃′ for all η, η′ ∈ γ∞, where η̃n = |ηn〉2 and η̃′n = |η′n〉2 for all n ∈ N.
iii) We have ψ ◦ (φ ∗ id) = φ ◦ (id ∗ψ) for all φ ∈ Ωβ(A) and ψ ∈ Ωγ(B). �

Assume that αHβ is a C∗-(a, b)-module and γKδ a C∗-(b†, c)-module. Denote by “⊗̂”
the projective tensor product of Banach spaces. Clearly, there exist linear contractions

Ωα(A)⊗̂Ωγ(B)→ Ω(α/γ)(Aβ ∗̄
b
γB), ω ⊗ ω′ 7→ ω � ω′ := ω ◦ (id ∗ω′),

Ωβ(A)⊗̂Ωδ(B)→ Ω(β.δ)(Aβ ∗̄
b
γB), ω ⊗ ω′ 7→ ω � ω′ := ω′ ◦ (ω ∗ id).

Proposition 3.7. There exist linear contractions

Ωα,β(A)⊗̂Ωγ,δ(B)→ Ω(α/γ),(β.δ)(Aβ ∗̄
b
γB), ω ⊗ ω′ 7→ ω � ω′,

Ωβ,α(A)⊗̂Ωδ,γ(B)→ Ω(β.δ),(α/γ)(Aβ ∗̄
b
γB), ω ⊗ ω′ 7→ ω � ω′,

such that for all ξ ∈ α∞, ξ′ ∈ β∞, η ∈ γ∞, η′ ∈ δ∞ and each bijection i : N × N → N,
we have ωξ,ξ′ � ωη,η′ = ωθ,θ′ and ωξ′,ξ � ωη′,η = ωθ′,θ where

θi(m,n) = |ηn〉2ξm ∈ α / γ, θ′i(m,n) = |ξ′m〉1η′n ∈ β . δ for all m,n ∈ N.

Proof. We only prove the existence of the first contraction. Let ξ, ξ′, η, η′, i, θ, θ′ be as
above. Then θ ∈ (α / γ)∞ and ‖θ‖ ≤ ‖ξ‖‖η‖ because
∑

k

θ∗kθk =
∑

m,n

ξ∗m〈ηn|2|ηn〉2ξm =
∑

m,n

ξ∗mρβ(η∗nηn)ξm ≤ ‖η‖2
∑

m

ξ∗mξm ≤ ‖η‖2‖ξ‖2,
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and similarly θ′ ∈ (β . δ)∞ and ‖θ′‖ ≤ ‖ξ′‖‖η′‖. Next, we show that ωθ,θ′ does not
depend on ξ and ξ′ but only on ωξ,ξ′ ∈ Ωα,β(A). Let ζ ′ ∈ K and x ∈ Aβ ∗̄

b
γB. Then

ωθ,θ′(x)ζ ′ =
∑

m,n∈N
ξ∗m〈ηn|2x|ξ′m〉1η′nζ ′,

where the sum converges in norm. Fix any n ∈ N. Then we find a sequence (kr)r in

N and η′′r,1, . . . , η
′′
r,kr
∈ γ, ζ ′′r,1, . . . , ζ

′′
r,kr
∈ K such that the sum

∑kr
l=1 η

′′
r,lζ
′′
r,l converges in

norm to η′nζ
′ as r tends to infinity. But then

∑

m

ξ∗m〈ηn|2x|ξ′m〉1η′nζ ′ = lim
r→∞

∑

m

kr∑

l=1

ξ∗m〈ηn|2x|ξ′m〉1η′′r,lζ ′′r,l

= lim
r→∞

kr∑

l=1

∑

m

ξ∗m〈ηn|2x|η′′r,l〉2ξ′mζ ′′r,l

= lim
r→∞

kr∑

l=1

ωξ,ξ′(〈ηn|2x|η′′r,l〉2)ζ ′′r,l.

Note here that 〈ηn|x|η′′r,l〉2 ∈ A. Therefore, the sum on the left hand side only depends

on ωξ,ξ′ ∈ Ωα,β(A) but not on ξ, ξ′, and since n ∈ N was arbitrary, the same is true for
ωθ,θ′(x)ζ ′. A similar argument shows that ωθ,θ′(x)∗ζ depends on ωη,η′ ∈ Ωγ,δ(B) but not
on η, η′ for each ζ ∈ K. �

Proposition 3.8. Let (Aβ,αH ,∆) be a Hopf C∗-bimodule over b. Then each of the spaces
Ω = Ωα(A),Ωβ(A),Ωα,β(A),Ωβ,α(A) is a Banach algebra with respect to the multiplica-
tion Ω× Ω→ Ω given by (ω, ω′) 7→ ω ∗ ω′ := (ω � ω′) ◦∆.

Proof. The multiplication is well defined by Propositions 3.5 and 3.7, and associative
because ∆ is coassociative. �

Now, let (H, β̂, α, β) be a C∗-(b†, b, b†)-module, V : H
β̂
⊗
b†
αH → Hα⊗

b
βH a C∗-pseudo-

multiplicative unitary, and Ω̃β,α := Ωβ,α(ρ
β̂
(B)′), Ω̃

α,β̂
:= Ω

α,β̂
(ρβ(B)′). Using Lemma

3.3, the inclusions

(ρ
β̂
(B)α⊗

b
βρβ̂(B))′ ⊆ ρ

β̂
(B)′α∗̄

b
βρβ̂(B)′, (ρβ(B)

β̂
⊗
b†
αρβ(B))′ ⊆ ρβ(B)

β̂
∗̄
b†
αρβ(B)′,

and Proposition 3.7, we define maps

Ω̃β,α × Ω̃β,α → Ω̃β,α, (ω, ω′) 7→ ω ∗ ω′ := (ω � ω′) ◦∆V ,

Ω̃
α,β̂
× Ω̃

α,β̂
→ Ω̃

α,β̂
, (ω, ω′) 7→ ω ∗ ω′ := (ω � ω′) ◦ ∆̂V ,

Theorem 3.9. i) The maps above turn Ω̃β,α and Ω̃
α,β̂

into Banach algebras.

ii) There exist contractive homomorphisms π̂V : Ω̃β,α → ÂV and πV : Ω̃
α,β̂
→ AV

such that π̂V (ωξ,η) =
∑

n〈ξn|2V |ηn〉2 and πV (ωη,ζ) =
∑

n〈ηn|1V |ζn〉1 for all ξ ∈
β∞, η ∈ α∞, ζ ∈ β̂∞.
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Proof. We only prove the assertions concerning Ω̃β,α.

i) One only needs to show that the multiplication on Ω̃β,α is associative. Let ω, ω′, ω′′ ∈
Ω̃β,α, where ω = ωη,ξ, ω

′ = ωη′,ξ′ , ω
′′ = ωη′′,ξ′′ and η, η′, η′′ ∈ β∞, ξ, ξ′, ξ′′ ∈ α∞. Then a

short calculation shows that for all x ∈ ρ
β̂
(B)′,

((ω ∗ ω′) ∗ ω′′)(x) =
∑

k,l,m

η∗k〈η′l|2〈η′′m|3V12V13(x⊗
b†

(1⊗
b

1))V ∗13V
∗

12|ξk〉1|ξ′l〉1ξ′′m,

(ω ∗ (ω′ ∗ ω′′))(x) =
∑

k,l,m

η∗k〈η′l|2〈η′′m|3V23V12(x⊗
b†

1⊗
b†

1)V ∗12V
∗

23|ξk〉1|ξ′l〉1ξ′′m,

and by (6), the right hand sides coincide.
ii) The map π̂V is well-defined because η∗π̂V (ω)ξ = ω(〈η|1V |ξ〉1) and 〈η|1V |ξ〉1 ∈ AV ⊆
ρ
β̂
(B)′ for all η ∈ α, ξ ∈ β̂, ω ∈ Ω̃β,α, contractive because V is unitary, and a homomor-

phism because for all ω, ω′ ∈ Ω̃β,α, η ∈ α, ξ ∈ β̂,

η∗π̂V (ω)π̂V (ω′)ξ = (ω � ω′)(〈η|1V12V13|ξ〉1)

= (ω � ω′)(〈η|1V23V12V
∗

23|ξ〉1)

= (ω � ω′)
(
V (〈η|1V |ξ〉1β̂⊗

b†
α id)V ∗

)

= (ω ∗ ω′)(〈η|1V |ξ〉1) = η∗π̂V (ω ∗ ω′)ξ. �

Definition 3.10. We call the algebras Â0
V := π̂V (Ω̃β,α) ⊆ ÂV and A0

V := πV (Ω̃
α,β̂

) ⊆
AV , equipped with the quotient norms coming from the surjections π̂V and πV , the Fourier
algebra and the dual Fourier algebra of V , respectively.

The pairs ((ÂV )α,β̂H , ∆̂V ) and ((AV )β,αH ,∆V ) stand in a generalized Pontrjagin duality
which is captured by the following pairing.

Proposition 3.11. i) There exists a bilinear map ( · | · ) : Â0
V × A0

V → L(K) such

that ω(πV (υ)) =
(
π̂V (ω)

∣∣πV (υ)
)

= υ(π̂V (ω)) for all ω ∈ Ω̃β,α, υ ∈ Ω̃
α,β̂

. This

map is nondegenerate in the sense that for each â ∈ Â0
V and a ∈ A0

V , there exist

â′ ∈ Â0
V and a′ ∈ A0

V such that (â|a′) 6= 0 and (â′|a) 6= 0.

ii) (π̂V (ω)π̂V (ω′)|a) = (ω � ω′)(∆V (a)) and (â|πV (υ)πV (υ′)) = (υ � υ′)(∆̂V (â)) for

all ω, ω′ ∈ Ω̃β,α, a ∈ A0
V , υ, υ′ ∈ Ω̃

α,β̂
, â ∈ Â0

V .

Proof. i) If ω = ωξ,ξ′ and υ = ωη,η′ , where ξ ∈ β∞, ξ′, η ∈ α∞, η′ ∈ β̂∞, then

ω(πV (υ)) =
∑

m,n

ξ∗m〈ηn|1V |η′n〉1ξ′m =
∑

m,n

η∗n〈ξm|2V |ξ′m〉2η′n = υ(π̂V (ω)).

iii) For all ω, ω′, a as above, (π̂V (ω)π̂V (ω′)|a) = (π̂V (ω ∗ ω′)|a) = (ω ∗ ω′)(a) = (ω �
ω)(∆V (a)). The second equation follows similarly. �

Part i) of the preceding result implies the following relation between the Fourier algebras

Â0
V and A0

V and the convolution algebras constructed in Proposition 3.8.



68 THOMAS TIMMERMANN

Corollary 3.12. If ((AV )β,αH , ∆̂V ) or ((ÂV )α,β̂H ,∆V ) is a Hopf C∗-bimodule, then there

exists an isometric isomorphism of Banach algebras π̂ : Ωβ,α(AV )→ Â0
V or π : Ω

α,β̂
(ÂV )→

A0
V , respectively, whose composition with the quotient map Ω̃β,α → Ωβ,α(AV ) or Ω̃

α,β̂
→

Ω
α,β̂

(ÂV ) is equal to π̂V or πV , respectively. �

3.4. The legs of the unitary of a groupoid. Let G be a locally compact, Hausdorff,
second countable groupoid G as in subsection 2.3. We keep the notation introduced
there and determine the legs of the C∗-pseudo-multiplicative unitary V associated to
G. Denote by m : C0(G) → L(H) the representation given by multiplication operators,
and by L1(G,λ) the completion of Cc(G) with respect to the norm given by ‖f‖ :=
supu∈G0

∫
Gu |f(u)|dλu(x) for all f ∈ Cc(G). Then L1(G,λ) is a Banach algebra with

respect to the convolution product

(f ∗ g)(y) =

∫

Gr(y)
g(x)f(x−1y) dλr(y)(x) for all f, g ∈ L1(G,λ), y ∈ G,

and there exists a contractive algebra homomorphism L : L1(G,λ)→ L(H) such that

(
L(f)ξ

)
(y) =

∫

Gr(y)
f(x)D−1/2(x)ξ(x−1y) dλr(y)(x) for all f, ξ ∈ Cc(G), y ∈ G.

Routine arguments show that there exists a unique continuous map

L2(G,λ)× L2(G,λ)→ C0(G), (ξ, ξ′) 7→ ξ ∗ ξ′∗,
such that (ξ ∗ ξ′∗)(x) =

∫
Gr(x) ξ(y)ξ′(x−1y) dλr(x)(y) for all ξ, ξ′ ∈ Cc(G), x ∈ G.

Lemma 3.13. Let âξ,ξ′ := 〈j(ξ)|2V |j(ξ′)〉2 and aη,η′ := 〈j(η)|1V |ĵ(η′)〉1 ∈ A0
V , where

ξ, ξ′ ∈ L2(G,λ) and η, η′ ∈ Cc(G). Then âξ,ξ′ = m(ξ ∗ ξ′∗) and aη,η′ = L(ηη′).

Proof. By continuity, we may assume ξ, ξ′ ∈ Cc(G). Then for all ζ, ζ ′ ∈ Cc(G),

〈ζ|âξ,ξ′ζ ′〉 = 〈ζ < j(ξ)|V (ζ ′ < j(ξ′))〉

=

∫

G

∫

Gr(x)
ζ(x)ξ(y)ζ ′(x)ξ′(x−1y) dλr(x)(y) dν(x)

〈ζ|aη,η′ζ ′〉 = 〈j(η) = ζ|V (ĵ(η′) = ζ ′)〉

=

∫

G

∫

Gr(y)
η(x)ζ(y)η′(x)D−1/2(x)ζ ′(x−1y) dλr(y)(x) dν(y). �

The algebra Â0
V can be considered as a continuous Fourier algebra of the locally compact

groupoid G. A Fourier algebra for measured groupoids was defined and studied by
Renault [23], and for measured quantum groupoids by Vallin [32].

Remark 3.14. A Fourier algebra A(G) for locally compact groupoids was defined by
Paterson in [21] as follows. He constructs a Fourier-Stieltjes algebra B(G) ⊆ C(G)
and defines A(G) to be the norm-closed subalgebra of B(G) generated by the set
Acf (G) := {âξ,ξ′ | ξ, ξ′ ∈ L2(G,λ)}. The definition of B(G) in immediately implies
that ‖π̂V (ωξ,ξ′)‖B(G) ≤ ‖ξ‖‖ξ′‖ for all ξ ∈ α∞, ξ′ ∈ β∞ with finitely many non-zero
components. Therefore, the identity on Acf (G) extends to a contractive homomorphism

from Â0
V to A(G).



APPENDIX I.2 — C∗-PSEUDO-MULTIPLICATIVE UNITARIES 69

Remark 3.15. Another Fourier space Ã(G) considered in [21, Note after Proposition 13]

is defined as follows. For each η ∈ L2(G,λ) and u ∈ G0, write ‖ξn(u)‖ := 〈ξn|ξn〉(u)1/2.
Denote by M the set of all pairs (ξ, ξ′) of sequences in L2(G,λ) such that the supremum

|(ξ, ξ′)|M := supu,v∈G0

∑
n ‖ξn(u)‖‖ξ′n(v)‖ is finite, and denote by Ã(G) the completion

of the linear span of Acf (G) with respect to the norm defined by

‖â‖Ã(G)
= inf

{
|(ξ, ξ′)|M

∣∣∣∣∣â =
∑

n

âξn,ξ′n

}
.

The identity on Acf (G) extends to a linear contraction from Â0
V to Ã(G) because

‖ξ‖2 = sup
u∈G0

∑

n

〈ξn|ξn〉(u) = sup
u∈G0

∑

n

‖ξn(u)‖2, ‖ξ′‖2 = sup
v∈G0

∑

n

‖ξn(v)‖2,

for all ξ, ξ′ ∈ L2(G,λ)∞ and hence |(ξ, ξ′)|M = supu,v∈G0

∑
n ‖ξn(u)‖‖ξ′n(v)‖ ≤ ‖ξ‖‖ξ′‖.

Recall that the reduced groupoid C∗-algebra C∗r (G) is the closed linear span of all oper-
ators of the L(g), where g ∈ L1(G,λ) [22].

Theorem 3.16. Let V be the C∗-pseudo-multiplicative unitary of a locally compact

groupoid G. Then ((ÂV )β,αH , ∆̂V ) and ((AV )α,β̂H ,∆V ) are Hopf C∗-bimodules and

ÂV = m(C0(G)),
(
∆̂V (m(f))ω

)
(x, y) = f(xy)ω(x, y),

AV = C∗r (G),
(
∆V (L(g))ω′

)
(x′, y′) =

∫

Gu′
g(z)D−1/2(z)ω′(z−1x′, z−1y′) dλu

′
(z)

for all f ∈ C0(G), ω ∈ H
β̂
⊗
b†
αH, (x, y) ∈ Gs×rG and g ∈ Cc(G), ω′ ∈ Hα⊗

b
βH,

(x′, y′) ∈ Gr×rG, where u′ = r(x′) = r(y′).

Proof. The first assertion will follow from Example 4.3 and Theorem 4.5 in subsection

4.1. The equations concerning ÂV , AV and ∆̂V , ∆V follow from Lemma 3.13 and
straightforward calculations. �

4. Regular, proper and étale C∗-pseudo-multiplicative unitaries

Let V : H
β̂
⊗
b†
αH → Hα⊗

b
βH be a C∗-pseudo-multiplicative unitary as before.

4.1. Regularity. In [3], Baaj and Skandalis showed that the pairs (ÂV , ∆̂V ) and (AV ,∆V )
associated to a multiplicative unitary V on a Hilbert space H form Hopf C∗-algebras if
the unitary satisfies the regularity condition [〈H|2V |H〉1] = K(H). This condition was
generalized by Baaj in [1, 2] and extended to pseudo-multiplicative unitaries by Enock
[9]. To adapt it to C∗-pseudo-multiplicative unitaries, we consider the space

CV := [〈α|1V |α〉2] ⊆ L(H).

Proposition 4.1. [CV CV ] = CV , CV op = C∗V , [CV α] = α, and [CV ρβ(B)] = [ρβ(B)CV ] =
CV = [CV ρβ̂(B)] = [ρ

β̂
(B)CV ].
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Proof. The proof is completely analogous to the proof of Proposition 3.2; for example,
the first equation follows from the commutativity of the following two diagrams:

H

|α〉2
��

CV

//

|α〉2
��

H
|α〉2
##

CV

// H

H
β̂
⊗
b†
αH

|α〉2

//

H
β̂
⊗
b†
αH

V //

|α〉3
��

Hα⊗
b
βH

〈α|1
;;

|α〉3 !!

H
β̂
⊗
b†
αH

V //

== 〈α|1

Hα⊗
b
βH

〈α|1
OO

Hα⊗
b
βH

〈α|1

oo

H
β̂
⊗
b†
αH β̂

⊗
b†
αH

V12
//

V23
��

Hα⊗
b
βH β̂

⊗
b†
αH

V23
// Hα⊗

b
βHα⊗

b
βH

〈α|1
OO

H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

V13 // (H
β̂
⊗
b†
αH)(α/α)⊗

b
βH

V12
OO 〈α|2

OO

H

|α〉2��

CV

//

|α〉2��

H

H
β̂
⊗
b†
αH

|α〉2
//

ρ
(β̂.β)

(B)
// H

β̂
⊗
b†
αH

V // Hα⊗
b
βH

〈α|1
OO

H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

〈α|2 OO

V13 // (H
β̂
⊗
b†
αH)(α/α)⊗

b
βH

〈α|2 OO

�

Definition 4.2. A C∗-pseudo-multiplicative unitary (b, H, β̂, α, β, V ) is semi-regular if
CV ⊇ [αα∗], and regular if CV = [αα∗].

Examples 4.3. i) V is (semi-)regular if and only if V op is (semi-)regular.
ii) The C∗-pseudo-multiplicative unitary of a locally compact Hausdorff groupoid

G (see Theorem 2.5) is regular. To prove this assertion, we use the nota-
tion introduced in subsection 2.3 and calculate that for each ξ, ξ′ ∈ Cc(G),
ζ ∈ Cc(G) ⊆ L2(G, ν), y ∈ G,

(
〈j(ξ′)|1V |j(ξ)〉2ζ

)
(y) =

∫

Gr(y)
ξ′(x)ζ(x)ξ(x−1y) dλr(y)(x),

(
j(ξ′)j(ξ)∗ζ

)
(y) = ξ′(y)

∫

Gr(y)
ξ(x)ζ(x) dλr(y)(x).

Using standard approximation arguments, we find [〈α|1V |α〉2] = [S(Cc(Gr×rG))] =
[αα∗], where for each ω ∈ Cc(Gr×rG), the operator S(ω) is given by

(S(ω)ζ)(y) =

∫

Gr(y)
ω(x, y)ζ(x)dλr(y)(x) for all ζ ∈ Cc(G), y ∈ G.

iii) In [31], we introduce compact C∗-quantum groupoids and construct for each
such quantum groupoid a C∗-pseudo-multiplicative unitary that turns out to be
regular.

We now deduce several properties of semi-regular and regular C∗-pseudo-multiplicative
unitaries, using commutative diagrams as in Subsection 3.2.

Proposition 4.4. If V is semi-regular, then CV is a C∗-algebra.
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Proof. Assume that V is regular. Then the following two diagrams commute, whence
[CV C

∗
V ] = [〈α|1〈α|1V23|α〉1|α〉2] = CV :

H
β̂
⊗
b†
αH |α〉1

��
H

|α〉2
//

C∗V ��

|α〉1
// Hα⊗

b
βH |α〉3

//

V ∗
��

Hα⊗
b
βH β̂

⊗
b†
αH

V ∗12��

V23

��

H H
β̂
⊗
b†
αH〈α|2

oo

(R)

|α〉3 // H
β̂
⊗
b†
αH β̂

⊗
b†
αH

V23��
H

|α〉2 //

CV
��

H
β̂
⊗
b†
αH

V
��

H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

V13
��

〈α|2
oo

H Hα⊗
b
βH〈α|1

oo (H
β̂
⊗
b†
αH)(α/α)⊗

b
βH〈α|2

oo Hα⊗
b
βHα⊗

b
βH

V ∗12
oo

〈α|1ooHα⊗
b
βH

〈α|1

OO

H
CV

//

|α〉2��

H

H
β̂
⊗
b†
αH

V //

|α〉1
��

Hα⊗
b
βH

〈α|1
OO

ρ(β/β)(B)
//

〈α|1
��

Hα⊗
b
βH

|α〉1
oo

Hα⊗
b
βH β̂

⊗
b†
αH

V23 // Hα⊗
b
βHα⊗

b
βH

|α〉1
OO

Now, assume that V is semi-regular. Then cell (R) in the first diagram need not com-
mute, but still [|α〉2〈α|2] ⊆ [〈α|2V23|α〉3] and hence [CV C

∗
V ] ⊆ [〈α|1〈α|1V23|α〉1|α〉2] =

CV . A similar argument shows that also [C∗V CV ] ⊆ CV , and from Proposition 3.2 and
[1, Lemme 3.3], it follows that CV is a C∗-algebra. �

Theorem 4.5. If CV = C∗V , then ((ÂV )α,β̂H , ∆̂V ) and ((AV )β,αH ,∆V ) are Hopf C∗-
bimodules. In particular, this is the case if V is semi-regular.

The key step in the proof is the following lemma:

Lemma 4.6. [V (1⊗
b†
CV )V ∗|β〉2] = [|β〉2Â∗V ].
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Proof. The following diagram commutes and shows that one has [V (1 ⊗
b†
CV )V ∗|β〉2] =

[|β〉2〈α|2V ∗|β〉2] = [|β〉2Â∗V ]:

H
|β〉2

//

|β〉2
��

Hα⊗
b
βH

|β〉3uu

V ∗

��

Hα⊗
b
βH

|α〉3 //

V ∗
��

Hα⊗
b
βH β̂

⊗
b†
αH

V ∗12��

V23 //

(P)

Hα⊗
b
βHα⊗

b
βH

V ∗12

��

H
β̂
⊗
b†
αH
1⊗
b†
CV

��

|α〉3 // H
β̂
⊗
b†
αH β̂

⊗
b†
αH

V23��
H
β̂
⊗
b†
αH

V
��

H
β̂
⊗
b†

(α.α)(Hα⊗
b
βH)

V13 //
〈α|2
oo (H

β̂
⊗
b†
αH)(α/α)⊗

b
βH

〈α|2
qq

H
β̂
⊗
b†
αH

〈α|2
��

|β〉3oo

Hα⊗
b
βH H

|β〉2
oo

Indeed, cell (P) commutes by (6), and the remaining cells by (5) or by inspection. �

Proof of Theorem 4.5. By Theorem 3.4, it suffices to show that ÂV = Â∗V . But by Propo-

sition 3.2 and Lemma 4.6, Â∗V = [ρα(B†)Â∗V ] = [〈β|2|β〉2Â∗V ] = [〈β|2V (1 ⊗
b†
CV )V ∗|β〉2].

Replacing V by V op, we obtain the assertion concerning AV . �

Remark 4.7. If V is regular, then [V |α〉2ÂV ] = [|β〉2ÂV ] and [V |β̂〉1AV ] = [|α〉1AV ].

Indeed, using Lemma 4.6 and the relation ÂV = Â∗V (Theorem 4.5), we find that

[V |α〉2ÂV ] = [V |α〉2〈α|2V ∗|β〉2] = [V (1 ⊗
b†
CV )V ∗|β〉2] = [|β〉2ÂV ], and replacing V

by V op, we obtain the second equation.

4.2. Proper and étale C∗-pseudo-multiplicative unitaries. In [3], Baaj and Skan-
dalis characterized multiplicative unitaries that correspond to compact or discrete quan-
tum groups by the existence of fixed or cofixed vectors, respectively, and showed that
from such vectors, one can construct a Haar state and a counit on the associated legs.
We adapt some of their constructions to C∗-pseudo-multiplicative unitaries as follows.
Given a C∗-b(†)-module Kγ , let M(γ) = {T ∈ L(K,K) | TB(†) ⊆ γ, T ∗γ ⊆ B(†)}.

Definition 4.8. A fixed element for V is an η ∈ M(β̂) ∩M(α) ⊆ L(K, H) satisfying
V |η〉1 = |η〉1. A cofixed element for V is a ξ ∈ M(α) ∩M(β) ⊆ L(K, H) satisfying
V |ξ〉2 = |ξ〉2. We denote the set of all fixed/cofixed elements for V by Fix(V )/Cofix(V ).

Example 4.9. Let V be the C∗-pseudo-multiplicative unitary of a groupoid G; see
subsection 2.3. Identify M(L2(G,λ)) in the natural way with the completion of the
space

{
f ∈ C(G)

∣∣∣ r : supp f → G0 is proper, supu∈G0

∫
Gu |f(x)|2 dλu(x) is finite

}

with respect to the norm f 7→ supu∈G0

( ∫
Gu |f(x)|2 dλu(x)

)1/2
. Similarly as in [27,

Lemma 7.11], one finds that
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i) η0 ∈M(L2(G,λ)) is a fixed element if and only if for each u ∈ G0, η0|Gu\{u} = 0
almost everywhere with respect to λu;

ii) ξ0 ∈ M(L2(G,λ)) is a cofixed element if and only if ξ0(x) = ξ0(s(x)) for all
x ∈ G.

Remarks 4.10. i) Fix(V ) = Cofix(V op) and Cofix(V ) = Fix(V op).
ii) Fix(V )∗Fix(V ) and Cofix(V )∗Cofix(V ) are contained in M(B) ∩M(B†).

iii) ρα(B†)Fix(V ) = Fix(V )B† ⊆ β̂ and ρ
β̂
(B)Fix(V ) = Fix(V )B ⊆ α because

Fix(V ) ⊆M(β̂)∩M(α), and similarly ρβ(B)Cofix(V ) ⊆ α and ρα(B†)Cofix(V ) ⊆
β.

Lemma 4.11. i) 〈ξ|2V |ξ′〉2 = ρα(ξ∗ξ′) = ρ
β̂
(ξ∗ξ′) for all ξ, ξ′ ∈ Cofix(V ).

ii) 〈η|1V |η′〉1 = ρβ(η∗η′) = ρα(η∗η′) for all η, η′ ∈ Fix(V ).

Proof. Let ζ ∈ H and ξ, ξ′ ∈ Cofix(V ). Then 〈ξ|2V |ξ′〉2ζ = 〈ξ|2|ξ′〉2ζ = ρα(ξ∗ξ′)ζ and
(〈ξ|2V |ξ′〉2)∗ζ = 〈ξ′|2|ξ〉2ζ = ρ

β̂
((ξ′)∗ξ)ζ. The proof of ii) is similar. �

Proposition 4.12. i) ρ
β̂
(M(B))Cofix(V ) ⊆ Cofix(V ) and ρβ(B)Fix(V ) ⊆ Fix(V ).

ii) [Cofix(V )Cofix(V )∗Cofix(V )] = Cofix(V ) and [Fix(V )Fix(V )∗Fix(V )] = Fix(V ).
iii) [Cofix(V )∗Cofix(V )] and [Fix(V )∗Fix(V )] are C∗-subalgebras of M(B)∩M(B†);

in particular, they are commutative.

Proof. We only prove the assertions concerning Cofix(V ).
i) Let T ∈M(B) and ξ ∈ Cofix(V ). Then ρ

β̂
(T )ξ ⊆M(β)∩M(α) because ρ

β̂
(B)β ⊆ β

and ρ
β̂
(B)α ⊆ α. The relation V (β̂ . β̂) = α . β̂ furthermore implies

V |ρ
β̂
(T )ξ〉2 = V ρ

(β̂.β̂)
(T )|ξ〉2 = ρ

(α.β̂)
(T )V |ξ〉2 = ρ

(α.β̂)
(T )|ξ〉2 = |ρ

β̂
(T )ξ〉2.

ii) Using i) and the relation Cofix(V )∗Cofix(V ) ⊆M(B†), we find that

[Cofix(V )Cofix(V )∗Cofix(V )] ⊆ [Cofix(V )M(B†)] = [ρ
β̂
(M(B))Cofix(V )] ⊆ Cofix(V ).

Therefore, [Cofix(V )∗Cofix(V )] is a C∗-algebra and Cofix(V ) is a Hilbert C∗-module
over [Cofix(V )∗Cofix(V )]. Now, [15, p. 5] implies that the inclusion above is an equality.
iii) This follows from ii) and Remark 4.10 ii). �

Definition 4.13. The C∗-pseudo-multiplicative unitary V is étale if η∗η = idK for some
η ∈ Fix(V ), proper if ξ∗ξ = idK for some ξ ∈ Cofix(V ), and compact if it is proper and
B,B† are unital.

Example 4.14. The C∗-pseudo-multiplicative unitary of a groupoid G (subsection 2.3)
is étale/proper/compact if and only if G is étale/proper/compact. This follows from
similar arguments as in [27, Theorem 7.12].

Remarks 4.15. i) By Remark 4.10, V is étale/proper if and only if V op is proper/étale.
ii) If V is proper and ξ ∈ Cofix(V ), ξ∗ξ = idK, then

[ρ
β̂
(B)ρα(B†)] = [ρα(B†)〈ξ|2V |ξ〉2ρβ̂(B)] = [〈ξB†|2V |ξB〉2] ⊆ [〈β|2V |α〉2] = ÂV .

Similarly, if V is étale, then [ρβ(B)ρα(B†)] ∈ AV .
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Fixed and cofixed vectors give rise to invariant operator-valued weights and counits on
the legs of V as follows.

Definition 4.16. Let (Aβ,αH ,∆) be a Hopf C∗-bimodule over b.

A bounded left Haar weight for (Aβ,αH ,∆) is a completely positive contraction φ : A→ B
satisfying φ(aρβ(b)) = φ(a)b and φ(〈ξ|1∆(a)|ξ′〉1) = ξ∗ρβ(φ(a))ξ′ for all a ∈ A, b ∈ B,
ξ, ξ′ ∈ α. We call φ normal if φ ∈ ΩM(β)(A).

Similarly, a bounded right Haar weight for (Aβ,αH ,∆) is a completely positive contraction

ψ : A → B† satisfying ψ(aρα(b†)) = ψ(a)b† and ψ(〈η|2∆(a)|η′〉2) = η∗ρα(ψ(a))η′ for all
a ∈ A, b† ∈ B†, η, η′ ∈ β. We call ψ normal if ψ ∈ ΩM(α)(A).

A bounded (left/right) counit for (Aβ,αH ,∆) is a morphism of C∗-(b†, b)-algebras ε : Aβ,αH →
L(K)B

†,B
K that makes the (left/right one of the) following two diagrams commute,

Aα∗
b
βA

ε∗
b
id

��

A
∆oo

��
L(K)B∗

b
βA // L(KB⊗

b
βH)

∼= // L(H),

A
∆ //

��

Aα∗
b
βA

id ∗
b
ε

��
L(H) L(Hα⊗

b
B†K)

∼=oo Aα∗
b
B†L(K),oo

where the isomorphisms L(KB⊗
b
βH) ∼= L(H) ∼= L(Hα⊗

b
B†K) are induced by the isomor-

phisms (4).

Remark 4.17. Let (Aβ,αH ,∆) be a Hopf C∗-bimodule over b. Evidently, a completely

positive contraction φ : A → B is a normal bounded left Haar weight for (Aβ,αH ,∆) if
and only if φ ∈ ΩM(β)(A) and (id ∗φ) ◦ ∆ = ρβ ◦ φ. A similar remark applies to right
Haar weights.

Theorem 4.18. Let V be an étale C∗-pseudo-multiplicative unitary.

i) There exists a contractive homomorphism ε̂ : ÂV → L(K) such that ε̂(〈η|2V |ξ〉2) =
η∗ξ for all η ∈ β, ξ ∈ α.

ii) Assume that V is regular and let D := [β∗α]. Then DB,B†
K is a C∗-(b, b†)-

algebra and ε̂ is a morphism from (ÂV )α,β̂H to DB,B†
K and a bounded counit for

((ÂV )α,β̂H , ∆̂V ).

Proof. Choose an η0 ∈ Fix(V ) with η∗0η0 = idK and define ε̂ : ÂV → L(K) by â 7→ η∗0 âη0.
Then ε̂ is contractive. For all ξ ∈ α, η ∈ β, ζ ∈ K,

〈η|2V |ξ〉2η0ζ = 〈η|2V (η0 = ξζ) = 〈η|2(η0 = ξζ) = η0(η∗ξ)ζ,

and hence âη0 = η0ε̂(â) and ε̂(̂bâ) = η∗0 b̂âη0 = η∗0 b̂η0ε̂(â) = ε̂(̂b)ε̂(â) for all â, b̂ ∈ ÂV .
Assume that V is regular. Then D is a C∗-algebra and ε̂ is a morphism because by

construction, ε̂ is a ∗-homomorphism, D = ε̂(ÂV )′, η∗0 ∈ Lε̂(αHβ̂
,BKB†), and [η∗0α] ⊇

[η∗0η0B] = B and [η∗0β̂] ⊇ [η∗0η0B
†] = B†. Let â ∈ ÂV . Then

(ε̂ ∗
b†

id)(∆̂V (â)) = 〈η0|1∆̂V (â)|η0〉1
= 〈η0|1V ∗(1⊗

b
â)V |η0〉1 = 〈η0|1(1⊗

b
â)|η0〉1 = ρβ(η∗0η0)â = â,
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and if â = 〈η|2V |ξ〉2 for some η ∈ β, ξ ∈ α, then (id ∗ε̂)(∆̂V (â)) = 〈η0|2∆̂V (â)|η0〉2 = â
because the following diagram commutes:

H

|η0〉2
��

|ξ〉2 // H
β̂
⊗
b†
αH

|η0〉2
��

V //

(∗)

Hα⊗
b
βH

|η0〉2
!!

id // Hα⊗
b
βH

==
〈η0|2

〈η|2 // H

H
β̂
⊗
b†
αH

|ξ〉3 //

∆̂V (â)

OO
H
β̂
⊗
b†
αH β̂

⊗
b†
αH

V13V23 //(H
β̂
⊗
b†
αH)(α/α)⊗

b
βH

〈η|3 // H
β̂
⊗
b†
αH

〈η0|2

OO

Indeed, the lower cell commutes by equation (12), cell (*) commutes because V23|η0〉2 =
|η0〉2, and the other cells commute as well. �

Theorem 4.19. Let V be a proper regular C∗-pseudo-multiplicative unitary. Then there

exists a normal bounded left Haar weight φ for ((ÂV )α,β̂H , ∆̂V ).

Proof. Choose ξ0 ∈ Cofix(V ) with ξ∗0ξ0 = idK. By Proposition 3.2 and Remark 4.10 i),

[ξ∗0ÂV ξ0] = [ξ∗0ρα(B†)ÂV ρα(B†)ξ0] ⊆ [β∗ÂV β] ⊆ B†. Hence, we can define a completely

positive map φ : ÂV → B† by â 7→ ξ∗0 âξ0, and φ ∈ ΩM(α)(ÂV ). For all â ∈ ÂV ,

(id ∗φ)(∆̂V (â)) = 〈ξ0|2V ∗(id⊗
b
â)V |ξ0〉2 = 〈ξ0|2(id⊗

b
â)|ξ0〉2 = ρα(ξ∗0 âξ0) . �

As an example, consider the C∗-pseudo-multiplicative unitary V : H
β̂
⊗
b†
αH → Hα⊗

b
βH

associated to a locally compact, Hausdorff, second countable groupoid G as in subsection
2.3.

Proposition 4.20. i) Let G be étale. Then V is étale, ÂV ∼= C0(G), ε̂(ÂV ) ∼=
C0(G0), and ε̂ is given by the restriction of functions on G to functions on G0.

ii) Let G be proper. Then V op is étale, AV = ÂV op = C∗r (G), and for each f ∈
Cc(G), the operator ε̂(L(f)) ∈ L(L2(G0, µ)) is given by

(ε̂(L(f))ζ)(u) =

∫

Gu
f(x)D−1/2(x)ζ(s(x)) dλu(x) for all ζ ∈ L2(G0, µ), x ∈ G.

Proof. For all ξ, ξ′ ∈ Cc(G), ζ ∈ L2(G0, µ) and u ∈ G0, we have by Lemma 3.13

(ε̂(m(ξ̄ ∗ ξ′∗))ζ)(u) = (ε̂(âξ,ξ′)ζ)(u) = (j(ξ)∗j(ξ′)ζ)(u)

=

∫

Gu
ξ(x)ξ′(x)ζ(u) dλu(x) = (ξ̄ ∗ ξ′∗)(u)ζ(u),

(ε̂(L(ξ̄ξ′))ζ)(u) = (ε̂(aξ,ξ′)ζ)(u) = (j(ξ)∗ĵ(ξ′)ζ)(u)

=

∫

Gu
ξ(x)ξ′(x)D−1/2(x)ζ(s(x)) dλu(x). �

Proposition 4.21. i) Let G be proper. Then V is proper, ÂV ∼= C0(G), and the

map φ : ÂV → C0(G0) given by (φ(f))(u) =
∫
Gu f(x) dλu(x) is a normal bounded

left Haar weight for ((ÂV )α,β̂H , ∆̂V ).
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ii) Let G be étale. Then V op is proper and there exists a normal bounded left and

right Haar weight φ for ((AV )β,αH ,∆V ) given by L(f) 7→ f |G0 for all f ∈ Cc(G).

Proof. This follows from Theorem 4.19 and similar calculations as in 4.20. �

References

[1] S. Baaj. Représentation régulière du groupe quantique Eµ(2) de Woronowicz. C. R. Acad. Sci. Paris
Sér. I Math., 314(13):1021–1026, 1992.

[2] S. Baaj. Représentation régulière du groupe quantique des déplacements de Woronowicz. Astérisque,
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Abstract. We propose a definition of compact quantum groupoids in the setting of
C�-algebras and associate to every such quantum groupoid a fundamental unitary.
These two notions are based on a new approach to relative tensor products of Hilbert
modules and to fiber products of C�-algebras. Using the fundamental unitary, we asso-
ciate to every compact quantum groupoid a dual Hopf C�-bimodule and a measurable
quantum groupoid in the sense of Enock and Lesieur. Examples related to compact
groupoids, r-discrete groupoids, and center-valued traces are outlined.
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1. Introduction

1.1. Overview. In the setting of von Neumann algebras, measurable quantum groupoids
— in particular compact ones — were studied by Enock and Lesieur [6, 5, 8], building
on Vallin’s Hopf-von Neumann bimodules and pseudo-multiplicative unitaries [20, 21]
and Haagerup’s operator-valued weights.

In this article, we propose a definition of compact quantum groupoids in the setting of
C�-algebras — briefly called compact C�-quantum groupoids — building on the notion
of a Hopf-C�-bimodule and a C�-pseudo-multiplicative unitary [15, 16, 17]. To each
compact C�-quantum groupoid, we associate a regular C�-pseudo-multiplicative unitary,
a dual Hopf C�-bimodule, and a measurable quantum groupoid. To illustrate the general
theory, we outline several examples of compact C�-quantum groupoids: the C�-algebra
of continuous functions on a compact groupoid, the reduced C�-algebra of an étale
groupoid with compact base, and principal compact C�-quantum groupoids.

Further results on the dual Hopf C�-bimodule of a compact quantum groupoid and
a detailed discussion of the examples listed above can be found in [19]. An article on
the general framework of Hopf C�-bimodules and C�-pseudo-multiplicative unitaries is
in preparation [15].

1.2. Plan. This article is organized as follows. The definition a compact quantum
groupoid in the setting of C�-algebras and the necessary preliminaries are introduced
in Sections 2–4. Recall that a measured compact groupoid consists of a base space G0,
a total space G, range and source maps r, s : G Ñ G0, a multiplication Gs�rG Ñ G,
a left and a right Haar system, and a quasi-invariant measure on G0. Roughly, the
corresponding ingredients of a compact C�-quantum groupoid are unital C�-algebras
B and A, representations r, s : Bpopq Ñ A, a comultiplication ∆: A Ñ A � A, a left
and a right Haar weight φ, ψ : A Ñ Bpopq, and a KMS-state on B, subject to several
axioms. We introduce these ingredients in several steps. First, we focus on the tuple
pB,A, r, φ, s, ψq, which can be considered as a compact C�-quantum graph, and review
some related constructions (Section 2). Next, we construct the fiber product A � A
and the underlying relative tensor product of Hilbert modules [15, 16, 17] (Section 3).
Finally, we give the definition of a compact C�-quantum groupoid and establish first
properties like uniqueness of the Haar weights up to scaling (Section 4).

In Sections 5–7, we study further properties of compact C�-quantum groupoids and
give some examples. First, we associate to every compact C�-quantum groupoid a fun-
damental unitary and, using that unitary, a dual Hopf C�-bimodule and a measurable
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quantum groupoid (Section 5). The fundamental unitary generalizes the multiplica-
tive unitaries of Baaj and Skandalis [1] and can be considered as a particular pseudo-
multiplicative unitary in the sense of Vallin [21]. Second, we sketch examples of compact
C�-quantum groupoids related to center-valued traces on C�-algebras and to compact
or étale groupoids (Section 6, 7).

1.3. Preliminaries. Let us fix some general notation and terminology.
Given a subset Y of a normed space X, we denote by rY s � X the closed linear span

of Y . Given a Hilbert space H and a subset X � LpHq, we denote by X 1 the commutant
of X. Given a C�-algebra A and a C�-subalgebra B �MpAq, we denote by AXB1 the
relative commutant ta P A | ab � ba for all b P Bu. All sesquilinear maps like inner
products of Hilbert spaces are assumed to be conjugate-linear in the first component
and linear in the second one.

We shall make extensive use of (right) Hilbert C�-modules [7].
Let A and B be C�-algebras. Given Hilbert C�-modules E and F over B, we denote

the space of all adjointable operators from E to F by LBpE,F q. Let E and F be C�-
modules over A and B, respectively, and let π : A Ñ LBpF q be a �-homomorphism.
Recall that the internal tensor product E bπ F is a Hilbert C�-module over B [7, §4]
and the closed linear span of elements η bπ ξ, where η P E and ξ P F are arbitrary, and
xηbπ ξ|η

1bπ ξ
1y � xξ|πpxη|η1yqξ1y and pηbπ ξqb � ηbπ ξb for all η, η1 P E, ξ, ξ1 P F , b P B.

We denote the internal tensor product by “=” and drop the index π if the representation
is understood; thus, for example, E = F � E =π F � E bπ F .

We also define a flipped internal tensor product F π<E as follows. We equip the
algebraic tensor product F dE with the structure maps xξdη|ξ1dη1y :� xξ|πpxη|η1yqξ1y,
pξ d ηqb :� ξb d η, form the separated completion, and obtain a Hilbert C�-B-module
F π<E which is the closed linear span of elements ξπ<η, where η P E and ξ P F are
arbitrary, and xξπ<η|ξ1π<η1y � xξ|πpxη|η1yqξ1y and pξπ<ηqb � ξbπ<η for all η, η1 P E,
ξ, ξ1 P F , b P B. As above, we drop the index π and simply write “<” instead of “π<” if
the representation π is understood. Evidently, the usual and the flipped internal tensor

product are related by a unitary Σ: F = E
�
ÝÑ E < F , η = ξ ÞÑ ξ < η.

Finally, let E1, E2 be Hilbert C�-modules over A, let F1, F2 be Hilbert C�-modules
over B with completely positive maps πi : AÑ LBpFiq (i � 1, 2), and let S P LApE1, E2q,
T P LBpF1, F2q such that Tπ1paq � π2paqT for all a P A. Then there exists a unique
operator S=T P LBpE1 =F1, E2 =F2q such that pS=T qpη=ξq � Sη=Tξ for all η P E1,
ξ P F1, and pS = T q� � S� = T � [3, Proposition 1.34]

2. Compact C�-quantum graphs

The first ingredient in the definition of a compact C�-quantum groupoid is a compact
C�-quantum graph with a coinvolution. Roughly, the latter consists of a C�-algebra
B with a faithful KMS-state, a C�-algebra A, two compatible module structures con-
sisting of representations B,Bop Ñ A and conditional expectations A Ñ B,Bop, and
a �-antiautomorphism of A that intertwines these module structures. Thinking of the
underlying graph of a groupoid, these objects correspond to the space of units with a
quasi-invariant measure, the total space of arrows, the range and the source map, the
left and the right Haar weight, and the inversion of the groupoid.
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Before we can define compact C�-quantum graphs and coinvolutions, we have to recall
KMS-states on C�-algebras, introduce module structures on C�-algebras with respect
to such states, and present an associated GNS-Rieffel-construction.

2.1. KMS-states on C�-algebras and associated GNS-constructions. Let µ be
a faithful KMS-state on a C�-algebra B [11, §8.12]. We denote by σµ the modular
automorphism group, by Hµ the GNS-space, by Λµ : B Ñ Hµ the GNS-map, by ζµ �
Λµp1Bq the cyclic vector, and by Jµ : Hµ Ñ Hµ the modular conjugation associated to
µ. Recall that

JµΛµpbq � Λµpσ
µ
i{2pbq

�q for all b P Dompσµi{2q.(1)

We omit explicit mentioning of the GNS-representation πµ : B Ñ LpHµq and identify B
with πµpBq; thus, Λµpbq � bζµ for all b P B.

We denote by Bop the opposite C�-algebra of B, which coincides with B as a Banach
space with involution but has the reversed multiplication, by B Ñ Bop, b ÞÑ bop, the
canonical antiisomorphism, and by µop : Bop Ñ C, bop ÞÑ µpbq, the opposite state of
µ. Using formula (1), one easily verifies that µop is a KMS-state, that the modular

automorphism group σµ
op

is given by σµ
op

t pbopq � σµ�tpbq
op for all b P B, t P R, and that

one can always choose the GNS-space and GNS-map for µop such that Hµop � Hµ and
Λµoppb

opq � JµΛµpb
�q for all b P B. Then ζµop � ζµ, Jµop � Jµ, πµoppbq � Jµπµpbq

�Jµ for
all b P B, and for all b P Dompσµ�i{2q, x P B,

Λµoppb
opq � Λµpσ

µ
�i{2pbqq, bopΛµpxq � Λµpxσ

µ
�i{2pbqq.

For later application, we note the extension to von Neumann algebras: The state µ̃
on N :� B2 � LpHµq given by y ÞÑ xζµ|yζµy is the unique normal extension of µ, it is
faithful because ζµ is cyclic for πµoppB

opq � N 1, and the Hilbert space Hµ and the map
Λµ̃ : N Ñ Hµ̃, y ÞÑ yζµ, form a GNS-representation for µ̃.

2.2. Module structures and associated Rieffel constructions. We shall use the
following kind of module structures on C�-algebras relative to KMS-states:

Definition 2.1. Let µ be a faithful KMS-state on a unital C�-algebra B. A µ-module
structure on a unital C�-algebra A consists of a unital embedding r : B Ñ A and a faithful
completely positive map φ : A Ñ B such that r � φ : A Ñ rpBq is a unital conditional
expectation, ν :� µ �φ is a KMS-state, and σνt � r � r � σµt , σµt �φ � φ � σνt for all t P R.

Given a module structure as above, we can form a GNS-Rieffel-construction:

Lemma 2.2. Let µ be a faithful KMS-state on a unital C�-algebra B, let pr, φq be a
µ-module structure on a unital C�-algebra A, and put ν :� µ � φ.

i) There exists a unique isometry ζφ : Hµ ãÑ Hν such that ζφΛµpbq � Λνprpbqq for
all b P B.

ii) ζφJµ � Jνζφ, ζφb � rpbqζφ, ζ�φΛνpaq � Λµpφpaqq, ζ
�
φa � φpaqζ�φ for all b P B,

a P A.
iii) There exists a µop-module structure prop, φopq on Aop such that roppbopq � rpbqop

and φoppaopq � φpaqop for all b P B, a P A. For all b P B, ζφΛµoppb
opq �

Λνoppr
oppbopqq.
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iv) Put N :� B2 � LpHµq, M :� A2 � LpHνq. Then r extends uniquely to a normal
embedding r̃ : N Ñ M , and φ extends uniquely to a faithful normal completely
positive map φ̃ : M Ñ N . Moreover, ν̃ � µ̃ � φ̃, ζφy � r̃pyqζφ, ζ�φx � φ̃pxqζ�φ ,

φ̃pxr̃pyqq � φ̃pxqr̃pyq for all x PM , y P N .

Proof. (1)–(3) The proof of assertion (1) is straightforward, and ζφJµ � Jνζφ because
Dompσµi{2q is dense in B and because ζφJµΛµpbq � ζφΛµpσ

µ
i{2pbq

�q � Λνprpσ
µ
i{2pbq

�qq �

Λνpσ
ν
i{2prpbqq

�q � JνζφΛµpbq for all b P Dompσµi{2q. The proof of the remaining assertions

is routine.
(4) Since rpbqaopζφ � aopζφb for all a P A, b P B and rAopζφHµs � Hν , r is continuous

with respect to the σ-weak topologies on LpHµq and LpHνq and extends uniquely to

r̃ : M Ñ N as claimed. The map φ̃ is uniquely determined by φ̃pxq � ζ�φxζφ for all

x P M , and ν̃pxq � xζν |xζνy � xζµ|ζ
�
φxζφζµy � pµ̃ � φ̃qpxq for all x P M . Since φ is

faithful, so are ν, ν̃ and necessarily also φ̃. The proof of the remaining assertions is
routine again. �

2.3. Compact C�-quantum graphs. We need the following simple variant of a Radon-
Nikodym derivative for KMS-states:

Lemma 2.3. Let A be a unital C�-algebra with a faithful KMS-state ν and a positive
invertible element δ such that νpδq � 1 and σνt pδq � δ for all t P R.

i) The state νδ on A given by νδpaq � νpδ1{2aδ1{2q for all a P A is a faithful KMS-
state and σνδt � Adδit �σ

ν
t � σνt � Adδit for all t P R.

ii) The map Λνδ : AÑ Hν , a ÞÑ Λνpaδ
1{2q, is a GNS-map for νδ, and the associated

modular conjugation Jνδ is equal to Jν .

iii) If δ̃ P A is another positive invertible element satisfying νpδ̃q � 1, σνt pδ̃q � δ for

all t P R, and νδ̃ � νδ, then δ � δ̃. �
Definition 2.4. A compact C�-quantum graph is a tuple G � pB,µ,A, r, φ, s, ψ, δq that
consists of

i) a unital C�-algebra B with a faithful KMS-state µ and a unital C�-algebra A,
ii) a µ-module structure pr, φq and a µop-module structure ps, ψq on A, respectively,

such that rpBq and spBopq commute,
iii) a positive, invertible, σν-invariant element δ P A X rpBq1 X spBopq1 satisfying

νpδq � 1 and µop � ψ � pµ � φqδ.

Given such a compact C�-quantum graph, we put ν :� µ � φ, ν�1 :� µop � ψ and denote
by ζφ, ζψ : Hµ Ñ Hν the isometries defined in Lemma 2.2.

Till the end of this section, let G be a compact C�-quantum graph as above. Since
ψprpbqqcop � ψprpbqspcopqq � ψpspcopqrpbqq � copψprpbqq and φpspbopqqc � cφpspbopqq for
all b, c P B, we can define completely positive maps

τ :� ψ � r : B Ñ ZpBopq and τ : :� φ � s : Bop Ñ ZpBq.(2)

We identify ZpBq and ZpBopq with B XBop � LpHµq in the natural way.
Clearly, ν � r � µ � φ � r � µ and ν�1 � s � µop � ψ � s � µop. The compositions

ν � s � µ � τ : and ν�1 � r � µop � τ are related to µop and µ, respectively, as follows.
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Lemma 2.5. i) φpδq P B and ψpδ�1q P Bop are positive, invertible, central, invari-
ant with respect to σµ and σµ

op
, respectively, and µpφpδqq � 1 � µoppψpδ�1qq.

ii) ν�1 � r � µop � τ � µφpδq and ν � s � µ � τ : � µop
ψpδ�1q

.

Proof. (1) We only prove the assertions concerning φpδq. Since δ is positive and invert-
ible, there exists an ε ¡ 0 such that δ ¡ ε1A, and since φ is positive, we can conclude
φpδq ¡ εφp1Aq � ε1B. Therefore, φpδq is positive and invertible. It is central because
bφpδq � φprpbqδq � φpδrpbqq � φpδqb for all b P B, and invariant under σµ because
σµt pφpδqq � φpσνt pδqq � φpδq for all t P R.

(2) The first relation holds because ν�1prpbqq � µpφpδ1{2rpbqδ1{2qq � µpbφpδqq �

µpφpδq1{2bφpδq1{2q for all b P B. The second relation follows similarly. �

2.4. Coinvolutions. The unitary antipode of a compact C�-quantum groupoid will be
a coinvolution of the underlying compact C�-quantum graph.

Definition 2.6. A coinvolution for G is a �-antiautomorphism R : A Ñ A satisfying
R �R � idA and Rprpbqq � spbopq, φpRpaqq � ψpaqop for all b P B, a P A.

Lemma 2.7. Let R be a coinvolution for G.

i) Rpδq � δ�1, φpδq � ψpδ�1qop, ν �R � ν�1, σνt �R � R � σν
�1

�t for all t P R.

ii) τpbq � τ :pbopq for all b P B.
iii) There exists a unique antiunitary I : Hν Ñ Hν , Λν�1paq ÞÑ ΛνpRpaq

�q, and

IΛνpaq � ΛνpRpaδ
1{2q�q, Ia�I � Rpaq for all a P A, I2 � idH , IζψJµ � ζφ,

IJν � JνI.

Proof. (1) The last equation follows from the fact that R is an antiautomorphism and
that ν � R � ν�1. Lemma 2.3 (3) implies that the element δ1 � Rpδ�1q is equal to

δ because νpδ1q � ν�1pδ�1q � νp1q � 1, σνt pδ
1q � Rpσν

�1

�t pδ
�1qq � Rpδ�1q � δ1 and

νδpaq � ν�1paq � νpRpaqq � ν�1pδ�1{2Rpaqδ�1{2q � νpδ11{2aδ11{2q for all a P A. Finally,
φpδq � pψ �RqpRpδ�1qqop � ψpδ�1qop.

(2) pφ � sqpbopq � pφ �R �R � sqpbopq � pψ � rqpbqop for all b P B.
(3) The formula for I defines an antiunitary since νpRpaqRpaq�q � pν � Rqpa�aq �

ν�1pa�aq for all a P A. The first two equations given in (3) follow immediately. The

remaining equations follow from the fact that for all a P A, b P B, c P Dompσν
�1

i{2 q,

I2Λνpaq � ΛνpRpRpaδ
1{2q�δ1{2q�q � Λνpaδ

1{2δ�1{2q � Λνpaq,

IζψJµΛµpb
�q � IζψΛµoppb

opq � IΛν�1pspbopqq � Λνprpbq
�q � ζφΛµpb

�q,

JνIΛν�1paq � Λνpσ
ν
i{2pRpaq

�q�q � ΛνpRpσ
ν�1

i{2 paq�q�q � IJν�1Λν�1paq. �

3. The relative tensor product and the fiber product

Fundamental to our definition of a compact C�-quantum groupoid are C�-modules
and C�-algebras over KMS-states, the relative tensor product of such C�-modules, and
the fiber product of such C�-algebras. The fiber product is needed to define the target
of the comultiplication, and the relative tensor product is needed to define this fiber
product and the domain and the range of the fundamental unitary.

For proofs and further details, we refer to [15, 16, 17].
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3.1. C�-modules and C�-algebras over KMS-states. We adopt the framework of
C�-modules and C�-algebras over C�-bases [15, 16, 17], but restrict to C�-bases asso-
ciated to KMS-states. A C�-base is a triple pH,B,B:q consisting of a Hilbert space
H and two commuting nondegenerate C�-algebras B,B: � LpHq. Let µ be a faithful
KMS-state on a C�-algebra B. Then pHµ, B,B

opq is a C�-base, where Hµ is the GNS-
space for µ and B and Bop act on Hµ � Hµop via the GNS-representations. Thus, we
can reformulate the theory developed in [17] for concrete KMS-states instead of general
C�-bases.

Definition 3.1. A C�-µ-module is a pair Hα � pH,αq, where H is a Hilbert space and
α � LpHµ, Hq is a closed subspace satisfying rαHµs � H, rαBs � α, and rα�αs � B �
LpHµq. A morphism between C�-µ-modules Hα and Kβ is an operator T P LpH,Kq
satisfying Tα � β, T �β � α. We denote the set of all such morphisms by LpHα,Kβq.

Lemma 3.2. Let Hα be a C�-µ-module.

i) α is a Hilbert C�-B-module with inner product pξ, ξ1q ÞÑ ξ�ξ1.
ii) There exist isomorphisms α=Hµ Ñ H, ξ=ζ ÞÑ ξζ, and Hµ<αÑ H, ζ<ξ ÞÑ ξζ.
iii) There exists a faithful, nondegenerate representation ρα : Bop Ñ LpHq such that

ραpb
opqpξζq � ξbopζ for all b P B, ξ P α, ζ P Hµ.

iv) Let Kβ be a C�-µ-module and T P LpHα,Kβq. Then Tραpb
opq � ρβpb

opqT for
all b P B, and left multiplication by T defines an operator in LBpα, βq, again
denoted by T . �

Let µ1, . . . , µn be faithful KMS-states on C�-algebras B1, . . . , Bn.

Definition 3.3. A C�-pµ1, . . . , µnq-module is a tuple pH,α1, . . . , αnq, where H is a
Hilbert space and pH,αiq is a C�-µi-module for each i � 1, . . . , n such that rραipB

op
i qαjs �

αj whenever i � j. In the case n � 2, we abbreviate αHβ :� pH,α, βq. The set of mor-
phisms between C�-pµ1, . . . , µnq-modules H � pH,α1, . . . , αnq, K � pK, γ1, . . . , γnq is
LpH,Kq :�

�n
i�1 LpHαi ,Kγiq � LpH,Kq.

Remark 3.4. If pH,α1, . . . , αnq is a C�-pµ1, . . . , µnq-module, then ραipB
op
i q � LpHαj q

and, in particular, rραipB
op
i q, ραj pB

op
j qs � 0 whenever i � j.

Definition 3.5. A C�-pµ1, . . . , µnq-algebra consists of a C�-pµ1, . . . , µnq-module pH,
α1, . . . , αnq and a nondegenerate C�-algebra A � LpHq such that ραipB

op
i qA is con-

tained in A for each i � 1, . . . , n. In the cases n � 1, 2, we abbreviate AαH :� pHα, Aq,

Aα,βH :� pαHβ, Aq. A morphism of C�-pµ1, . . . , µnq-algebras A � ppH,α1, . . . , αnq, Aq
and C � ppK, γ1, . . . , γnq, Cq is a nondegenerate �-homomorphism φ : A Ñ MpCq such
that rIφ,iαis � γi for each i � 1, . . . , n, where Iφ,i :� tT P LpHαi ,Kγiq | Ta � φpaqT for
all a P Au. We denote the set of all such morphisms by MorpA, Cq.

Remark 3.6. If φ is a morphism between C�-µ-algebras AαH and CγK , then φpραpb
opqq �

ργpb
opq for all b P B [16, Lemma 2.2].

3.2. The C�-module of a compact C�-quantum graph. For every compact C�-
quantum graph, the GNS-Rieffel-construction in Lemma 2.2 yields a C�-module as fol-
lows. Let µ be a faithful KMS-state on a unital C�-algebra B again.
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Lemma 3.7. Let pr, φq be a µ-module structure on a unital C�-algebra A. Put ν :� µ�φ,
H :� Hν , pα :� rAζφs, β :� rAopζφs, where ζφ is as in Lemma 2.2.

i)
pαHβ is a C�-pµ, µopq-module and ρ

pα � rop, ρβ � r.

ii) AβH is a C�-µop-algebra.
iii) aopζφ � σν�i{2paqζφ for all a P Dompσν�i{2q X rpBq1.

iv) A� pAX rpBq1qop � LpH
pαq and Aop � pAX rpBq1q � LpHβq.

Proof. (1) Lemma 2.2 implies that H
pα is a C�-µ-module and Hβ a C�-µop-module. The

equations for ρ
pα and ρβ follow from the fact that by Lemma 2.2, ρ

pαpb
opqaζφ � aζφb

op �
arpbqopζφ � rpbqopaζφ and ρβpbqa

opζφ � aopζφb � aoprpbqζφ � rpbqaopζφ for all b P B,
a P A. Hence, rρ

pαpB
opqβs � rrpBqopAopζφs � β and rρβpBqpαs � rrpBqAζφs � pα, so

pαHβ

is a C�-pµ, µopq-module.
(2) By (1), rρβpBqAs � rrpBqAs � A.
(3) Since σνt prpBqq � rpBq for all t P R, σν restricts to a one-parameter group of

automorphisms of A X rpBq1; in particular, a P Dompσν�i{2q X rpBq1 is dense in A X

rpBq1. Now, the claim follows from the fact that aopζφΛµpbq � Λνprpbqσ
ν
�i{2paqq �

Λνpσ
ν
�i{2paqrpbqq � σν�i{2paqζφΛµpbq for all a P rpBq1 X Dompσν�i{2q and b P B.

(4) We only prove the first inclusion, the second one follows similarly. Clearly, rApαs �pα, and by (3), rpAX rpBq1qoppαs � rApAX rpBq1qopζφs � rAζφs � pα. �

For a compact C�-quantum graph, Lemmas 2.7 and 3.7 imply:

Proposition 3.8. Let G � pB,µ,A, r, φ, s, ψ, δq be a compact C�-quantum graph. Put
ν :� µ � φ, ν�1 :� µop � ψ � νδ and

H :� Hν , pα :� rAζφs, β :� rAopζφs, pβ :� rAζψs, α :� rAopζψs.(3)

i) pH, pα, β, pβ, αq is a C�-pµ, µop, µop, µq-module.
ii) ρ

pα � rop, ρβ � r, ρ
pβ
� sop, ρα � s.

iii) Aβ,αH is a C�-pµop, µq-algebra.
iv) Let R be a coinvolution for G and define I : Hν Ñ Hν by Λν�1paq ÞÑ ΛνpRpaq

�q.

Then I pβJµ � pα and IβJµ � α. �

3.3. The relative tensor product of C�-modules. The relative tensor product of
C�-modules over KMS-states is a C�-algebraic analogue of the relative tensor product
of Hilbert spaces over a von Neumann algebra. We summarize the definition and main
properties; for proofs and further details, see [15, 16, 17].

Let µ be a faithful KMS-state on a C�-algebra B and let Hβ,Kγ be a C�-µ-module
and a C�-µop-module, respectively. The relative tensor product of Hβ and Kγ is the
Hilbert space Hβb

µ
γK :� β =Hµ < γ. It is spanned by elements ξ = ζ < η, where ξ P β,

ζ P Hµ, η P γ, and the inner product is given by xξ=ζ<η|ξ1=ζ 1<η1y � xζ|ξ�ξ1η�η1ζ 1y �
xζ|η�η1ξ�ξ1ζ 1y for all ξ, ξ1 P β, ζ, ζ 1 P Hµ, η, η1 P γ.

Obviously, there exists a flip isomorphism

Σ: Hβb
µ
γK Ñ Kγ b

µop
βH, ξ = ζ < η ÞÑ η = ζ < ξ.
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The isomorphisms β =Hµ � H, ξ = ζ � ξζ, and Hµ < γ � K, ζ < η � ηζ, of Lemma
3.2 induce the following isomorphisms, which we use without further notice:

Hρβ<γ � Hβb
µ
γK � β =ργ K, ξζ < η � ξ = ζ < η � ξ = ηζ.

Using these isomorphisms, we define the following tensor products of operators:

Sβb
µ
γT :� S = T P Lpβ =ργ Kq � LpHβb

µ
γKq for all S P LpHβq, T P ργpBq

1,

Sβb
µ
γT :� S < T P LpHρβ<γq � LpHβb

µ
γKq for all S P ρβpB

opq1, T P LpKγq.

Note that S = T � S = id <T � S < T for all S P LpHβq, T P LpKγq.
For each ξ P β, η P γ, there exist bounded linear operators

|ξy1 : K Ñ Hβb
µ
γK, ω ÞÑ ξ = ω, xξ|1 :� |ξy�1 : ξ1 = ω ÞÑ ργpξ

�ξ1qω,

|ηy2 : H Ñ Hβb
µ
γK, ω ÞÑ ω < η, xη|2 :� |ηy�2 : ω < η1 ÞÑ ρβpη

�η1qω.

We put |βy1 :� t|ξy1 | ξ P βu and similarly define xβ|1, |γy2, xγ|2.
Assume that H � pH,α1, . . . , αm, βq is a C�-pσ1, . . . , σm, µq-module and that K �

pK, γ, δ1, . . . , δnq is a C�-pµop, τ1, . . . , τnq-module, where σ1, . . . , σm, τ1, . . . , τn are faithful
KMS-states on C�-algebras A1, . . . , Am, C1, . . . , Cn. We put

αi � γ :� r|γy2αis � LpHσi , Hβb
µ
γKq, β � δj :� r|βy1δjs � LpHτj , Hβb

µ
γKq

for all i � 1, . . . ,m, j � 1, . . . , n. Then pHβb
µ
γK,α1 � γ, . . . , αm � γ, β � δ1, . . . , β � δnq is

a C�-pσ1, . . . , σm, τ1, . . . , τnq-module, called the relative tensor product of H and K and
denoted by Hb

µ
K. For all i � 1, . . . ,m, a P Ai and j � 1, . . . , n, c P Cj ,

ρpαi�γqpa
opq � ραipa

opqβb
µ
γ id, ρpβ�δjqpc

opq � id βb
µ
γρδj pc

opq.

The relative tensor product has nice categorical properties:

Bifunctoriality. If H̃ � pH̃, α̃1, . . . , α̃m, β̃q is a C�-pσ1, . . . , σm, µq-module, K̃ � pK̃, γ̃,

δ̃1, . . . , δ̃nq a C�-pµop, τ1, . . . , τnq-module, and S P LpH, H̃q, T P LpK, K̃q, then there

exists a unique operator S b
µ
T P LpHb

µ
K, H̃b

µ
K̃q satisfying

pS b
µ
T qpξ = ζ < ηq � Sξ = ζ < Tη for all ξ P β, ζ P Hµ, η P γ.

We need the following straightforward analogue not mentioned in [17]:

Lemma 3.9. Let Hβ, K̃γ̃ be C�-µ-modules, Kγ, H̃β̃ C
�-µop-modules, and I : H Ñ H̃,

J : K Ñ K̃ antiunitaries such that IβJµ � β̃ and JγJµ � γ̃.

i) There exists an antiunitary Iβb
Jµ
γJ : Hβb

µ
γK Ñ H̃ β̃ bµop

γ̃K̃ such that pIβb
Jµ
γJqpξ=

ζ < ηq � IξJµ = Jµζ < JηJµ for all ξ P β, ζ P Hµ, η P γ.
ii) pIβb

Jµ
γJq|ξy1 � |IξJµy1J and pIβb

Jµ
γJq|ηy2 � |JηJµy2I for all ξ P β, η P γ.

iii) pIβb
Jµ
γJqpSβb

µ
γT q � pISI�β̃ bµop

γ̃JTJ
�qpIβb

Jµ
γJq for all S P LpHβq, T P LpKγq.

�
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Unitality. If we embed B,Bop into LpHµq via the GNS-representations, then U :�
pHµ, B

op, Bq is a C�-pµop, µq-module and the maps

Hβb
µ
BopHµ Ñ H, ξ = ζ < bop ÞÑ ξbopζ, Hµ Bb

µ
γK Ñ K, b= ζ < η ÞÑ ηbζ,

are isomorphisms of C�-pσ1, . . . , σm, µq-modules and C�-pµop, τ1, . . . , τnq-modules H b
µ

U � H and U b
µ
K � K, respectively, natural in H and K.

Associativity. Assume that ν, ρ1, . . . , ρl are faithful KMS-states on some C�-algebras and
that K̂ � pK, γ, δ1, . . . , δn, εq is a C�-pµop, τ1, . . . , τn, νq-module and L � pL, φ, ψ1, . . . , ψlq
a C�-pνop, ρ1, . . . , ρlq-module. Then the isomorphisms

pHβb
µ
γKqβ�εb

ν
φL � β =ργ Kρε<φ � Hβb

µ
γ�φpKεb

ν
φLq

are isomorphisms of C�-pσ1, . . . , σm, τ1, . . . , τn, ρ1, . . . , ρlq-modules pH b
µ
K̂q b

ν
L � H b

µ

pK̂ b
ν
Lq. From now on, we identify the Hilbert spaces above and denote them by

Hβb
µ
γKεb

ν
φL.

3.4. The fiber product of C�-algebras. The fiber product of C�-algebras over KMS-
states is an analogue of the fiber product of von Neumann algebras. We summarize the
definition and main properties; for proofs and further details, see [15, 16, 17].

Let µ be a faithful KMS-state on a C�-algebra B, let AβH be a C�-µ-algebra, and let

CγK be a C�-µop-algebra. The fiber product of AβH and CγK is the C�-algebra

Aβ�
µ
γC :� tx P LpHβb

µ
γKq |x|βy1, x

�|βy1 � r|βy1Cs and x|γy2, x
�|γy2 � r|γy2Asu.

If A and C are unital, so is Aβ�
µ
γC, but otherwise, Aβ�

µ
γC may be degenerate.

Clearly, conjugation by the flip Σ: Hβb
µ
γK Ñ Kγ b

µop
βH yields an isomorphism

AdΣ : Aβ�
µ
γC Ñ Cγ �

µop
βA.

Assume that A � pH, Aq is a C�-pσ1, . . . , σm, µq-algebra and C � pK, Cq a C�-
pµop, τ1, . . . , τnq-algebra, where σ1, . . . , σm, τ1, . . . , τn are faithful KMS-states on some
C�-algebras and H � pH,α1, . . . , αm, βq, K � pK, γ, δ1, . . . , δnq. If Aβ�

µ
γC is nonde-

generate, then pH b
µ
K, Aβ�

µ
γCq is a C�-pσ1, . . . , σm, τ1, . . . , τnq-algebra, called the fiber

product of A and C and denoted by A �
µ
C.

Assume furthermore that Ã � pH̃, Ãq is a C�-pσ1, . . . , σm, µq-algebra and C̃ � pK̃, C̃q
is a C�-pµop, τ1, . . . , τnq-algebra, where H̃ � pH̃, α̃1, . . . , α̃m, β̃q, K̃ � pK̃, γ̃, δ̃1, . . . , δ̃nq.

Then for each φ P MorpA, Ãq, ψ P MorpC, C̃q, there exists a unique morphism φ �
µ
ψ P

MorpA �
µ
C, Ã �

µ
C̃q such that for all x P Aβ�

µ
γC, S P LpHβ, H̃β̃q, T P LpKγ , K̃γ̃q satisfying

Sa � φpaqS, Tc � ψpcqT for all a P A, c P C,

pφ �
µ
ψqpxqpSβb

µ
γT q � pSβb

µ
γT qx.
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We shall need the following simple construction:

Lemma 3.10. Let AβH , C̃ γ̃
K̃

be C�-µ-algebras, Ãβ̃
H̃

, CγK C�-µop-algebras, and R : A Ñ

Ãop, S : C Ñ C̃op �-homomorphisms. Assume that I : H Ñ H̃ and J : K Ñ K̃ are
antiunitaries such that IβJµ � β̃, JγJµ � γ̃ and Rpaq � I�a�I, Spcq � J�c�J for all a P

A, c P C. Then there exists a �-homomorphism Rβ �
Jµ
γS : Aβ�

µ
γC Ñ pÃβ̃ �

µop
γ̃C̃q

op such

that pRβ �
Jµ
γSqpxq � pI β̃b

Jµ
γ̃Jq

�x�pI β̃b
Jµ
γ̃Jq for all x P Aβ�

µ
γC. This �-homomorphism

does not depend on the choice of I, J .

Proof. Evidently, the formula defines a �-homomorphism Rβ �
Jµ
γS. The definition does

not depend on the choice of J because xξ|1pRβ �
Jµ
γSqpxq|ξ

1y1 � J�xIξJµ|1x
�|Iξ1Jµy1J �

SpxIξ1Jµ|1x|IξJµy1q for all x P Aβ�
µ
γC by Lemma 3.9 (2), and a similar argument shows

that it does not depend on the choice of I. �
Unfortunately, the fiber product need not be associative, but in our applications, it

will only appear as the target of a comultiplication whose coassociativity will compensate
the non-associativity of the fiber product.

4. Compact C�-quantum groupoids

A compact C�-quantum groupoid consists of a compact C�-quantum graph with a
coinvolution and a comultiplication satisfying several relations, most importantly, left-
and right-invariance of the Haar weights and a strong invariance condition relating the
coinvolution to the Haar weights and the comultiplication.

Before we give the precise definition, we recall the underlying notion of a Hopf C�-
bimodule and the left- and right-invariance conditions; afterwards, we prove some ele-
mentary properties of compact C�-quantum groupoids.

4.1. Hopf C�-bimodules over KMS-states. Let µ be a faithful KMS-state on a
C�-algebra B.

Definition 4.1 ([17]). A comultiplication on a C�-pµop, µq-algebra Aβ,αH is a morphism

∆ P MorpAβ,αH , Aβ,αH �
µ
Aβ,αH q that makes the following diagram commute:

A
∆ //

∆

��

Aα�
µ
βA

id �
µ

∆

��
Aα�

µ
β�βpAα�

µ
βAq

� _

��
Aα�

µ
βA

∆�
µ

id

// pAα�
µ
βAqα�α�

µ
βA
� � // LpHα�

µ
βHα�

µ
βHq.

A Hopf C�-bimodule over µ is a C�-pµop, µq-algebra with a comultiplication.

Let pAβ,αH ,∆q be a Hopf C�-bimodule over µ. A bounded left Haar weight for pAβ,αH ,∆q
is a non-zero completely positive contraction φ : AÑ B satisfying
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i) φpaρβpbqq � φpaqb for all a P A, b P B, and
ii) φpxξ|1∆paq|ξ1y1q � ξ�ρβpφpaqqξ

1 for all a P A and ξ, ξ1 P α.

A bounded right Haar weight for pAβ,αH ,∆q is a non-zero completely positive contraction
ψ : AÑ Bop satisfying

(1)’ ψpaραpb
opqq � ψpaqbop for all a P A, b P B, and

(2)’ ψpxη|2∆paq|η1y2q � η�ραpψpaqqη
1 for all a P A and η, η1 P β.

Remarks 4.2. Let pAβ,αH ,∆q be a Hopf C�-bimodule over µ.

i) ∆pραpb
opqρβpcqq � ρβpcq b

µ
ραpb

opq for all b, c P B by Remark 3.6.

Let φ : AÑ B be a completely positive contraction.

ii) If condition (1) above holds, then ρβ �φ : AÑ ρβpBq is a conditional expectation.
iii) If condition (2) above holds and rxα|1∆pAq|αy1s � A, then also (1) holds because

φpxξ|1∆paq|ξ1y1ρβpbqq � φpxξ|1∆paq|ξ1by1q � ξ�ρβpφpaqqξ
1b � φpxξ|1∆paq|ξ1y1qb

for all a P A, b P B, ξ, ξ1 P α.

Similar remarks apply to conditions (1)’ and (2)’.

4.2. Definition of compact C�-quantum groupoids. Given a compact C�-quantum
graph pB,µ,A, r, φ, s, ψ, δq with coinvolution R, we use the notation of Proposition 3.8,
put ν :� µ � φ, ν�1 :� µop � ψ � νδ, J :� Jν � Jν�1 ,

H :� Hν , pα :� rAζφs, β :� rAopζφs, pβ :� rAζψs, α :� rAopζψs,

and define an antiunitary I : H Ñ H by IΛν�1paq � ΛνpRpaq
�q for all a P A and a

�-antihomomorphism Rα �
Jµ
βR : Aα�

µ
βA Ñ Aβ �

µop
αA by x ÞÑ pIβb

Jµ
αIq

�x�pIβb
Jµ
αIq (see

Lemma 3.10).

Definition 4.3. A compact C�-quantum groupoid is a compact C�-quantum graph

pB,µ,A, r, φ, s, ψ, δq with a coinvolution R and a comultiplication ∆ for Aβ,αH such that

i) r∆pAq|αy1s � r|αy1As � r∆pAq|ζψy1As and r∆pAq|βy2s � r|βy2As � r∆pAq|ζφy2As;

ii) φ is a bounded left and ψ a bounded right Haar weight for pAβ,αH ,∆q;
iii) Rpxζψ|1∆paqpdopαb

µ
β1q|ζψy1q � xζψ|1pa

op
αb
µ
β1q∆pdq|ζψy1 for all a, d P A.

Let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid.

Lemma 4.4. ta P AX rpBq1 | ∆paq � 1αb
µ
βau � spBopq and ta P AX spBopq1 | ∆paq �

aαb
µ
β1u � rpBq.

Proof. We only prove the first equation. Clearly, the right hand side is contained
in the left hand side. Conversely, if a P A X rpBq1 and ∆paq � 1αb

µ
βa, then a �

xζψ|1∆paq|ζψy1 � spψpaqq by right-invariance of ψ. �

4.3. The conditional expectation onto the C�-algebra of orbits. We study the
maps τ :� ψ � r : B Ñ ZpBopq, τ : :� φ � s : Bop Ñ ZpBq introduced in (2). As before,
we identify ZpBopq and ZpBq with B XBop � LpHµq.
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Proposition 4.5. i) τ and τ : are conditional expectations onto a C�-subalgebra of
BXBop, and τpbq � τ :pbopq for all b P B. In particular, ν �s � µ�τ : � µop �τ �
ν�1 � r.

ii) s � τ � r � τ and τ � φ � τ : � ψ.
iii) σµt � τ � τ � τ � σµt for all t P R.
iv) τpbσµ�i{2pdqq � τpdσµ�i{2pdqq for all b, d P Dompσµ�i{2q.

Lemma 4.6. Let b, c, e P B, d P Dompσµ�i{2q and x � rpbqspcopq, y � rpdqspeopq. Then

xζψ|1∆pxqpyopαb
µ
β1q|ζψy1 � rpτpbσµ�i{2pdqqqrpeqspc

opq.

Proof. By Lemma 3.7, ζ�ψrpbqrpdq
opζψ � ζ�ψrpbσ

µ
�i{2pdqqζψ � τpbσµ�i{2pdqq, so

xζψ|1∆pxqpyopαb
µ
β1q|ζψy1 � xζψ|1prpbqy

op
αb
µ
βspc

opqq|ζψy1

� ρβpζ
�
ψrpbqrpdq

opspeopqopζψqspc
opq

� rpζ�ψrpbqrpdq
opζψeqspc

opq

� rpτpbσµ�i{2pdqqqrpeqspc
opq. �

Proof of Proposition 4.5. (1), (2) Left- and right-invariance of φ, ψ imply

φpspψpaqqq � ζ�φspψpaqqζφ � ζ�ψxζφ|2∆paq|ζφy2ζψ

� ζ�φxζψ|1∆paq|ζψy1ζ
�
φ � ζ�ψrpφpaqqζψ � ψprpφpaqqq

for all a P A. Therefore, τ : � ψ � τ � φ and τ � τ � τ : � τ � τ : � pψ � rq � τ � φ � r � τ .
Next, s � τ � r � τ because spτpbqq � spψprpbqqq � xζψ|1∆prpbqq|ζψy1 � rpτpbqq for all
b P B by Lemma 4.6. In particular, for all b, c, d P B,

τpbqτpcqτpdq � τpbqψprpcqqτpdq � ψpspτpbqqrpcqspτpdqqq

� ψprpτpbqcτpdqqq � τpτpbqcτpdqq.

(3), (4) Let t P R. Then σµt pτpBqq � τpBq because σµt �τ � σµ
op

�t �ψ�r � ψ�σν
�1

�t �r �
ψ � σνt � r � ψ � r � σµt . Therefore, σµ restricts to the modular automorphism group for
the trace υ :� µ|τpBq, which is idτpBq, and hence σµt � τ � τ � συt � τ � τ � σµt . Let

b, d P Dompσµ�i{2q. By Lemma 4.6 and Definition 4.3 (3),

rpτpbσµ�i{2pdqqq � xζψ|1∆prpbqqprpdqopαb
µ
β1q|ζψy1

� Rpxζψ|1∆prpdqqprpbqopαb
µ
β1q|ζψy1q � spτpdσµ�i{2pbqqq.

Since s � τ � r � τ and r is injective, we can conclude τpbσµ�i{2pdqq � τpdσµ�i{2pbqq. �

4.4. The modular element. The modular element of a compact C�-quantum groupoid
can be described in terms of the element θ :� φpδq � ψpδ�1q P B X Bop (see Lemmas
2.5, 2.7) as follows.

Proposition 4.7. δ � rpθqspθq�1 and ∆pδq � δαb
µ
βδ.
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Proof. By Lemma 2.5 (1), δ̃ :� rpθqspθq�1 is positive, invertible, and invariant with

respect to σν . Moreover, ν�1paq � νpδ̃1{2aδ̃1{2q for all a P A because

ν�1pspθq1{2aspθq1{2q � µoppθ1{2ψpaqθ1{2q � pν � s � ψqpaq

� pν�1 � r � φqpaq � µpθ1{2φpaqθ1{2q � νprpθq1{2arpθq1{2q

for all a P A by Proposition 4.5 and Lemma 2.5. By Lemma 2.3, δ � δ̃, and ∆pδq �
rpθqαb

µ
βspθq

�1 � rpθqραpθ
�1qαb

µ
βρβpθqspθq

�1 � δαb
µ
βδ because θ P B XBop. �

An important consequence of the preceding result is that for every compact C�-
quantum groupoid, there exists a faithful invariant KMS-state on the basis:

Corollary 4.8. µθ � φ � pµθq
op � ψ.

Proof. We get

µpθ1{2φpaqθ1{2q � νprpθq1{2arpθq1{2q � ν�1pspθq1{2aspθq1{2q � µoppθ1{2ψpaqθ1{2q

for all a P A. �
Therefore, we could in principle restrict to compact C�-quantum groupoids with trivial

modular element δ � 1A.
The KMS-state µ can be factorized into a state υ on the commutative C�-algebra

τpBq � ZpBq and a perturbation of τ as follows. We define maps

τθ�1 : B Ñ τpBq, b ÞÑ τpθ�1{2bθ�1{2q, υ � µθ|τpBq : τpBq Ñ C, b ÞÑ µpθ1{2bθ1{2q.

Note that τpθ�1q � 1 because θ � φpδq � φprpθqspθq�1q � θτpθ�1q.

Proposition 4.9. µ � υ � τθ�1.

Proof. By Propositions 4.5 and 4.7,

µpbq � νprpbqq � ν�1pδ�1{2rpbqδ�1{2q � µoppθ1{2ψprpθ�1{2bθ�1{2qqθ1{2q � pυ � τθ�1qpbq

for all b P B. �
4.5. Uniqueness of the Haar weights. The Haar weights of a compact C�-quantum
groupoid are not unique but can be rescaled by elements of B as follows. For every
positive γ P Bop, the map φspγq : A Ñ B given by a ÞÑ φpspγq1{2aspγq1{2q is a bounded

left Haar weight for pAβ,αH ,∆q because

φspγqpxξ|1∆paq|ξ1y1q � φpxξ|1p1αb
µ
βspγq

1{2q∆paqp1αb
µ
βspγq

1{2q|ξ1y1q

� φpxξ|1∆pspγq1{2aspγ1{2qq|ξ1y1q � ξ�φspγqpaqξ
1

for all a P A, ξ, ξ1 P α. Similarly, for every positive γ P B, the map ψrpγq : AÑ Bop given

by a ÞÑ ψprpγq1{2arpγq1{2q is a bounded right Haar weight for pAβ,αH ,∆q.

Theorem 4.10. i) Let pB,µ,A, r, φ̃, s, ψ̃, δ̃q be a compact C�-quantum graph and

φ̃ a bounded left Haar weight for pAβ,αH ,∆q. Then φ̃ � φγ, where γ � ψ̃pδ̃�1qθ�1.

ii) Let pB,µ,A, r, φ̃, s, ψ̃, δ̃q be a compact C�-quantum graph and ψ̃ a bounded right

Haar weight for pAβ,αH ,∆q. Then ψ̃ � ψγ, where γ � φ̃pδ̃qθ�1.
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Proof. We only prove (1), the proof of (2) is similar. Put ν̃ :� µ � φ̃, ν̃�1 :� µop � ψ̃,

θ̃ :� ψ̃pδ̃�1q. Let a P A. Then

φ̃pspψpaqqq � φ̃pxζψ|1∆paq|ζψy1q � ψprpφ̃paqqq.(4)

We apply µ to the left hand side and find, using Lemma 2.5 (2),

ν̃pspψpaqqq � µop
θ̃
pψpaqq � ν�1pspθ̃q1{2aspθ̃q1{2q � νpδ1{2spθ̃q1{2aspθ̃q1{2δ1{2q.

Next, we apply µ to the right hand side of (4) and find ν�1prpφ̃paqqq � µθpφ̃paqq �

ν̃prpθq1{2arpθq1{2q. Since δ � rpθqspθq�1, we can conclude νpspγq1{2aspγq1{2q � ν̃paq for
all a P A and in particular

µpb�φ̃paqq � ν̃prpbq�aq � νpspγq1{2rpbq�aspγq1{2q � µpb�φpspγq1{2aspγq1{2qq

for all b P B, a P A. Since µ is faithful, φ̃paq � φpspγq1{2aspγq1{2q for all a P A. �

5. The fundamental unitary

In the theory of locally compact quantum groups, a fundamental rôle is played by the
associated multiplicative unitaries, whose theory was developed by Baaj, Skandalis [1]
and Woronowicz [22]. We shall associate to every compact C�-quantum groupoid a C�-
pseudo-multiplicative unitary [17] that can be considered as a generalized multiplicative
unitary. This unitary will be used to prove that the coinvolution of a compact C�-
quantum groupoid reverses the comultiplication, to construct a generalized Pontrjagin
dual of the compact C�-quantum groupoid in form of a Hopf C�-bimodule, and to
associate to every compact C�-quantum groupoid a measured quantum groupoid in the
sense of Enock and Lesieur [4, 8].

5.1. C�-pseudo-multiplicative unitaries. The notion of a C�-pseudo-multiplicative
unitary extends the notion of a multiplicative unitary [1], of a continuous field of multi-
plicative unitaries [2] and of a pseudo-multiplicative unitary on C�-modules [9, 18], and
is closely related to pseudo-multiplicative unitaries on Hilbert spaces [21]; see [17, Sec-
tion 4.1]. We give the precise definition and the main properties; for proofs and details,
see [15, 17]. Let µ be a faithful KMS-state on a C�-algebra B.

Definition 5.1. A C�-pseudo-multiplicative unitary over µ consists of a C�-pµop, µ, µopq-

module pH, pβ, α, βq and a unitary V : H
pβ
b
µop

αH Ñ Hαb
µ
βH such that

V pα � αq � α � α, V ppβ � βq � pβ � β, V ppβ �
pβq � α �

pβ, V pβ � αq � β � β
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and the following diagram commutes:

H
pβ
b
µop

αH pβ
b
µop

αH

V b
µop

id

//

id b
µop

V

��

Hαb
µ
βH pβ

b
µop

αH

idb
µ
V

// Hαb
µ
βHαb

µ
βH,

H
pβ
b
µop

α�αpHαb
µ
βHq

id b
µop

Σ

��

pH
pβ
b
µop

αHqα�αb
µ
βH

Vb
µ

id
OO

H
pβ
b
µop

αHβ b
µop

αH

V b
µop

id

//
�
Hαb

µ
βH

�
pβ�β

b
µop

αH

Σ23

OO

where Σ23 is given by pHρα<βqρ
pβ�β

<α �
ÝÑ pHρ

pβ
<αqρα�α<β, pζ < ξq< η ÞÑ pζ < ηq< ξ.

Let ppH, pβ, α, βq, V q be a C�-pseudo-multiplicative unitary. We abbreviate the opera-
tors V b

µop
id and V b

µ
id by V12, the operators idb

µ
V and idb

µ
V by V23, and pid b

µop
ΣqV12Σ23

by V13. Thus, the indices indicate those positions in a relative tensor product where the
operator acts like V . We put

pApV q :�
�
xβ|2V |αy2

�
� LpHq, ApV q :�

�
xα|1V |pβy1

�
� LpHq.

The assumptions on V imply pApV q � LpHβq, ApV q � LpHpβ
q, so that we can define

p∆V : pAÑ LpH
pβ
b
µop

αHq, ∆V : AÑ LpHαb
µ
βHq,

pa ÞÑ V �pid αb
µ
βpaqV, a ÞÑ V pa

pβ
b
µop

α idqV �.

Definition 5.2. ppH, pβ, α, βq, V q is regular if rxα|1V |αy2s � rαα�s, and well-behaved if

p pApV qα,pβH , p∆V q and pApV qβ,αH ,∆V q are Hopf C�-bimodules over µop and µ, respectively.

We cite the following result [17, Theorem 4.14]:

Theorem 5.3. Every regular C�-pseudo-multiplicative unitary is well-behaved.

5.2. The fundamental unitary of a compact C�-quantum groupoid. Throughout
this section, let pB,µ,A, r, φ, s, ψ, δ, R,∆q be a compact C�-quantum groupoid. We use
the same notation as in the preceding section.

Theorem 5.4. There exists a regular C�-pseudo-multiplicative unitary ppH, pβ, α, βq, V q
over µ such that V |aζψy1 � ∆paq|ζψy1 for all a P A.

Uniqueness is evident. The proof of existence proceeds in several steps.

Proposition 5.5. i) There exists a unitary V : H
pβ
b
µop

αH Ñ Hαb
µ
βH such that

V |aζψy1 � ∆paq|ζψy1 for all a P A.
ii) V paζν < dopζψq � ∆paqpζν < dopζφq for all a, d P A.

iii) V ppβ � βq � pβ � β, V ppβ �
pβq � α �

pβ, V ppβ � pαq � α � pα, V ppα � αq � pα � β.
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Proof. (1) Let a, a1 P A, ω, ω1 P H. Since ψ is a right-invariant,

x∆paqpζψ = ωq|∆pa1qpζψ = ω1qypHαb
µ
βHq � xω|xζψ|1∆pa�a1q|ζψy1ω

1y

� xω|ραpζ
�
ψa

�a1ζψqω
1y

� xaζψ = ω|a1ζψ = ω1ypH
pβ
b
µop

αHq.

Therefore, there exists an isometry V : H
pβ
b
µop

αH Ñ Hαb
µ
βH satisfying V |aζψy1 �

∆paq|ζψy1 for all a P A. The relation r∆pAq|βy2s � r|βy2As implies V ppβ � βq �

rV |Aζψy1βs � r∆pAq|ζψy1βs � r∆pAq|βy2ζψs � r|βy2Aζψs � pβ � β, whence V is sur-
jective and unitary.

(2) By Proposition 4.7, we have for all a, d P A

V paζν < dopζψq � V paδ�1{2ζψζµ < dopζψq

� V paδ�1{2ζψ = dopζν�1q

� ∆paδ�1{2qpζψ = dopδ1{2ζνq

� ∆paqpδ�1{2
αb
µ
βδ

�1{2qpζν�1 < dopδ1{2ζφq � ∆paqpζν < dopζφq.

(3) The first relation was already proven above. Since r∆pAq|ζψy1As � r|αy1As,

V ppβ�pβq � rV |Aζψy1Aζψs � r∆pAq|ζψy1Aζψs � r|αy1Aζψs � α�pβ and similarly V ppβ�pαq �
α � pα. Finally, by (2), for all b P B and a, d P A

V |aopζψy2dζφbζµ � V pdrpbqζν < aopζψq � ∆pdrpbqqpζν < aopζφq

� ∆pdqprpbqζν < aopζφq � ∆pdq|aopζφy2ζφbζµ

and hence rV |αy2pαs � rV |Aopζψy2Aζφs � r∆pAq|Aopζφy2ζφs � r∆pAq|βy2ζφs � r|βy2Aζφs �pα � β. �

Condition (3) of Definition 4.3 yields the following inversion formula for V :

Theorem 5.6. V � � pJαb
Jµ
βIqV pJαb

Jµ
βIq.

Proof. Put Ṽ :� pJαb
Jµ
βIqV pJαb

Jµ
βIq. Then for all a, b, c, d P A

xaζψ = bopζν�1 |V �pcopζν�1<dopζφqy � x∆paqpζψ = bopζν�1q|copζψ = dopζνy

� xζψ = ζν�1 |∆pa�qpcopαb
µ
β1qpζψ = pbopq�dopζνqy

� xζν�1 |xζψ|1∆pa�qpcopαb
µ
β1q|ζψy1pdb

�qopζνy,
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xaζψ = bopζν�1 |Ṽ pcopζν�1 < dopζφqy � xpa�qopζψ = Ibopζν�1 |V pc�ζν�1 < IdopζφJµqy

� xζψ = Ibopζν�1 |paopαb
µ
β1q∆pc�qpζψ = Idopζνqy

� xζψ = Iζν�1 |paopαb
µ
β1q∆pc�qpζψ = Ipbopq�dopζνqy

� xIζν�1 |xζψ|1paopαb
µ
β1q∆pc�q|ζψy1Ipdb�qopζνy

� xζν�1 |Ixζψ|1pa
op
αb
µ
β1q∆pc�q|ζψy1Ipdb

�qopζνy.

Now, the claim follows from condition (3) in Definition 4.3. �
Proof of Theorem 5.4. By Lemma 3.9 and Propositions 3.8, 5.5, multiplication by the
composition pJ

pβ
b
Jµ
αIqV

�pJ
pβ
b
Jµ
αIq acts on subspaces of LpHµ, H pβ

b
µop

αHq as follows:

r|αy2αs

pJ
pβ
b
Jµ
αIq

ÝÝÝÝÝÑ r|βy2
pβs V �

ÝÝÑ r|pβy1βs

pJ
pβ
b
Jµ
αIq

ÝÝÝÝÝÑ r|αy1IβJµs � r|αy1αs,

r|αy2βs

pJ
pβ
b
Jµ
αIq

ÝÝÝÝÝÑ r|βy2pαs V �

ÝÝÑ r|αy2pαs pJ
pβ
b
Jµ
αIq

ÝÝÝÝÝÑ r|βy2J pαJµs � r|βy2βs,

r|pβy1
pβs pJ

pβ
b
Jµ
αIq

ÝÝÝÝÝÑ r|αy1pαs V �

ÝÝÑ r|pβy1pαs pJ
pβ
b
Jµ
αIq

ÝÝÝÝÝÑ r|αy1IpαJµs � r|αy1
pβs.

Theorem 5.6 implies V pα � αq � α � α, V pβ � αq � β � β, V ppβ �
pβq � α �

pβ.

Next, we prove that V23V12 � V12V13V23. Let a, d P A, ω P H and ∆p2q � p∆ �
µ

idq�∆ �

pid �
µ

∆q � ∆, ∆13paq � Σ23p∆paq
pβ�β

b
µop

α idqΣ23. Then

V23V12paζψ = dζψ = ωq � V23p∆paq
α�pβ

b
µop

α idqpζψ = dζψ = ωq

� ∆p2qpaqpζψ = ∆pdqpζψ = ωqq

� V12∆13paqpζψ = ∆pdqpζψ = ωqq

� V12V13paζψ = ∆pdqpζψ = ωqq � V12V13V23paζψ = dζψ = ωq.

Finally, V is regular since by Theorem 5.6, Lemma 3.9 and Proposition 3.8,

rxα|1V |αy2s � rxα|1pJ pβ
b
Jµ
αIqV

�pJ
pβ
b
Jµ
αIq|αy2s

� rIxpβ|1V �|βy2Js

� rIxζψ|1∆pAq|βy2Js

� rIxζψ|1|βy2AJs � rIβJµ � Jµζ
�
ψAJs � rαα�s. �

By Theorem 5.3, the regular C�-pseudo-multiplicative unitary ppH, pβ, α, βq, V q yields

two Hopf C�-bimodules pApV qβ,αH ,∆V q and p pApV qα,pβH , p∆V q.

Proposition 5.7. pApV qβ,αH ,∆V q � pAβ,αH ,∆q.

Proof. We haveApV q � rxα|1V |pβy1s � rxα|1∆pAq|ζψy1s � rAxα|1|ζψy1s � rAραpα
�ζψqs �

rAspBopqs � A, ∆V paq � V pa
pβ
b
µop

α1qV � � ∆paq for all a P A. �
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The Hopf C�-bimodule p pApV qα,pβH , p∆V q will be discussed in the next subsection.
Our first application of the unitary V will be to prove that the coinvolution reverses

the comultiplication. We need the following lemma:

Lemma 5.8. i) ∆pxξ|1V |ξ
1y1q � xξ|1V12V13|ξ

1y1 for all ξ P α, ξ1 P pβ.

ii) Rpxξ|1V |ξ
1y1q � xJξ1Jµ|1V |JξJµy1 for all ξ P α, ξ1 P pβ.

Proof. (1) For all ξ P α, ξ1 P pβ,

∆pxξ|1V |ξ
1y1q � V ppxξ|1V |ξ

1y1qpβ bµop
α1qV � � xξ|1V23V12V

�
23|ξ

1y1 � xξ|1V12V13|ξ
1y1;

see also [17, Lemma 4.13].

(2) Lemma 3.9 and Theorem 5.6 imply that for all ξ P α, ξ1 P pβ, Rpxξ|1V |ξ
1y1q �

Ixξ1|1V
�|ξy1I � xJξ1Jµ|1pJαb

Jµ
βIq

�V �pJαb
Jµ
βIq

�|JξJµy1 � xJξ1Jµ|1V |JξJµy1. �

Theorem 5.9. pRα �
Jµ
βRq � ∆ � AdΣ �∆ �R.

Proof. Let ξ P α and ξ1 P pβ. By Lemma 5.8,

pAdΣ �pRα �
Jµ
βRq � ∆qpxξ|1V |ξ

1y1q � pAdΣ �pRα �
Jµ
βRqqpxξ|1V12V13|ξ

1y1q

� AdΣppIαb
Jµ
βIq

�xξ1|1V
�

13V
�

12|ξy1pIαb
Jµ
βIqq.

By Lemma 3.9 (2), we can rewrite this expression in the form

AdΣpxJξ
1Jµ|1pJ pβ

b
Jµ
α�αpIαb

Jµ
βIqqV

�
13V

�
12pJαb

Jµ
βIαb

Jµ
βIq

�|JξJµy1q.

By Lemmas 3.9, 5.8 and Theorem 5.6 this expression is equal to

AdΣpxJξ
1Jµ|1V13V12|JξJµy1q � xJξ1Jµ|1V12V13|JξJµy1

� ∆pxJξ1Jµ|1V |JξJµy1q � ∆pRpxξ|1V |ξ
1y1qq. �

Remarks 5.10. i) One can prove the existence of a regular C�-pseudo-multiplica-
tive unitary ppH,α, β, pαq,W q satisfying W �|aζφy2 � ∆paq|ζφy2 for all a P A and
express this unitary in terms of V as follows: W � ΣpI

pβ
b
Jµ
αIqV

�pIβb
Jµ
αIqΣ; see

[19, Theorem 5.10].
ii) Using Theorem 5.9, one can prove the following analogue of condition (3) in

Definition 4.3; see [19, Lemma 4.7]:

R
�
xζφ|2∆paqp1αb

µ
βd

opq|ζφy2

�
� xζφ|2p1αb

µ
βa

opq∆pdq|ζφy2

for all a, d P A. If we would replace the former condition by the latter, we could
develop the same theory using W instead of V and finally conclude that also the
former condition holds.
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5.3. The dual Hopf C�-bimodule. The Hopf C�-bimodule p pApV qα,pβH , p∆V q obtained

from ppH, pβ, α, βq, V q can be considered as the generalized Pontrjagin dual of our initial

compact C�-quantum groupoid. Let us describe pA :� pApV q.
Proposition 5.11. i) For each a P A, there exists an operator λpaq P LpHq such

that λpaqΛνpdq � Λνpxζφ|2∆pdq|aopζφy2q for all d P A, and λpaq� � JλpRpaqqJ .
ii) xxopζφ|2V |y

opζψy2 � λpyx�q for all x, y P A.

iii) pA � rλpAqs.

iv) There exists a �-antiautomorphism pR : pAÑ pA, pa ÞÑ Jpa�J .

Proof. By definition, the space pA is the closed linear span of all operators of the form
xxopζφ|2V |y

opζψy2, where x, y P A. Let x, y, d P A and put a � yx�. Then

xxopζφ|2V |y
opζψy2dζν � xxopζφ|2V pdζν < yopζψq

� xxopζφ|2∆pdqpζν < yopζφq � Λνpxζφ|2∆pdq|aopζφy2q.

This calculation proves the existence of the operators λpaq for all a P A and that pA �
rλpAqs. By Theorem 5.6, Lemma 3.9 and Proposition 3.8,

λpaq� � pxxopζφ|2V |y
opζψy2q

�

� xyopζψ|2pJαb
Jµ
βIqV pJαb

Jµ
βIq|x

opζφy2

� JxIyopζψJµ|2V |Ix
opζφJµy2J

� JxRpy�qopζφ|2V |Rpx
�qopζψy2J � JλpRpxq�RpyqqJ � JλpRpaqqJ. �

Remarks 5.12. i) Using Theorem 5.6, one can show that pR is a coinvolution

of
� pAα,pβH , p∆V

�
in the sense that it reverses the comultiplication: p∆V � pR �

AdΣ �p pRpβ
�
Jµ
α
pRq � p∆V ; see [19, Corollary 7.6].

ii) Put K :� Hµ. There exists a morphism pε P Mor
� pAα,pβH ,LpKqB,B

op

K

�
, given by

λpaq ÞÑ ζ�ψλpaqζψ for all a P A, which is a counit for
� pAα,pβH , p∆V

�
in the sense that

the maps

ppε �
µop

idq � p∆V : pAÑ LpKqBop �
µop

α
pA � LpKBop b

µop
αHq � LpHq,

pid �
µop

pεq � p∆V : pAÑ pA
pβ
�
µop

BLpKq � LpH
pβ
b
µop

BKq � LpHq

are equal to the embedding A ãÑ LpHq; see [19, Proposition 7.7].

5.4. The passage to measurable quantum groupoids. The compact C�-quantum
groupoid pB,µ,A, r, φ, s, ψ, δ, R,∆q can be completed to a measurable quantum groupoid
in the sense of Enock and Lesieur [4, 8] as follows.

Put N :� B2 � LpHµq, N
op :� pBopq2 � N 1 � LpHµq, M :� A2 � LpHq and denote

by µ̃, r̃, φ̃, s̃, ψ̃ the normal extensions of µ, r, φ, s, ψ; see Lemma 2.2. The comultiplication
∆ � ∆V extends uniquely to a normal �-homomorphism ∆̃: M Ñ LpHαb

µ
βHq via

x ÞÑ V px
pβ
b
µop

α1qV �. To obtain a Hopf-von Neumann bimodule [20] pN,M, r̃, s̃, ∆̃q, we
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need to identify ∆̃pMq with a subalgebra of the fiber product M s̃�̄
µ̃
r̃M [13] which acts

on the relative tensor product H s̃b
µ̃
r̃H [14].

Let us recall the definition of H s̃b
µ̃
r̃H and of M s̃�̄

µ̃
r̃M . Put

Dpr̃H; µ̃q :� tη P H | DC ¡ 0@y P N : }r̃pyqη} ¤ C}yζµ}u.

Thus, an element η P H belongs to Dpr̃H; µ̃q if and only if the map Nζµ Ñ H,
yζµ ÞÑ r̃pyqη, extends to an operator Rµ̃pηq P LpHµ, Hq. Clearly, Rµ̃pηq

�Rµ̃pη
1q P N 1

for all η, η1 P Dpr̃H; µ̃q. The space H s̃b
µ̃
r̃H is the separated completion of the alge-

braic tensor product H d Dpr̃H; µ̃q with respect to the sesquilinear form defined by
xω d η|ω1 d η1y � xω|s̃pRµ̃pηq

�Rµ̃pη
1qqω1y for all ω, ω1 P H, η, η1 P Dpr̃H; µ̃q. We denote

the image of an element ωdη in H s̃b
µ̃
r̃H by ωs̃b

µ̃
r̃η. Clearly, r̃pNq1Dpr̃H; µ̃q � Dpr̃H; µ̃q,

and for each x, y P M 1, there exists a well-defined operator xs̃b
µ̃
r̃y � LpH s̃b

µ̃
r̃Hq such

that pxs̃b
µ̃
r̃yqpωs̃b

µ̃
r̃ηq � xωs̃b

µ̃
r̃yη for all ω P H, η P Dpr̃H; µ̃q. Now, M s̃�̄

µ̃
r̃M �

pM 1
s̃b
µ̃
r̃M

1q1 � LpH s̃b
µ̃
r̃Hq.

Lemma 5.13. i) aopζν P Dpr̃H; µ̃q, Rµ̃pa
opζνq � aopζφ P β for all a P A.

ii) There exist inverse isomorphisms

Hαb
µ
βH � Hρα<β Φ

ÝÑ H s̃b
µ̃
r̃H

Ψ
ÝÑ α=ρβ H � Hαb

µ
βH

such that Φpω < aopζφq � ωs̃b
µ̃
r̃a
opζν , Ψpξζ s̃b

µ̃
r̃ηq � ξ = Rµ̃pηqζ for all ω P H,

a P A, ξ P α, η P Dpr̃H, µ̃q, ζ P Hµ.

Proof. (1) For all a P A, y P N , r̃pyqaopζν � aopr̃pyqζφζµ � aopζφyζµ.
(2) Φ and Ψ are well-defined inverse isometries because

}ω < aopζφ}
2 � xω|ραpζ

�
φpa

opq�aopζφqωy

� xω|s̃pRµ̃pa
opζνq

�Rµ̃pa
opζνqqωy � }ωs̃b

µ̃
r̃a
opζν}

2,

}ξζ s̃b
µ̃
r̃η}

2 � xξζ|s̃pRµ̃pηq
�Rµ̃pηqqξζy

� xζ|ξ�ξRµ̃pηq
�Rµ̃pηqζy

� xζ|Rµ̃pηq
�ρβpξ

�ξqRµ̃pηqζy � }ξ =Rµ̃pηqζ}
2,

pΨ � Φqpξζ < aopζφq � ξ =Rµ̃pa
opζνqζ � ξ = aopζφζ � ξζ < aopζφ

for all ω, a, ξ, η, ζ as above. �

We identifyHαb
µ
βH withH s̃b

µ̃
r̃H via Φ, Ψ and consider ∆̃ as a mapM Ñ LpH s̃b

µ̃
r̃Hq.

Theorem 5.14. pN,M, r̃, s̃, ∆̃, φ̃, ψ̃, µ̃q is a measurable quantum groupoid.
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Proof. First, the relation ∆pAq � Aα�
µ
βA � pA1

αb
µ
β idq X pid αb

µ
βA

1q [17, Lemma 3.8]

implies ∆̃pMq � M s̃�̄
µ̃
r̃M , and the definition of ∆̃ and the fact that V is a C�-pseudo-

multiplicative unitary imply that pN,M, r̃, s̃, ∆̃q is a Hopf-von Neumann bimodule.

Second, one has to check that φ̃ and ψ̃ are left- and right-invariant, respectively. This
follows from the fact that these maps are normal extensions of φ and ψ, which are left-
and right-invariant, respectively.

Finally, one has to check that the modular automorphism groups of ν̃ � µ̃ � φ̃ and
ν̃�1 � µ̃op � ψ̃ commute, but this follows from the fact that ν̃�1 � ν̃δ1{2 . �

6. Principal compact C�-quantum groupoids

Principal compact C�-quantum groupoids are particularly simple examples of compact
C�-quantum groupoids. We give the definition and discuss some of the main properties.
For proofs and further details, see [19].

Recall that a compact groupoid G is principal if the map G Ñ G0 � G0 given by
x ÞÑ prpxq, spxqq is injective or, equivalently, if CpGq � rr�pCpG0qqs�pCpG0qqs. This
condition can be carried over to compact C�-quantum groupoids as follows:

Definition 6.1. A compact C�-quantum groupoid pB,µ,A, r, φ, s, ψ, δ, R,∆q is principal
if A � rrpBqspBopqs.

To simplify the following discussion, we only consider the case where δ � 1A, which
is not a serious restriction; see Corollary 4.8.

Essentially, a principal compact C�-quantum groupoid is completely determined by
the conditional expectation τ : B Ñ τpBq � ZpBq introduced in Subsection 4.3. The
first result in this direction is the following proposition:

Proposition 6.2. Let pB,µ,A, r, φ, s, ψ, 1Aq be a compact C�-quantum graph such that
A � rrpBqspBopqs. Then the following two conditions are equivalent:

i) There exist R, ∆ such that pB,µ,A, r, φ, s, ψ, 1A, R,∆q is a compact C�-quantum
groupoid.

ii) τpbq � τ :pbopq for all b P B, τ : B Ñ τpBq is a conditional expectation, µ�τ � µ,
r � τ � s � τ , and τpbσµ�i{2pdqq � τpdσµ�i{2pbqq for all b, d P Dompσµ�i{2q. �

To every compact groupoid G, we can associate a principal compact groupoid whose
total space is tprpxq, spxqq | x P Gu. Likewise, we can associate to every compact C�-
quantum groupoid a principal one:

Corollary 6.3. Let pB,µ,A, r, φ, s, ψ, 1A, R,∆q be a compact C�-quantum groupoid and

put Ã � rrpBqspBopqs, φ̃ � φ|Ã, ψ̃ � ψ|Ã, R̃ � R|Ã. Then there exists a unique

�-homomorphism ∆̃ such that pB,µ, Ã, r, φ̃, s, ψ̃, 1Ã, R̃, ∆̃q is a principal compact C�-
quantum groupoid. �

A principal compact C�-quantum groupoid can be reconstructed from the conditional
expectation τ as follows. Assume that

 C is a commutative unital C�-algebra with a faithful state υ,
 B is a unital C�-algebra with a υ-module structure pι, τq such that ιpCq � ZpBq.
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We put µ :� υ � τ , identify C with ιpCq via ι, define an isometry ζτ : Hυ Ñ Hµ as in
Lemma 3.7, and put γ :� rBζτ s � LpHυ, Hµq, γ

op :� rBopζτ s � LpHυ, Hµq.

Theorem 6.4. There exists a unique principal compact C�-quantum groupoid pB,µ,A,
r, φ, s, ψ, 1A, R,∆q such that A � Bγopb

υ
γB

op � LppHµqγopb
υ
γpHµqq and rpbq � bγopb

υ
γ1op,

φpbγopb
υ
γc
opq � bτpcq, spcopq � 1γopb

υ
γc
op, ψpbγopb

υ
γc
opq � τpbqcop for all b, c P B. �

Essentially, every principal compact C�-quantum groupoid is of the form above:

Proposition 6.5. Let pB,µ,A, r, φ, s, ψ, 1A, R,∆q be a principal compact C�-quantum
groupoid.

i) C :� τpBq is a commutative unital C�-algebra, υ :� µ|C is a faithful state on C,
pid, τq is a υ-module structure on B, and µ � υ � τ .

Denote by ζτ : Hυ Ñ Hµ the isometry cζυ ÞÑ cζµ. Put γ :� rBζτ s, γ
op :� rBopζτ s.

ii) There exists a unitary Ξ: Hν Ñ pHµqγopb
υ
γpHµq such that for all b, c P B,

Ξprpbqopspcopqopζνq � bopζτ = ζυ < cζτ , Ξprpbqspcopqζνq � bζτ = ζυ < copζτ .
iii) AdΞ restricts to an isomorphism AÑ Bγopb

υ
γB

op such that rpbqspcopq ÞÑ bγopb
υ
γc
op

for all b, c P B. �

7. Examples related to groupoids

Prototypical examples of compact C�-quantum groupoids are the function algebra of
a compact groupoid and the reduced groupoid C�-algebra of an r-discrete groupoid with
compact space of units. We outline these examples; for proofs and further details, see
[19]. For some background on groupoids, see [10, 12].

Let G be a locally compact, Hausdorff, second countable groupoid with unit space G0,
range and source maps rG, sG : G Ñ G0, left Haar system λ, and associated right Haar
system λ�1. For each u P G0, put Gu :� r�1

G puq, Gu :� s�1
G puq. Let µG be a probability

measure on G0 with full support and define measures νG, ν
�1
G on G such that for all

f P CcpGq,»
G
f dνG �

»
G0

»
Gu
fpxq dλupxq dµGpuq,

»
G
fdν�1

G �

»
G0

»
Gu

fpxqdλ�1
u pxq dµGpuq.

We impose the following assumptions:

i) the space of units G0 is compact;
ii) µG is quasi-invariant in the sense that νG and ν�1

G are equivalent;

iii) the Radon-Nikodym derivative D � dνG{dν
�1
G is continuous.

To equip the function algebra and the reduced groupoid C�-algebra of G with the
structure of Hopf C�-bimodules, we use a C�-pseudo-multiplicative unitary naturally
associated to G [15, 17]. This unitary is constructed as follows.

Denote by µ the trace on CpG0q given by f ÞÑ
³
G0 fdµG, put H :� L2pG, νGq, and

define Hilbert C�-CpG0q-modules L2pG,λq, L2pG,λ�1q to be the completions of the
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pre-C�-module CcpGq, where for all ξ, ξ1 P CcpGq, u P G
0, f P CpG0q, x P G,

xξ1|ξypuq �

»
Gu
ξ1pxqξpxqdλupxq, pξfqpxq � ξpxqfprGpxqq in case of L2pG,λq,

xξ1|ξypuq �

»
Gu

ξ1pxqξpxqdλ�1
u pxq, pξfqpxq � ξpxqfpsGpxqq in case of L2pG,λ�1q.

There exist embeddings j : L2pG,λq Ñ LpHµ, Hq and ĵ : L2pG,λ�1q Ñ LpHµ, Hq such

that pjpξqζqpxq � ξpxqζprGpxqq and pĵpξqζqpxq � ξpxqDpxq�1{2ζpsGpxqq for all ξ P CcpGq,

ζ P CpG0q, x P G, and with ρ :� jpL2pG,λqq and σ :� ĵpL2pG,λ�1qq, the tuple
pH,σ, ρ, ρq is a C�-pµop, µ, µopq-module.

The relative tensor productsHσ b
µop

ρH andHρb
µ
ρH can be described as follows. Define

measures ν2
s,r on G2

s,r :� tpx, yq P G � G | sGpxq � rGpyqu and ν2
r,r on G2

r,r :� tpx, yq P

G�G | rGpxq � rGpyqu such that for all f P CcpG
2
s,rq, g P CcpG

2
r,rq»

G2
s,r

f dν2
s,r :�

»
G0

»
Gu

»
GsGpxq

fpx, yq dλsGpxqpyq dλupxq dµGpuq,»
G2
r,r

g dν2
r,r :�

»
G0

»
Gu

»
Gu
gpx, yq dλupyq dλupxq dµGpuq.

Then there exist isomorphisms

Φ: Hσ b
µop

ρH Ñ L2pG2
s,r, ν

2
s,rq, Ψ: Hρb

µ
ρH Ñ L2pG2

r,r, ν
2
r,rq

such that for all η, ξ P CcpGq, ζ P CcpG
0q, px, yq P G2

s,r, px
1, y1q P G2

r,r,

Φpĵpηq= ζ < jpξqqpx, yq � ηpxqDpxq�1{2ζpsGpxqqξpyq,

Ψpjpηq= ζ < jpξqqpx1, y1q � ηpx1qζprGpx
1qqξpy1q.

We identify Hσ b
µop

ρH with L2pG2
s,r, ν

2
s,rq and Hρb

µ
ρH with L2pG2

r,r, ν
2
r,rq via Φ,Ψ.

Theorem 7.1. There exists a regular C�-pseudo-multiplicative unitary ppH,σ, ρ, ρq, V q
such that pV ωqpx, yq � ωpx, x�1yq for all ω P CcpG

2
s,rq, px, yq P G

2
r,r, ξ P CcpGq, z P

G. �

The Hopf C�-bimodules pApV qρ,ρH ,∆V q and p pApV qρ,σH , p∆V q can be described as follows.
Embed C0pGq into LpHq via the representation given by multiplication operators, and
denote by C�

r pGq the reduced groupoid C�-algebra of G, that is, the closed linear span
of all operators Lpgq P LpHq, where g P CcpGq and

pLpgqfqpxq �

»
GrGpxq

gpzqDpzq�1{2fpz�1xqdλrGpxqpzq for all f P CcpGq, x P G.

Proposition 7.2. i) ApV q � C�
r pGq and

p∆V pLpgqqωqpx, yq �

»
GrGpxq

gpzqDpzq�1{2ωpz�1x, z�1yqdλrGpxqpzq

for all g P CcpGq, ω P CcpG
2
r,rq, px, yq P G

2
r,r.
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ii) pApV q � C0pGq and pp∆V pfqωqpx, yq � fpxyqωpx, yq for all f P C0pGq, ω P
CcpG

2
s,rq, px, yq P G

2
s,r. �

Using the preceding result, it is not difficult to prove the following theorems:

Theorem 7.3. If G is compact, there exists a compact C�-quantum groupoid

pCpG0q, µ, CpGq, r, φ, s, ψ,D�1, p∆V , Rq

such that rpfq � r�Gpfq, spfq � s�Gpfq,

pφpgqqpuq �

»
Gu
gpyqdλupyq, pψpgqqpuq �

»
Gu

gpyqdλ�1
u pyq

and pRpgqqpxq � gpx�1q for all f P CpG0q, g P CpGq, u P G0, x P G. �
Theorem 7.4. Let G be r-discrete and let λ be the family of counting measures. Embed
CpG0q into CcpGq by extending functions outside of G0 by 0. Then there exists a compact
C�-quantum groupoid pCpG0q, µ, C�

r pGq, ι, φ, ι, φ, Lp1G0q, R,∆V q such that ιpfq � Lpfq,
φpLpgqq � g|G0, RpLpgqq � Lpg:q for all f P CpG0q, g P CcpGq, where g:pxq � gpx�1q
for all x P G. �
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APPENDIX I.4

COACTIONS OF HOPF C�-BIMODULES

THOMAS TIMMERMANN

J. Operator Theory 68(1):19-66, 2012.

Abstract. Coactions of Hopf C�-bimodules simultaneously generalize coactions of
Hopf C�-algebras and actions of groupoids. Following an approach of Baaj and Skan-
dalis, we construct reduced crossed products and establish a duality for fine coactions.
Examples of coactions arise from Fell bundles on groupoids and actions of a groupoid
on bundles of C�-algebras. Continuous Fell bundles on an étale groupoid correspond
to coactions of the reduced groupoid algebra, and actions of a groupoid on a continuous
bundle of C�-algebras correspond to coactions of the function algebra.
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1. Introduction and preliminaries

Actions of quantum groupoids that simultaneously generalize actions of quantum
groups and actions of groupoids have been studied in various settings, including that of
weak Hopf algebras or finite quantum groupoids [24], [25], Hopf algebroids or algebraic
quantum groupoids [7], [13], and Hopf-von Neumann bimodules or measured quantum
groupoids [10], [11], [30]. In this article, we introduce and investigate coactions of Hopf
C�-bimodules or reduced locally compact quantum groupoids within the framework de-
veloped in [27], [29].

In the first part of this article, we construct reduced crossed products and dual coac-
tions, and show that the bidual of a fine coaction is Morita equivalent to the initial
coaction. These constructions apply to pairs of Hopf C�-bimodules that appear as the
left and the right leg of a (weak) C�-pseudo-Kac system, which consists of a C�-pseudo-
multiplicative unitary [29] and an additional symmetry. We associate such a C�-pseudo-
Kac system to every groupoid and to every compact C�-quantum groupoid and expect
that the same can be done for every reduced locally compact quantum groupoid once
this concept has been defined properly. The constructions in this part generalize corre-
sponding constructions of Baaj and Skandalis [3] for coactions of Hopf C�-algebras.

Coactions of the Hopf C�-bimodules associated to a locally compact Hausdorff groupoid
— the function algebra on one side and the reduced groupoid algebra on the other —
are studied in detail in the second part of this article. We show that actions of the
groupoid on continuous bundles of C�-algebras correspond to coactions of the first Hopf
C�-bimodule, and that continuous Fell bundles on G naturally yield coactions of the
second Hopf C�-bimodule. Generalizing results of Quigg [22] and Baaj and Skandalis
[2] from groups to groupoids, we show that if the groupoid is étale, every coaction of the
reduced groupoid algebra arises from a Fell bundle.

This article is organized as follows. The first part is concerned with coactions of Hopf
C�-bimodules and associated reduced crossed products.

Section 2 summarizes the relative tensor product of C�-modules and the fiber product
of C�-algebras over C�-bases [27] which are fundamental to everything that follows, and
introduces coactions of Hopf C�-bimodules.

Section 3 is concerned with C�-pseudo-Kac systems. Every C�-pseudo-Kac system
gives rise to two Hopf C�-bimodules, called the legs of the system, which are dual
to each other in a suitable sense. Coactions of these legs on C�-algebras, associated
reduced crossed products, dual coactions and a duality theorem concerning iterated
crossed products are discussed in Section 4.
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Section 5 gives the construction of the C�-pseudo-Kac system of a locally compact
Hausdorff groupoid G. The associated Hopf C�-bimodules are the function algebra on
one side and the reduced groupoid C�-algebra of G on the other side. The second part
of the article relates coactions of these Hopf C�-bimodules to well-known notions.

Section 6 shows that actions of a groupoid G on continuous bundles of C�-algebras
correspond to certain fine coactions of the function algebra of G.

Section 7 contains preliminaries on Fell bundles, their morphisms and multipliers.
Section 8 shows that continuous Fell bundles on G give rise to coactions of the reduced

groupoid C�-algebra of G, and section 9 gives a reverse construction that associates to
every sufficiently nice coaction of the groupoid algebra a Fell bundle provided that the
groupoid G is étale.

We use the following notation. Given a subset Y of a normed space X, we denote
by rY s � X the closed linear span of Y . All sesquilinear maps like inner products of
Hilbert spaces are assumed to be conjugate-linear in the first component and linear in
the second one. Given a Hilbert space H, we use the ket-bra notation and define for
each ξ P H operators |ξy : C Ñ H, λ ÞÑ λξ, and xξ| � |ξy� : H Ñ C, ξ1 ÞÑ xξ|ξ1y. Given
a C�-algebra A and a subspace B � A, we denote by A X B1 the relative commutant
ta P A | ra,Bs � 0u.

We shall make extensive use of (right) Hilbert C�-modules; see [16]. In particular,
we use the internal tensor product and the KSGNS-construction. Let E be a Hilbert
C�-module over a C�-algebra A, let F be a Hilbert C�-module over a C�-algebra B,
and let φ : AÑ LpF q be a completely positive map. We denote by E =φ F the Hilbert
C�-module over B which is the closed linear span of elements η =φ ξ, where η P E and
ξ P F are arbitrary, and xη =φ ξ|η

1 =φ ξ
1y � xξ|φpxη|η1yqξ1y and pη =φ ξqb � η =φ ξb

for all η, η1 P E, ξ, ξ1 P F , and b P B. If φ is a �-homomorphism, this is the usual
internal tensor product; if F � B, this is the KSGNS-construction. If S P LpEq and
T P LpF q X φpAq1, then there exists a unique operator S =φ T P LpE =φ Eq such
that pS =φ T qpη =φ ξq � Sη =φ Tξ for all η P E, ξ P F ; see Proposition 1.34 in
[9]. We sloppily write “=A” or “=” instead of “=φ” if no confusion may arise. We
also define a flipped product F φ<E as follows. We equip the algebraic tensor product
F d E with the structure maps xξ d η|ξ1 d η1y :� xξ|φpxη|η1yqξ1y, pξ d ηqb :� ξb d η,
form the separated completion, and obtain a Hilbert C�-module F φ<E over B which
is the closed linear span of elements ξφ<η, where η P E and ξ P F are arbitrary, and
xξφ<η|ξ1φ<η1y � xξ|φpxη|η1yqξ1y and pξφ<ηqb � ξbφ<η for all η, η1 P E, ξ, ξ1 P F , and
b P B. Again, we sloppily write “A<” or “<” instead of “φ<” if no confusion may arise.

Evidently, there exists a unitary Σ: F = E
�
ÝÑ E < F , η = ξ ÞÑ ξ < η.

2. Hopf C�-bimodules and coactions

A groupoid differs from a group in the non-triviality of its unit space. In almost every
approach to quantum groupoids, the unit space is replaced by a nontrivial algebra, and
a relative tensor product of modules and a fiber product of algebras over that algebra
become fundamentally important. We shall use the corresponding constructions for C�-
algebras introduced in [27] and briefly summarize the main definitions and results below.
For additional details and motivation, see [27], [29].
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2.1. The relative tensor product. A C�-base is a triple pK,B,B:q consisting of a
Hilbert space K and two commuting nondegenerate C�-algebras B,B: � LpKq. It should
be thought of as a C�-algebraic counterpart to pairs consisting of a von Neumann algebra
and its commutant. Let b � pK,B,B:q be a C�-base. Its opposite is the C�-base
b: :� pK,B:,Bq.

A C�-b-module is a pair Hα � pH,αq, where H is a Hilbert space and α � LpK, Hq
is a closed subspace satisfying rαKs � H, rαBs � α, and rα�αs � B � LpKq. If Hα is
a C�-b-module, then α is a Hilbert C�-module over B with inner product pξ, ξ1q ÞÑ ξ�ξ1

and there exist isomorphisms

α= KÑ H, ξ = ζ ÞÑ ξζ, K < αÑ H, ζ < ξ ÞÑ ξζ,(2.1)

and a nondegenerate representation

ρα : B: Ñ LpHq, ραpb
:qpξζq � ξb:ζ for all b: P B:, ξ P α, ζ P K.

A semi-morphism between C�-b-modules Hα and Kβ is an operator T P LpH,Kq sat-
isfying Tα � β. If additionally T �β � α, we call T a morphism. We denote the set of
all (semi-)morphisms by LpsqpHα,Kβq. If T P LspHα,Kβq, then Tραpb

:q � ρβpb
:qT for

all b: P B:, and if additionally T P LpHα,Kβq, then left multiplication by T defines an
operator in Lpα, βq which we again denote by T .

We shall use the following notion of C�-bi- and C�-n-modules. Let b1, . . . , bn be

C�-bases, where bi � pKi,Bi,B
:
i q for each i. A C�-pb1, . . . , bnq-module is a tuple

pH,α1, . . . , αnq, where H is a Hilbert space and pH,αiq is a C�-bi-module for each i

such that rραipB
:
i qαjs � αj whenever i � j. In the case n � 2, we abbreviate αHβ :�

pH,α, βq. If pH,α1, . . . , αnq is a C�-pb1, . . . , bnq-module, then rραipB
:
i q, ραj pB

:
jqs �

0 whenever i � j. The set of (semi-)morphisms between C�-pb1, . . . , bnq-modules
H � pH,α1, . . . , αnq and K � pK,β1, . . . , βnq is LpsqpH,Kq :�

�n
i�1 LpsqpHαi ,Kβiq �

LpH,Kq.
Let b � pK,B,B:q be a C�-base, Hβ C

�-b-module, and Kγ a C�-b:-module. The
relative tensor product of Hβ and Kγ is the Hilbert space

Hβb
b
γK :� β = K < γ.

It is spanned by elements ξ = ζ < η, where ξ P β, ζ P K, η P γ, and the inner product is
given by xξ=ζ<η|ξ1=ζ 1<η1y � xζ|ξ�ξ1η�η1ζ 1y � xζ|η�η1ξ�ξ1ζ 1y for all ξ, ξ1 P β, ζ, ζ 1 P K,
η, η1 P γ. Obviously, there exists a unitary flip

Σ: Hβb
b
γK Ñ Kγb

b:
βH, ξ = ζ < η ÞÑ η = ζ < ξ.

Using the unitaries in (2.1) on Hβ and Kγ , respectively, we shall make the following
identifications without further notice:

Hρβ<γ � Hβb
b
γK � β =ργ K, ξζ < η � ξ = ζ < η � ξ = ηζ.

For all S P ρβpB
:q1 and T P ργpBq

1, we have operators

S < id P LpHρβ<γq � LpHβb
b
γKq, id =T P Lpβ =ργ Kq � LpHβb

b
γKq.
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If S P LspHβq or T P LspKγq, then pS<idqpξ=ηζq � Sξ=ηζ or pid =T qpξζ<ηq � ξζ<Tη,
respectively, for all ξ P β, ζ P K, η P γ, so that we can define

S b
b
T :� pS < idqpid =T q � pid =T qpS < idq P LpHβb

b
γKq

for all pS, T q P
�
LspHβq � ργpBq

1
�
Y
�
ρβpB

:q1 � LspKγq
�
.

For each ξ P β and η P γ, there exist bounded linear operators

|ξy1 : K Ñ Hβb
b
γK, ω ÞÑ ξ = ω, |ηy2 : H Ñ Hβb

b
γK, ω ÞÑ ω < η,

whose adjoints xξ|1 :� |ξy�1 and xη|2 :� |ηy�2 are given by

xξ|1 : ξ1 = ω ÞÑ ργpξ
�ξ1qω, xη|2 : ω < η1 ÞÑ ρβpη

�η1qω.

We write |βy1 :� t|ξy1 | ξ P βu � LpK,Hβb
b
γKq and similarly define xβ|1, |γy2, and xγ|2.

Let H � pH,α1, . . . , αm, βq be a C�-pa1, . . . , am, bq-module and K � pK, γ, δ1, . . . , δnq

a C�-pb:, c1, . . . , cnq-module, where ai � pHi,Ai,A
:
i q and cj � pLj ,Cj ,C

:
jq are C�-bases

for all i, j. We define

αi � γ :� r|γy2αis � LpHi, Hβb
b
γKq, β � δj :� r|βy1δjs � LpLj , Hβb

b
γKq

for all i, j. Then pHβb
b
γK,α1 � γ, . . . , αm � γ, β � δ1, . . . , β � δnq is a C�-pa1, . . . , am,

c1, . . . , cnq-module, called the relative tensor product of H and K and denoted by Hb
b
K.

For all i, j and a: P A:
i , c

: P C:j ,

ρpαi�γqpa
:q � ραipa

:q b
b

id, ρpβ�δjqpc
:q � idb

b
ρδj pc

:q.

The relative tensor product is functorial in the following sense. Let H̃ � pH̃, α̃1, . . . , α̃m,

β̃q be a C�-pa1, . . . , am, bq-module, let K̃ � pK̃, γ̃, δ̃1, . . . , δ̃nq be a C�-pb:, c1, . . . , cnq-

module, and let S P LpsqpH, H̃q, T P LpsqpK, K̃q. Then there exists a unique operator

S b
b
T P LpsqpH b

b
K, H̃ b

b
K̃q satisfying pS b

b
T qpξ = ζ < ηq � Sξ = ζ < Tη for all

ξ P β, ζ P K, η P γ.
Finally, the relative tensor product is associative in the following sense. Let d, e1, . . . , el

be C�-bases, K̂ � pK, γ, δ1, . . . , δn, εq a C�-pb:, c1, . . . , cn, dq-module and L � pL, φ,
ψ1, . . . , ψlq a C�-pd:, e1, . . . , elq-module. Then there exists a canonical isomorphism

aH,K,L : pHβb
b
γKqβ�εb

d
φLÑ β =ργ Kρε<φÑ Hβb

b
γ�φpKεb

d
φLq(2.2)

which is an isomorphism of the C�-pa1, . . . , am, c1, . . . , cn, e1, . . . , elq-modules pHb
b
K̂qb

d
L

and Hb
b
pK̂b

d
Lq. From now on, we identify the Hilbert spaces in (2.2) and denote them

by Hβb
b
γKεb

d
φL.
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2.2. The fiber product of C�-algebras. Let b1, . . . , bn be C�-bases, where bi �

pKi,Bi,B
:
i q for each i. A (nondegenerate) C�-pb1, . . . , bnq-algebra consists of a C�-

pb1, . . . , bnq-module pH,α1, . . . , αnq and a (nondegenerate) C�-algebra A � LpHq such

that ραipB
:
i qA is contained in A for each i. We shall only be interested in the cases n �

1, 2, where we abbreviate AαH :� pHα, Aq, A
α,β
H :� pαHβ, Aq. Given a C�-pb1, . . . , bnq-

algebra A � ppH,α1, . . . , αnq, Aq, we identify MpAq with a C�-subalgebra of LprAHsq �
LpHq and obtain C�-pb1, . . . , bnq-algebra MpAq � ppH,α1, . . . , αnq,MpAqq.

We need several notions of a morphism. Let A � pH, Aq and C � pK, Cq be
C�-pb1, . . . , bnq-algebras, where H � pH,α1, . . . , αnq and K � pK, γ1, . . . , γnq. A �-
homomorphism π : A Ñ C is called a jointly (semi-)normal morphism or briefly (semi-
)morphism from A to C if rLπpsqpH,Kqαis � γi for each i, where

LπpsqpH,Kq � tT P LpsqpH,Kq | Ta � πpaqT for all a P Au.

One easily verifies that every (semi-)morphism π between C�-b-algebras AαH and CγK
satisfies πpραpb

:qq � ργpb
:q for all b: P B:.

We construct a fiber product of C�-algebras over C�-bases as follows. Given Hilbert
spaces H,K, a closed subspace E � LpH,Kq, and a C�-algebra A � LpHq, we define a
C�-algebra

IndEpAq :� tT P LpKq | TE � rEAs and T �E � rEAsu � LpKq.

Let b be a C�-base, AβH a C�-b-algebra, and Bγ
K a C�-b:-algebra. The fiber product of

AβH and Bγ
K is the C�-algebra

Aβ�
b
γB :� Ind|βy1pBq X Ind|γy2pAq � LpHβb

b
γKq.

To define coactions, we also need to consider the C�-algebra

Aβ�
b

γB :� Indr|βy1BspBq X Ind|γy2pAq � LpHβb
b
γKq,

which evidently contains Aβ�
b
γB. If A and B are unital, so is Aβ�

b
γB, but otherwise,

Aβ�
b
γB and Aβ�

b

γB may be degenerate. Clearly, conjugation by the flip Σ: Hβb
b
γK Ñ

Kγb
b:
βH yields an isomorphism

AdΣ : Aβ�
b
γB Ñ Bγ �

b:
βA.

If a, c are C�-bases, Aα,βH is a C�-pa, bq-algebra and Bγ,δ
K a C�-pb:, cq-algebra, then

Aα,βH �
b
Bγ,δ
K :� pαHβ b

b
γKδ, Aβ�

b
γBq

is a C�-pa, cq-algebra, called the fiber product of Aα,βH and Bγ,δ
K ; see Proposition 3.15 in

[27]. Likewise, pαHβ b
b
γKδ, Aβ�

b

γBq is a C�-pa, cq-algebra.

The fiber product need not be associative, but in this article, it will only appear as
the target of a comultiplication or coaction whose coassociativity will compensate the
non-associativity of the fiber product.

More importantly, the fiber product is functorial in the following sense. Let φ be a

(semi-)morphism of C�-pa, bq-algebras A � Aα,βH and C � Cκ,λL , and ψ a (semi-)morphism
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of C�-pb:, cq-algebras B � Bγ,δ
K and D � Dµ,ν

M . Then there exists a unique (semi-
)morphism of C�-pa, cq-algebras φ�ψ from pαHβb

b
γKδ, Aβ�

b

γBq to pκLλb
b
µMν , Cλ�

b

µDq

such that

pφ � ψqpxqR � Rx for all x P Aβ�
b
γB and R P IMJH � JLIK ,

where IX � LφpH,Lq b
b

idX , JY � idY b
b
LψpK,Mq for X P tK,Mu, Y P tH,Lu, and

φ � ψ restricts to a (semi-)morphism from Aα,βH �
b
Bγ,δ
K to Cκ,λL �

b
Dµ,ν
M ; see Theorem 3.19

in [27]. The proof uses the following result, which essentially is Lemma 3.18 in [27].

Lemma 2.1. Let c be a C�-base, π a semi-morphism of C�-b-algebras AβH , CλL, and

γKδ a C�-pb:, cq-module. Let I :� Lπs pHβ, Lλq b
b

id � LpHβb
b
γK,Lλb

b
γKq and

X :� pI�Iq1 � LpHβb
b
γKq, Y :� pII�q1 � LpLλb

b
γKq.

(i) X :� pHβb
b
γKδ, Xq and Y :� pLλb

b
γKδ, Y q are C�-c-algebras.

(ii) There exists a semi-morphism Ind|γy2pπq : X Ñ Y such that pInd|γy2pπqqpxqz �
zx for all x P X and z P I.

(iii) If Bγ
K is a C�-b:-algebra, then Aβ�

b
γB � Aβ�

b

γB � X, pInd|γy2pπqqpAβ�
b
γBq �

Cλ �
b
γB and pInd|γy2pπqqpAβ�

b

γBq � Cλ�
b

γB.

(iv) r|γy2Axγ|2s � X and pInd|γy2pπqqpr|γy2Axγ|2sq � r|γy2πpAqxγ|2s.

2.3. Hopf C�-bimodules and coactions. The notion of a Hopf C�-bimodule was
introduced in [29].

Definition 2.2. Let b � pK,B,B:q be a C�-base. A Hopf C�-bimodule over b is a C�-

pb:, bq-algebra Aβ,αH with a morphism ∆ from Aβ,αH to Aβ,αH �
b
Aβ,αH satisfying pδ � idq � δ �

pid �∆q � δ as maps from A to LpHαb
b
βHαb

b
βHq.

Let pA,∆q be a Hopf C�-bimodule, where A � Aβ,αH .
A coaction of pA,∆q consists of a C�-b-algebra CγK and a semi-morphism δ from

pKγ , Cq to pKγ b
b
βHα, Cγ�

b

βAq such that pδ � idq � δ � pid �∆q � δ as maps from C to

LpKγb
b
βHαb

b
βHq. We call such a coaction pCγK , δq

(i) left-full if rδpCq|γy1As � r|γy1As, and right-full if rδpCq|βy2s � r|βy2Cs;
(ii) fine if δ is injective, a morphism, and right-full, and if rργpB

:qCs � C;
(iii) very fine if it is fine and if δ�1 : δpCq Ñ C is a morphism of C�-b-algebras from

pKγb
b
βHα, δpCqq to pKγ , Cq.

A morphism between coactions pCγK , δCq and pDε
L, δDq is a semi-morphism ρ from CγK

to MpDqεL satisfying rρpCqDs � D and δDpdq � pρ � idqpδCpcqq � δDpdρpcqq for all d P D,
c P C. We denote the category of all coactions of pA,∆q by CoactpA,∆q.

Examples of Hopf C�-bimodules and coactions will be discussed in detail in Sections
5, 6, and 8.
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3. Weak C�-pseudo-Kac systems

To form a reduced crossed product for a coaction of a Hopf C�-bimodule pA,∆q and
to equip this reduced crossed product with a dual coaction, one needs a second Hopf

C�-bimodule p pA, p∆q that is dual to pA,∆q in a suitable sense. We shall see that a

good notion of duality is that pA,∆q and p pA, p∆q are the legs of a weak C�-pseudo-
Kac system, which is a generalization of the balanced multiplicative unitaries and Kac
systems introduced by Baaj and Skandalis [1, 3].

3.1. C�-pseudo-multiplicative unitaries. A weak C�-pseudo-Kac system is a well-
behaved C�-pseudo-multiplicative unitary V together with a symmetry U satisfying a
number of axioms. Before we state these axioms, we recall the notion of a C�-pseudo-
multiplicative unitary and the construction of the associated Hopf C�-bimodules from
[29].

Let b be a C�-base. A C�-pseudo-multiplicative unitary over b consists of a C�-

pb:, b, b:q-module pH, pβ, α, βq and a unitary V : H
pβ
b
b:
αH Ñ Hαb

b
βH such that

V pα � αq � α � α, V ppβ � βq � pβ � β, V ppβ � pβq � α � pβ, V pβ � αq � β � β(3.1)

in LpK, Hαb
b
βHq and V12V13V23 � V23V12 in the sense that the following diagram

H
pβ
b
b:
αH pβ

b
b:
αH

V12 //

V23
��

Hαb
b
βH pβ

b
b:
αH

V23 // Hαb
b
βHαb

b
βH,

H
pβ
b
b:
α�αpHαb

b
βHq

V13 // pH
pβ
b
b:
αHqα�αb

b
βH

V12
OO

(3.2)

commutes, where Vij is the leg notation for the operator that acts like V on the ith and
jth factor in the relative tensor product; see [29].

Let V be a C�-pseudo-multiplicative unitary as above, let

pA � pAV � rxβ|2V |αy2s � LpHq, p∆ � p∆V : pAÑ LpH
pβ
b
b:
αHq, pa ÞÑ V �p1b

b
paqV,

A � AV � rxα|1V |pβy1s � LpHq, ∆ � ∆V : AÑ LpHαb
b
βHq, a ÞÑ V pab

b:
1qV �,

and let pA � pAα,pβH and A � Aβ,αH . We call V well-behaved if p pA, p∆q and pA,∆q are Hopf
C�-bimodules. This happens for example if V is regular in the sense that rxα|1V |αy2s �
rαα�s � LpHq; see Theorem 4.5 in [29].

The opposite of V is the C�-pseudo-multiplicative unitary

V op :� ΣV �Σ: Hβb
b:
αH

Σ
ÝÑ Hαb

b
βH

V �

ÝÝÑ H
pβ
b
b:
αH

Σ
ÝÑ Hαb

b
pβ
H.

If V is well-behaved or regular, then the same is true for V op, and then

pAV op � AV , p∆V op � AdΣ �∆V , AV op � pAV , ∆V op � AdΣ �p∆V .(3.3)
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Let pH, pα, pβ, α, βq be a C�-pb, b:, b, b:q-module and U P Lp
pαHpβ

, αHβq a symmetry,

that is, U � U� � U�1. Then U pα � α, U pβ � β, and the diagram

H
pαb

b
pβ
H oo

p1 b
bp:q

UqΣ

//

OO
pU b

bp:q
1qΣ

��

hh

((

H
pβ
b
b:
αH
OO
p1 b

bp:q
UqΣ

��

66

vv
Hβb

b:
pαH oo

pU b
bp:q

1qΣ
// Hαb

b
βH

commutes, where each arrow can be read in both directions and the diagonal maps are
U b

bp:q
U . We use the leg notation and write U1 for U b

bp:q
1 and U2 for 1 b

bp:q
U .

For each T P LpH
pβ
b
b:
αH,Hαb

b
βHq, let

qT :� Σp1b
b
UqT p1b

b:
UqΣ: H

pαb
b
pβ
H Ñ H

pβ
b
b:
αH,

pT :� ΣpU b
b

1qT pU b
b:

1qΣ: Hαb
b
βH Ñ Hβb

b:
pαH.

Switching from pb, H, pα, pβ, α, βq to pb:, H, β, pα, pβ, αq or to pb:, H, pβ, α, β, pαq, respectively,

we can iterate the assignments T ÞÑ qT and T ÞÑ pT , and obtain

qqqT � pT , qqT � pU b
b
UqT pU b

b:
Uq �

ppT, qT �
pppT.(3.4)

Definition 3.1. A balanced C�-pseudo-multiplicative unitary pV,Uq on a C�-pb, b:, b, b:q-

module pH, pα, pβ, α, βq consists of a symmetry U P Lp
pαHpβ

, αHβq and a C�-pseudo-multipli-

cative unitary V : H
pβ
b
b:
αH Ñ Hαb

b
βH such that qV and pV are C�-pseudo-multiplicative

unitaries again.

Note that in this definition, pqV ,Uq is a C�-pseudo-multiplicative unitary if and only

if ppV ,Uq is one because qV � pU b
b:
UqpV pU b

b
Uq.

Let pV,Uq be a balanced C�-pseudo-multiplicative unitary as above.

Remark 3.2. (i) One easily verifies that pqV ,Uq, ppV ,Uq, pV op, Uq are balanced
C�-pseudo-multiplicative unitaries again. We call them the predual, dual, and
opposite of pV,Uq, respectively.

(ii) The relations (3.1) for the unitaries qV , pV read as follows:

pβ � pβ qV
ÝÑ pβ � pβ, pα � α

qV
ÝÑ pα � α, pα � pα qV

ÝÑ pβ � pα, α � pβ qV
ÝÑ α � α,

β � β
pV
ÝÑ β � β, α � pα pV

ÝÑ α � pα, α � α
pV
ÝÑ β � α, pα � β

pV
ÝÑ pα � pα,
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where X
W
ÝÑ Y means WX � Y . They furthermore imply

pβ � pα V
ÝÑ α � pα, pα � β

qV
ÝÑ pβ � β, α � pβ pV

ÝÑ β � pβ,
pα � α

V
ÝÑ pα � β, β � pβ qV

ÝÑ β � α, pβ � β
pV
ÝÑ pβ � pα.

(iii) The spaces pA and A are contained in LpH
pαq since r pApαs � rxβ|2V |αy2pαs �

rxβ|2|βy2pαs � rραpB
:qpαs � pα and similarly rApαs � rxα|1V |pβy1pαs � pα.

Lemma 3.3. V13V23
qV12 � qV12V13 and pV23V12V13 � V13

pV23, that is, the diagrams

pH
pαb

b
pβ
Hq

pβ�pβ
b
b:
αH

V13 //

qV12
��

pH
pαb

b
pβ
Hq

α�pβ
b
b
βH

qV12 // pH
pβ
b
b:
αHqα�αb

b
βH,

H
pβ
b
b:
αH pβ

b
b:
αH

V23 // H
pβ
b
b:
α�αpHαb

b
βHq

V13
OO

(3.5)

H
pβ
b
b:
α�αpHαb

b
βHq

pV23 //

V13
��

H
pβ
b
b:
β�αpHβb

b:
pαHq

V13 // Hαb
b
β�βpHβb

b:
pαHq

pH
pβ
b
b:
αHqα�αb

b
βH

V12 // Hαb
b
βHαb

b
βH

pV23
OO

(3.6)

commute.

Proof. LetW :� ΣV Σ. We insert the relation qV � U1WU1 into the equation qV12
qV13
qV23 �qV23

qV12 and obtain U1W12U1 � U1W13U1 � qV23 � qV23 � U1W12U1 and hence W12W13
qV23 �qV23W12. Renumbering the legs of the operators according to the permutation p1, 2, 3q ÞÑ

p2, 3, 1q, we find V13V23
qV12 � qV12V13. A similar calculation shows that pV23V12V13 �

V13
pV23. �

Proposition 3.4. pA
qV
� UAV U , p∆

qV
� AdpUb

b
Uq �∆V �AdU , A

qV
� pAV , ∆

qV
� p∆V and

A
pV
� U pAV U , ∆

pV
� AdpUb

b:
Uq �p∆V �AdU , pA

pV
� AV , p∆

pV
� ∆V .

Proof. By definition,

A
qV
� rxpβ|1ΣU2V U2Σ|pαy1s � rxU pβ|2V |U pαy2s � rxβ|2V |αy2s � pAV .
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Let pa � xξ1|2V |ξy2 P pAV , where ξ1 P β, ξ P α. Then ∆
qV
ppaq � qV ppab

b
1qqV � � V �p1b

b
paqV �

p∆V ppaq because the diagram

H
pβ
b
b:
αH

qV �

//

|ξy3

��

H
pαb

b
pβ
H

pab
b

1
//

|ξy3
��

H
pαb

b
pβ
H

qV

// H
pβ
b
b:
αH

pH
pαb

b
pβ
Hq

pβ�pβ
b
b:
αH

V13
// pH

pαb
b
pβ
Hq

α�pβ
b
b
βH

qV12 **

xξ1|3
OO

H
pβ
b
b:
αH pβ

b
b:
αH

V12

))

V13V23 //
qV �
12

55

pH
pβ
b
b:
αHqα�αb

b
βH

xξ1|3

��

xξ1|3

OO

Hαb
b
βH pβ

b
b:
αH

V23 // Hαb
b
βHαb

b
βH

V �
12 44

xξ1|3
��

H
pβ
b
b:
αH

V //

|ξy3

OO

Hαb
b
βH

1b
b
pa

//

|ξy3 OO

Hαb
b
βH

V �
// H

pβ
b
b:
αH

commutes. Since elements of the form like pa are dense in pAV , we can conclude ∆
qV
� p∆

qV
.

The proof of the remaining assertions is similar. �
Corollary 3.5. If V is well-behaved, then also qV and pV are well-behaved.

Weak C�-pseudo-Kac systems. Let pV,Uq as above.

Lemma 3.6. For each pa P pA and a P A, we have equivalences

p1b
b:
paqpV � pV p1b

b
paq ô pUpaU b

b
1qV � V pUpaU b

b:
1q ô rUpaU, pAs � 0,

pab
b:

1qqV � qV pab
b

1q ô p1b
b
UaUqV � V p1b

b:
UaUq ô rUaU,As � 0.

These equivalent conditions hold for all pa P pA and a P A if and only if V23
pV12 � pV12V23

and qV23V12 � V12
qV23 in the sense that the following diagrams commute:

Hαb
b
βH pβ

b
b:
αH

pV12

//

V23
��

Hβb
b:

pαH pβ
b
b:
αH

V23
��

Hαb
b
βHαb

b
βH

pV12 // Hβb
b:

pαHαb
b
βH,

H
pβ
b
b:
αH pαb

b
pβ
H

V12
//

qV23��

Hαb
b
βH pαb

b
pβ
H

qV23��
H

pβ
b
b:
αH pβ

b
b:
αH

V12 // Hαb
b
βH pβ

b
b:
αH.

Proof. This is straightforward, for example, V23
pV12 � pV12V23 holds if and only if we

have xξ1|3V23
pV12|ξy3 � xξ1|3 pV12V23|ξy3 for all ξ P α, ξ1 P β and hence if and only if

p1b
b:
paqpV � pV p1b

b
paq for all pa P pA. �

Definition 3.7. We call pV,Uq a weak C�-pseudo-Kac system if V is well-behaved and

if the equivalent conditions in Lemma 3.6 hold, and a C�-pseudo-Kac-system if V, qV , pV
are regular and additionally pΣp1b

b
UqV q3 � id, where Σp1b

b
UqV : H

pβ
b
b:
αH Ñ H

pβ
b
b:
αH.

Remark 3.8. In leg notation, the equation
�
Σp1 b

b
UqV

�3
� 1 can be rewritten as

pΣU2V q
3 � 1. Conjugating by Σ or V , we see that this condition is equivalent to the

relation pU2V Σq3 � 1 and to the relation pV ΣU2q
3 � 1.
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Lemma 3.9. pΣU2V q
3 � 1 if and only if pV V qV � U1Σ.

Proof. U1U2pΣU2V q
3U2Σ � ΣU1V U1Σ � V � ΣU2V U2Σ � pV � V � qV . �

Proposition 3.10. Every C�-pseudo-Kac system is a weak C�-pseudo-Kac system.

Proof. Let pV,Uq be a C�-pseudo-Kac system. Then V, qV , pV are regular and therefore
well-behaved. Using diagrams (3.2) and (3.5), we find

V12
qV12Σ12V23 � V12

qV12V13Σ12 � V12V13V23
qV12Σ12 � V23V12

qV12Σ12.

By Lemma 3.9, V12
qV12Σ12 � pV �

12U1 and hence pV �
12U1V23 � V23

pV �
12U1. Since pV12 is unitary

and U1V23 � V23U1, we can conclude pV12V23 � V23
pV12. A similar argument shows thatqV23V12 � V12

qV23. �
The following result is crucial for the duality presented in the next section.

Proposition 3.11. Let pV,Uq be a C�-pseudo-Kac system. Then rA pAs � rpαpα�s.
Proof. The relation rpα� pAs � pα� (Remark 3.2 (iii)), regularity of V , and the relations

V � � ΣU2V ΣU2V ΣU2 and rV |αy2 pAs � r|βy2 pAs (see Remark 4.7 in [29]) imply

rpαpα�s � rUαα�U pAs � rUxα|2V
�|αy1U pAs

� rUxα|2ΣU2V ΣU2V ΣU2|αy1U pAs
� rxα|1V ΣU2V |αy2 pAs
� rxα|1V ΣU2|βy2 pAs � rxα|1V |pβy1 pAs � rA pAs. �

Lemma 3.12. Let pV,Uq be a (weak) C�-pseudo-Kac system. Then also pqV ,Uq, ppV ,Uq,
and pV op, Uq are (weak) C�-pseudo-Kac systems.

Proof. If pV,Uq is a weak C�-pseudo-Kac system, then the tuples above are balanced
C�-pseudo-multiplicative unitaries by Remark 3.2 (i), and the remaining necessary con-
ditions follow easily from Proposition 3.4 and equation (3.3).

If pV,Uq is a C�-pseudo-Kac system, then equation (3.4), the relation�pV opq � U1V
�U1 �

ppV qop, and the fact that V op is regular, imply that the tuples above satisfy the regu-
larity condition in Definition 3.7. To check that they also satisfy the second condition,

we use Remark 3.8 and calculate pΣU2
pV q3 � pV ΣU2q

3 � 1, pqV ΣU2q
3 � pΣU2V q

3 � 1,
pU2V

opΣq3 � pU2ΣV �q3 � ppV ΣU2q
3q� � 1. �

3.2. The C�-pseudo-Kac system of a compact C�-quantum groupoid. In [?],
we introduced compact C�-quantum groupoids and associated to each such object a
regular C�-pseudo-multiplicative unitary V . We now recall this construction and define
a symmetry U such that pV,Uq is a C�-pseudo-Kac system.

A compact C�-quantum graph consists of a unital C�-algebra B with a faithful KMS-
state µ, a unital C�-algebra A with unital embeddings r : B Ñ A and s : Bop Ñ A such
that rrpBq, spBopqs � 0, and faithful conditional expectations φ : A Ñ rpBq � B and
ψ : AÑ spBopq � Bop such that the compositions ν :� µ�φ and ν�1 :� µop�ψ are KMS-
states related by some positive invertible element δ P AXrpBq1XspBopq1 via the formula

ν�1paq � νpδ1{2aδ1{2q, valid for all a P A. An involution for such a compact C�-quantum
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graph is a �-antiisomorphism R : A Ñ A such that R � R � idA, Rprpbqq � spbopq and
φpRpaqq � ψpaqop for all b P B, a P A.

Let pB,µ,A, r, s, φ, ψq be a compact C�-quantum graph with involution R. We denote
by pHµ, ζµ, Jµq and pHν , ζν , Jνq the GNS-spaces, canonical cyclic vectors, and modular

conjugations for the KMS-states µ and ν, respectively, and let ζν�1 � δ1{2ζν . As usual,
we have representations Bop Ñ LpHµq, b

op ÞÑ Jµb
�Jµ, and Aop Ñ LpHνq, a

op ÞÑ Jνa
�Jν .

Using the isometries

ζφ : Hµ Ñ Hν , bζµ ÞÑ rpbqζν , ζψ : Hµop Ñ Hν , b
opζµop ÞÑ spbopqζν�1 ,

we define subspaces pα, pβ, α, β � LpHµ, Hνq by pα :� rAζφs, pβ :� rAζψs, β :� rAopζφs,

β :� rAopζψs. Let H � Hν and b � pK,B,B:q, where K � Hµ, B � B � LpHµq,

B: � Bop � LpHµq. Then pH, pα, pβ, α, βq is a C�-pb, b:, b, b:q-module and A :� Aβ,αH a

C�-pb:, bq-algebra [?].
A compact C�-quantum groupoid consists of a compact C�-quantum graph with invo-

lution as above and a morphism AÑ A�
b
A of C�-pb:, bq-algebras satisfying the following

conditions:

(i) p∆ � idq �∆ � pid �∆q �∆ as maps from A to LpHαb
b
βHαb

b
βHq;

(ii) xζφ|2∆paq|ζφy2 � ρβpφpaqq and xζψ|1∆paq|ζψy1 � ραpψpaqq for all a P A;
(iii) r∆pAq|αy1s � r|αy1As � r∆pAq|ζψy1As and similarly r∆pAq|βy2s � r|βy2As �

r∆pAq|ζφy2As;
(iv) Rpxζψ|1∆paqpdop b

b
1q|ζψy1q � xζψ|1pa

op b
b

1q∆pdq|ζψy1 for all a, d P A.

Given a compact C�-quantum groupoid as above, there exists a regular C�-pseudo-
multiplicative unitary V : H

pβ
b
b:
αH Ñ Hαb

b
βH such that V |aζψy1 � ∆paq|ζψy1 for all

a P A; see Theorem 5.4 in [?]. Denote by J � Jν the modular conjugation for ν, by
I : H Ñ H the antiunitary given by Iaζν�1 � Rpaq�ζν for all a P A, and let U � IJ P
LpHq.

Proposition 3.13. pV,Uq is a C�-pseudo-Kac system.

Proof. First, U2 � IJIJ � IJJI � II � idH because IJ � JI, and Uζφ � ζψ,

Uζν � ζν�1 , U pα � Iβ � α, U pβ � Iα � β by Lemma 2.7 and Proposition 3.8 in [?]. The
relation pJαb

Jµ
βIqV pJαb

Jµ
βIq � V � (see Theorem 5.6 in [?]) implies

qV � Σp1b
b
JIqV p1b

b:
JIqΣ � pJαb

Jµ
pβ
JqΣpJαb

Jµ
βIqV pJαb

Jµ
βIqΣpJ pαb

Jµ
pβ
Jq

� pJαb
Jµ

pβ
JqΣV �ΣpJ

pαb
Jµ

pβ
Jq � pJαb

Jµ
pβ
JqV oppJ

pαb
Jµ

pβ
Jq.

But V op is a regular C�-pseudo-multiplicative unitary, so qV is regular as well. In par-
ticular, pV,Uq is a balanced C�-pseudo-multiplicative unitary. We shall show thatpV V � U1ΣqV �, and then the claim follows from Lemma 3.9. Let a, b P A and ω �
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pV V paζψ = Ubζν�1q. By Proposition 3.4, ∆paq � pV �p1b
b:
aqpV and hence

ω � pV∆paqpζψ = Ubζν�1q

� p1b
b:
aqpV pζψ = Ubζν�1q

� ΣpU b
b

1qpUaU b
b

1qV pbζν�1 < ζψq

� ΣpU b
b

1qpUaU b
b

1q∆pbqpζψ = ζν�1q.

Since UaU � JIaIJ � Rpaqop and rUaU b
b

1,∆pbqs P rAop b
b

1, Aα�
b
βAs � 0,

ω � ΣpU b
b

1q∆pbqpUaUζψ = ζν�1q

� pU b
b:

1qΣpU b
b
Uq∆pbqpU b

b
UqpaUζψ = ζνq.

By Proposition 3.4, qV �p1b
b:
UbUqqV � pU b

b
Uq∆pbqpU b

b
Uq and hence

ω � pU b
b:

1qΣqV �p1b
b:
UbUqqV paUζψ = ζνq

� pU b
b:

1qΣqV �p1b
b:
UbUqΣp1b

b
UqV pζν < UaUζψq.

Finally, by Proposition 5.5 in [?], V pζν < UaUζψq � ζν < UaUζφ, whence

ω � pU b
b:

1qΣqV �p1b
b:
UbUqpaUζφ = ζνq

� pU b
b:

1qΣqV �paζψ = Ubζν�1q. �

4. Reduced crossed products and duality

Let pV,Uq be a weak C�-pseudo-Kac system and let pA,∆q, p pA, p∆q be the Hopf C�-
bimodules associated to V as in the preceding section. Generalizing the corresponding
constructions and results for coactions of Hopf C�-algebras [3], we now associate to every
coaction of one of these Hopf C�-bimodules a reduced crossed product that carries a dual
coaction of the other Hopf C�-bimodule, and prove a duality theorem concerning the
iteration of this construction.
Reduced crossed products for coactions of pA,∆q. Let δ be a coaction of the Hopf C�-
bimodule pA,∆q on a C�-b-algebra C � CγK and let1

C �r pA :� rδpCqp1b
b

pAqs � LpKγb
b
βHq, C �r pA :� pKγb

b
βHpβ

, C �r pAq.
Proposition 4.1. (i) rδpCqpγ � pβqs � γ � pβ with equality if δ is left-full.

(ii) C �r pA is a C�-algebra and C �r pA is a C�-b:-algebra.

(iii) There exist nondegenerate �-homomorphisms C ÑMpC�r pAq and pAÑMpC�rpAq, given by c ÞÑ δpcq and pa ÞÑ 1b
b
pa, respectively.

1The notation C �r pA is consistent with [3] but not with [10], where C �r A is used instead.
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Proof. (i) The relation pβ � rApβs (see Proposition 3.2 (ii) in [29]) implies that rδpCq|γy1pβs �
rδpCq|γy1Apβs � r|γy1Apβs � r|γy1pβs.

(ii) We first show that rp1 b
b

pAqδpCqs � rδpCqp1 b
b

pAqs. Let δp2q :� pid �∆q � δ �

pδ � idq � δ : C Ñ LpKγb
b
βHγb

b
βHq. By definition of pA and ∆,

rp1b
b

pAqδpCqs � rxβ|3p1b
b
V q|αy3δpCqs � rxβ|3p1b

b
V qpδpCq b

b:
1q|αy3s

� rxβ|3δ
p2qpCqp1b

b
V q|αy3s

� rδpCqxβ|3p1b
b
V q|αy3s � rδpCqp1b

b

pAqs.
Consequently, C �r pA is a C�-algebra. By Proposition 3.2 (i) in [29], r pAρ

pβ
pBqs � pA,

and hence rpC �r pAqρpγ�pβqpBqs � rδpCqp1b
b

pAρ
pβ
pBqqs � rδpCqp1b

b

pAqs � C �r pA.

(iii) Immediate. �

Theorem 4.2. There exists a unique coaction pδ of p pA, p∆q on C�r pA such that pδpδpcqp1b
bpaqq � pδpcq b

b:
1qp1b

b

p∆ppaqq for all c P C, pa P pA. If p∆ is a fine coaction, then pδ is a very

fine coaction. If δ is left-full, then pδ is left-full.

Proof. Define pδ : C�r pAÑ LpKγb
b
βH pβ

b
b:
αHq by x ÞÑ p1b

b

qV qpxb
b

1qp1b
b

qV �q. Then pδ is

injective and satisfies pδpδpcqp1b
b
paqq � pδpcq b

b:
1qp1b

b

p∆ppaqq for all c P C, pa P pA because

qV ppab
b

1qqV � � p∆ppaq by Proposition 3.4 and p1b
b

qV qδpcqp1b
b

qV �q � δpcq as a consequence

of the relation qV pa b
b

1qqV � � a b
b:

1. We show that pδ is a coaction of p pA, p∆q. First,

rpδpC �r pAq|αy3s � r|αy3pC �r pAqs because

rpδpCq b
b:

1qp1b
b

p∆p pAqq|αy3s � rpδpCq b
b:

1q|αy3p1b
b

pAqs � r|αy3δpCqp1b
b

pAqs.(4.1)

Next, rpδpC �r pAq|γ � pβy1 pAs � r|γ � pβy1 pAs because by Proposition 4.1 (i),

rp1b
b

p∆p pAqqpδpCq b
b:

1q|γ � pβy1 pAs � rp1b
b

p∆p pAqq|γ � pβy1 pAs
� r|γy1 p∆p pAq|pβy1 pAs � r|γy1|pβy1 pAs.(4.2)

Furthermore, pδpxqp1b
b

qV q|ξy3 � p1b
b

qV q|ξy3x for each x P C �r pA, ξ P pβ, and by Remark

3.2 (ii), rp1 b
b

qV q|pβy3pγ � pβqs � γ � pβ � pβ and rxpβ|3p1 b
b

qV q�pγ � pβ � pβqs � γ � pβ. The

maps ppδ � idq � pδ and pid �p∆q � pδ from C �r pA to L
�
Kγb

b
βH pβ

b
b:
αH pβ

b
b:
αH
�

are given by

δpcqp1b
b
paq ÞÑ �

δpcqb
b:

1b
b:

1
��

1b
b

p∆p2qppaq� for all c P C,pa P pA, where p∆p2q :� pp∆� idq� p∆ �

pid �p∆q � p∆. Thus, pC�r pA, pδq is a coaction of p pA, p∆q. If the coactions p∆ is fine, then the

inclusion (4.1) is an equality and in any case rxpβ|3p1 b
b

qV q�pγ � pβ � pβqs � γ � pβ, whence
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pδ will be very fine. If δ is left-full, then the inclusion (4.2) is an equality by Proposition

4.1 (i) and hence pδ is left-full. �

Definition 4.3. We call C�r pA the reduced crossed product and pC�r pA, pδq the reduced
dual coaction of pC, δq.

The construction of reduced dual coactions is functorial in the following sense:

Proposition 4.4. Let ρ be a morphism between coactions pC, δCq and pD, δDq of pA,∆q.
Then there exists a unique morphism ρ�r id from pC�r pA, pδCq to pD�r pA, pδDq such that
pρ �r idq

�
p1 b

b
paqδCpcq� � δDpdqp1 b

b
pa1q � p1 b

b
paqδDpρpcqdqp1 b

b
pa1q for all c P C, d P D,

pa,pa1 P pA.

Proof. The semi-morphism Ind|βy2pρq of Lemma 2.1 evidently restricts to a semi-morphism

ρ �r id from C �r pA to MpD �r pAq which satisfies the formula given above, and this
formula implies that ρ�r id is a morphism of coactions as claimed. �
Corollary 4.5. There exists a functor � �r pA : CoactpA,∆q Ñ Coactp pA,p∆q given by

pC, δq ÞÑ pC �r pA, pδq and ρ ÞÑ ρ�r id. �

4.1. Reduced crossed products for coactions of p pA, p∆q. The construction in the

preceding paragraph carries over to coactions of the Hopf C�-bimodule p pA, p∆q as follows.

Let δ be a coaction of p pA, p∆q on a C�-b:-algebra C � CγK and let

C �r A :� rδpCqp1b
b:
UAUqs � LpKγb

b:
αHq, C �r A � pKγb

b:
αHpα, C �r Aq.

Using straightforward modifications of the preceding proofs, one shows:

Proposition 4.6. (i) rδpCqpγ � pαqs � γ � pα with equality if δ is fine.
(ii) C �r A is a C�-algebra and C �r A is a C�-b-algebra.
(iii) There exist nondegenerate �-homomorphisms C ÑMpC�rAq and AÑMpC�r

Aq, given by c ÞÑ δpcq and a ÞÑ 1b
b:
a, respectively.

Theorem 4.7. There exists a unique coaction pC�rA, pδq of pA,∆q such that pδpδpcqp1b
b:

UaUqq � pδpcq b
b

1qp1b
b:

AdpUb
b

1q ∆paqq for all c P C, a P A. If ∆ is a fine coaction, then

pδ is a very fine coaction. If δ is left-full, then pδ is left-full.

Definition 4.8. Let pC, δq be a coaction of p pA, p∆q. Then we call C �r A the reduced

crossed product and pC �r A, pδq the reduced dual coaction of pC, δq.
Proposition 4.9. Let ρ be a morphism between coactions pC, δCq and pD, δDq of p pA, p∆q.
Then there exists a unique morphism ρ�r id from pC�rA, pδCq to pD�rA, pδDq such that
pρ �r idq

�
p1 b

b:
UaUqδCpcq

�
� δDpdqp1 b

b:
Ua1Uq � p1 b

b:
UaUqδDpρpcqdqp1 b

b:
Ua1Uq for all

c P C, d P D, a, a1 P A. �
Corollary 4.10. There exists a functor � �r A : Coactp pA,p∆q Ñ CoactpA,∆q given by

pC, δq ÞÑ pC �r A, pδq and ρ ÞÑ ρ�r id. �
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4.2. The duality theorem. The preceding constructions yield for each coaction pC, δCq
of pA,∆q and each coaction pD, δDq of p pA, p∆q a bidual pC �r pA �r A, ppδCq and pD �r

A �r pA, ppδDq, respectively. The following generalization of the Baaj-Skandalis duality
theorem [3] identifies these biduals in the case where pV,Uq is a C�-pseudo-Kac system
and the initial coactions are fine. Morally, it says that up to Morita equivalence, the

functors ��r pA and ��rA implement an equivalence of the categories CoactfpA,∆q and

Coactf
p pA,p∆q

.

Theorem 4.11. Assume that pV,Uq is a C�-pseudo-Kac system.

(i) Let pC, δq be a (very) fine coaction of pA,∆q, where C � CγK . Then there exists

an isomorphism Φ: C �r pA�r AÑ r|βy2Cxβ|2s � LpKγb
b
βHq such that Φ�1 is

an (iso)morphism from pKγb
b
βHpα, r|βy2Cxβ|2sq to C �r pA�r A and

ppδ � Φ�1 �

pΦ�1 � idq �Adp1b
b

ΣpV q � Ind|βy2pδq.

(ii) Let pD, δq be a (very) fine coaction of p pA, p∆q, where D � Dε
L. Then there

exists an isomorphism Φ: D �r A �r pA � r|αy2Dxα|2s � LpLεb
b:
αHq such that

Φ�1 is an (iso)morphism from pLεb
b:
αHpβ

, r|αy2Dxα|2sq to D �r A �r pA and

ppδ � Φ�1 � pΦ�1 � idq �Adp1b
b:

ΣV q � Ind|αy2pδq.

Proof. We only prove (i); then (ii) follows after replacing pV,Uq by pqV ,Uq. By Propo-

sition 3.4 and Proposition 3.11, applied to the C�-pseudo-Kac system pqV ,Uq, we have

r pAAdU pAqs � rA
qV
pA
qV
s � rββ�s, and since δ is fine,

r|βy2Cxβ|2s � rδpCqp1b
b
ββ�qs � rδpCqp1b

b

pAAdU pAqqs.

One easily verifies that the �-homomorphism Ind|βy2pδq (see Lemma 2.1) yields an
(iso)morphism of C�-b-algebras

Ind|βy2pδq :
�
Kγb

b
βHpα, r|βy2Cxβ|2s

�
Ñ
�
Kγb

b
βHαb

b
βHpα, r|βy2δpCqxβ|2s

�
.

Denote by Ψ the composition of this (iso)morphism with Adp1b
b
V �q and let δp2q � pδ �

idq � δ � pid �∆q � δ. Let x � δpcqp1 b
b
paUaUq P r|βy2Cxβ|2s, where c P C,pa P pA, a P A.

By Lemma 3.6,

Ψpxq � Adp1b
b
V �qpδ

p2qpcqp1b
b

1b
b
paUaUqq � pδpcq b

b:
1qp1b

b

p∆ppaqqp1b
b

1b
b:
UaUq.

Consequently, Ψpr|βy2Cxβ|2sq � C �r pA �r A. Next, the relations C �r pA �r A �

pKγb
b
βH pβ

b
b:
αHpα, C �r pA �r Aq and p1 b

b
V �qpγ � α � pαq � γ � pβ � pα imply that Ψ is a

morphism of C�-b-algebras as claimed. Using the definition of
ppδ, Proposition 3.4, and
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Lemma 3.6, we findppδpΨpxqq � pδpcq b
b:

1b
b

1qp1b
b

p∆pâq b
b

1qp1b
b

1b
b:

AdpUb
b

1qp∆paqqq

� Adp1b
b
V �b

b
1q

�
pδp2qpcq b

b
1qp1b

b
1b

b
pab

b
1qp1b

b
1b

b
AdpUb

b
1qp∆paqqq

�
� pΨ � idq

�
pδpcq b

b
1qp1b

b
pab

b
1qp1b

b
AdpUb

b
1qp∆paqqq

�
� pΨ � idq

�
p1b

b
ΣpV qδp2qpcqp1b

b
1b

b
paUaUqp1b

b

pV �Σq
�

� pΨ � idq
�
p1b

b
ΣpV qpInd|βy2pδqpxqqp1b

b

pV �Σq
�
. �

5. The C�-pseudo-Kac system of a groupoid

For the remainder of this article, we fix a locally compact, Hausdorff, second countable
groupoid G with a left Haar system λ. In [29], we associated to such a groupoid a
regular C�-pseudo-multiplicative unitary V and identified the underlying C�-algebras of

the Hopf C�-bimodules p pA, p∆q and pA,∆q of V with the function algebra C0pGq and the
reduced groupoid C�-algebra C�

r pGq, respectively. We now recall this construction and
define a symmetry U such that pV,Uq becomes a C�-pseudo-Kac system. For background
on groupoids, see [20], [23].

Denote by λ�1 the right Haar system associated to λ and let µ be a measure on the
unit space G0 with full support. We denote the range and the source map of G by r and
s, respectively, let Gu :� r�1puq and Gu :� s�1puq for each u P G0, and define measures
ν, ν�1 on G such that»

G
f dν �

»
G0

»
Gu
fpxq dλupxq dµpuq,

»
G
fdν�1 �

»
G0

»
Gu

fpxq dλ�1
u pxq dµpuq

for all f P CcpGq. We assume that µ is quasi-invariant in the sense that ν and ν�1

are equivalent, and denote by D :� dν{ dν�1 the Radon-Nikodym derivative. One can
choose D such that it is a Borel homomorphism (see page 89 in [20]), and we do so.

We identify functions in CbpG
0q and CbpGq with multiplication operators on the

Hilbert spaces L2pG0, µq and L2pG, νq, respectively, and let K � L2pG0, µq, B � B: �
C0pG

0q � LpKq, b � pK,B,B:q � b, H � L2pG, νq.
Pulling functions onG0 back toG along r or s, we obtain representations r� : C0pG

0q Ñ
CbpGq ãÑ LpHq and s� : C0pG

0q Ñ CbpGq ãÑ LpHq. We define Hilbert C�-C0pG
0q-

modules L2pG,λq and L2pG,λ�1q as the respective completions of the pre-C�-module
CcpGq, the structure maps being given by

xξ1|ξypuq �

»
Gu
ξ1pxqξpxq dλupxq, ξf � r�pfqξ in the case of L2pG,λq,

xξ1|ξypuq �

»
Gu

ξ1pxqξpxq dλ�1
u pxq, ξf � s�pfqξ in the case of L2pG,λ�1q

respectively, for all ξ, ξ1 P CcpGq, u P G0, f P C0pG
0q. Then there exist isometric

embeddings j : L2pG,λq Ñ LpK, Hq and ĵ : L2pG,λ�1q Ñ L
�
K, H

�
such that�

jpξqζ
�
pxq � ξpxqζprpxqq,

�
ĵpξqζ

�
pxq � ξpxqD�1{2pxqζpspxqq
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for all ξ P CcpGq, ζ P CcpG
0q. Let α � β :� jpL2pG,λqq and pα � pβ :� ĵpL2pG,λ�1qq.

Then pH, pα, pβ, α, βq is a C�-pb, b:, b, b:q-module, ρα � ρβ � r� and ρ
pα � ρ

pβ
� s�, and

jpξq�jpξ1q � xξ|ξ1y and ĵpηq�ĵpη1q � xη|η1y for all ξ, ξ1 P L2pG,λq, η, η1 P L2pG,λ�1q; see
§2.3 in [29].

The Hilbert spacesH
pβ
b
b:
αH andHαb

b
βH can be described as follows. Define measures

ν2
s,r on Gs�rG and ν2

r,r on Gr�rG such that»
Gs�rG

f dν2
s,r �

»
G0

»
Gu

»
Gspxq

fpx, yqdλspxqpyq dλupxqdµpuq,»
Gr�rG

g dν2
r,r �

»
G0

»
Gu

»
Gu
gpx, yqdλupyqdλupxq dµpuq

(5.1)

for all f P CcpGs�rGq, g P CcpGr�rGq. Then there exist unitaries

Φ: H
pβ
b
b:
αH Ñ L2pGs�rG, ν

2
s,rq and Ψ: Hαb

b
βH Ñ L2pGr�rG, ν

2
r,rq

such that for all η, ξ P CcpGq, ζ P CcpG
0q,

Φ
�
ĵpηq= ζ < jpξq

�
px, yq � ηpxqD�1{2pxqζpspxqqξpyq,

Ψ
�
jpηq= ζ < jpξq

�
px, yq � ηpxqζprpxqqξpyq.

From now on, we use these isomorphisms without further notice.

Theorem 5.1. There exists a C�-pseudo-Kac system pV,Uq on pH, pα, pβ, α, βq such that
for all ω P CcpGs�rGq, px, yq P Gr�rG, ξ P CcpGq, z P G,

pV ωqpx, yq � ωpx, x�1yq and pUξqpxq � ξpx�1qDpxq�1{2.(5.2)

Proof. By Theorem 2.5 and Example 4.3 (ii) in [29], there exists a regular C�-pseudo-
multiplicative unitary V as claimed. The second formula in (5.2) defines a unitary
U P LpHq by definition of the Radon-Nikodym derivative D � dν{dν�1, and U2 � id

because pU2ξqpxq � pUξqpx�1qDpxq�1{2 � ξpxqDpxq1{2Dpxq�1{2 � ξpxq for all ξ P CcpGq

and x P G. The unitary pV � ΣU1V U1Σ is equal to V op � ΣV �Σ because

pU1V U1ωqpx, yq � pV U1ωqpx
�1, yqDpxq�1{2

� pU1ωqpx
�1, xyqDpxq�1{2

� ωpx, xyqDpx�1q�1{2Dpxq�1{2 � ωpx, xyq

for all ω P CcpGr�rGq, px, yq P Gs�rG. In particular, pV is a regular C�-pseudo-
multiplicative unitary. It remains to show that the map Z :� ΣU2V : H

pβ
b
b:
αH Ñ

H
pβ
b
b:
αH satisfies Z3 � 1. But for all ω P CcpGs�rGq and px, yq P Gs�rG,

pZωqpx, yq � pV ωqpy, x�1qDpxq�1{2 � ωpy, y�1x�1qDpxq�1{2,

pZ3ωqpx, yq � pZ2ωqpy, y�1x�1qDpxq�1{2

� pZωqpy�1x�1, xyy�1q
�
DpxqDpyq

��1{2

� ωpx, x�1xyq
�
DpxqDpyqDpy�1x�1q

��1{2
� ωpx, yq. �
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The Hopf C�-bimodules p pA, p∆q and pA,∆q associated to V can be described as follows;
see Theorem 3.16 in [29]. Given g P CcpGq, define Lpgq P C�

r pGq � LpHq by

pLpgqfqpxq �

»
Grpxq

gpzqfpz�1xqD�1{2pzq dλrpxqpzq

for all x P G, f P CcpGq � L2pG, νq � H. ThenpA � C0pGq � LpHq,
�p∆pfqω�px, yq � fpxyqωpx, yq,(5.3)

A � C�
r pGq,

�
∆pLpgqqω1

�
px1, y1q �

»
Gu

1
gpzqD�1{2pzqω1pz�1x1, z�1y1qdλu

1
pzq

for all f P C0pGq, ω P CcpGs�rGq, px, yq P Gs�rG and g P CcpGq, ω
1 P CcpGr�rGq,

px1, y1q P Gr�rG, where u1 � rpx1q � rpy1q. We shall loosely refer to C0pGq and C�
r pGq

as Hopf C�-bimodules, having in mind p pA, p∆q and pA,∆q, respectively.

6. Actions of G and coactions of C0pGq

Let G be a groupoid and consider C0pGq as a Hopf C�-bimodule as in the preceding
section. Then coactions of C0pGq can be related to actions of G as follows. Let us say
that a tuple pF,G, η, εq is an embedding of a category C into a category D as a full
and coreflective subcategory if F : C Ñ D is a full and faithful functor and G : D Ñ C
is a faithful right adjoint to F, where η : idC Ñ GF is the unit and ε : FG Ñ idD is
the counit of the adjunction; see also §IV.3 in [18]. In this section, we construct such
an embedding of the category of actions of G on continuous C0pG

0q-algebras into the
category of certain admissible coactions of C0pGq. We keep the notation introduced in
the preceding section.

6.1. C0pG
0q-algebras and C�-b-algebras. We shall embed the category of admissible

C0pG
0q-algebras into the category of admissible C�-b-algebras as a full and coreflective

subcategory.
Recall that a C0pXq-algebra, where X is some locally compact Hausdorff space, is a

C�-algebra C with a fixed nondegenerate �-homomorphism of C0pXq into the center of
the multiplier algebra MpCq [6], [14]. We denote the fiber of a C0pXq-algebra C at a
point x P X by Cx and write the quotient map px : C Ñ Cx as c ÞÑ cx. Recall that C
is a continuous C0pXq-algebra if the map X Ñ R given by x ÞÑ }cx} is continuous for
each c P C. A morphism of C0pXq-algebras C,D is a nondegenerate �-homomorphism
π : C ÑMpDq such that πpfcq � fπpcq for all f P C0pXq, c P C.

Definition 6.1. We call a C0pG
0q-algebra C admissible if it is continuous and if Cu � 0

for each u P G0, and we call a C�-b-algebra CγK admissible if rργpC0pG
0qqCs � C and

rCγs � γ. A morphism between admissible C�-b-algebras CγK , Dε
L is a semi-morphism

π from CγK to MpDqεL that is nondegenerate in the sense that rπpCqDs � D. Denote

by C0pG
0q-alg

a
the category of all admissible C0pG

0q-algebras, and by C�-b-alga the
category of all admissible C�-b-algebras.

Lemma 6.2. (i) Let CγK be an admissible C�-b-algebra. Then C is an admissible
C0pG

0q-algebra with respect to ργ.
(ii) Let π be a morphism between admissible C�-b-algebras CγK and Dε

L. Then π is
a morphism of C0pG

0q-algebras from pC, ργq to pD, ρεq.
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Proof. (i) First, note that ργpC0pG
0qq � MpCq is central because C � LpKγq �

ργpC0pG
0qq1. The map C ãÑ LpKγq � Lpγq is a faithful field of representations in

the sense of Theorem 3.3 in [6], and therefore C is a continous C0pG
0q-algebra. We have

Cu � 0 for each u P G0 because otherwise C � rCIus, where Iu � C0pG
0ztuuq, and then

rγ�γs � rγ�Cγs � rγ�IuCγs � rγ�γIus � Iu � C0pG
0q, contradicting the fact that Kγ

is a C�-b-module.
(ii) This is Lemma 3.4 in [27]. �

We embed C0pG
0q-alg

a
into C�-b-alga using a KSGNS-construction for the following

kind of weights.

Definition 6.3. A C0pG
0q-weight on a C0pG

0q-algebra C is a C0pG
0q-linear, positive

map φ : C Ñ C0pG
0q. We denote the set of all such weights by WpCq.

Let C be an admissible C0pG
0q-algebra. The results in [4] imply:

Lemma 6.4.
�
φPWpCq kerφ � t0u and r

�
φPWpCq φpCqs � C0pG

0q. �

Let φ P WpCq. Then φ is completely positive by Theorem 3.9 in [21] and bounded
by Lemma 5.1 in [16]. Let Eφ � C =φ K (see Section 1) and define ηφ : C Ñ LpEφq and
lφ : C Ñ LpK, Eφq by ηφpcqpd=φ ζq � cd=φ ζ and lφpcqζ � c=φ ζ for all c, d P C, ζ P K.
One easily verifies that for all c, d P C, f P C0pG

0q, ζ P K,

lφpcq
�lφpdq � φpc�dq, lφpcqf � lφpcfq,

ηφpcqpd=φ fζq � cdf =φ ζ � ηφpcfqpd=φ ζq.
(6.1)

The universal C0pG
0q-representation ηC : C Ñ LpECq of C is the direct sum of the

representations ηφ : C Ñ LpEφq, where φ PWpCq. Denote by lC � LpK, ECq the closed
linear span of all maps lφpcq : KÑ Eφ ãÑ EC , where c P C, φ PWpCq.

Lemma 6.5. ηCpCq
lC
EC

is an admissible C�-b-algebra and ηC is an isomorphism of

C0pG
0q-algebras from C to pηCpCq, ρlC q.

Proof. The definition of lC , the equations (6.1) and Lemma 6.4 imply that rlCKs �À
φEφ � EC , rl�C lCs � r

�
φ φpCqs � C0pG

0q and rlCC0pG
0qs � lC , whence pEC , lCq is a

C�-b-module, and that rηCpCqρlC pC0pG
0qqs � rηCpCC0pG

0qqs � ηCpCq and rηCpCqlCs �

lC , whence ηCpCq
lC
EC

is an admissible C�-b-algebra. Lemma 6.4 implies that ηC is injec-

tive and hence an isomorphism of C onto ηCpCq, and the last equation in (6.1) implies
that ηCpcqργpfq � ηCpcfq for all c P C, f P C0pG

0q. �

Theorem 6.6. There exists an embedding as a full and coreflective subcategory pF,G, η, εq
of C0pG

0q-alg
a

into C�-b-alga such that the following conditions hold:

(i) F is given by C ÞÑ ηCpCq
lC
EC

on objects and by Fπ : ηCpcq ÞÑ ηDpπpcqq for each

morphism π between objects C, D in C0pG
0q-alg

a
;

(ii) G is given by CγK ÞÑ pC, ργq on objects and π ÞÑ π on morphisms;

(iii) ηC is defined as above for each object C in C0pG
0q-alg

a
;

(iv) εC � η�1
GC for each object C in C�-b-alga.
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Proof of Theorem 6.6. The functor G : C�-b-alga Ñ C0pG
0q-alg

a
is well defined by

Lemma 6.2 and evidently faithful.
Let C be an admissible C0pG

0q-algebra, D � Dγ
K an admissible C�-b-algebra, and

π : C Ñ GD a morphism in C0pG
0q-alg

a
. We claim that π � η�1

C is a morphism from
FC to D in C�-b-alga. Let ξ P γ. Then the map φ : C Ñ C0pG

0q � LpKq given by
c ÞÑ ξ�πpcqξ is a C0pG

0q-weight, and there exists an isometry S : Eφ Ñ K such that
Spc=φ ζq � πpcqξζ for all c P C, ζ P K. Denote by P : EC Ñ Eφ the natural projection.
Then rSP lCs � rSlφpCqs � rπpCqξs lies in γ and contains ξ, and SPηCpcq � Sηφpcq �
πpcq for each c P C. Since ξ P γ was arbitrary, the claim follows.

Using Lemma 6.5, we conclude that F is well defined and that η is a natural iso-
morphism from id to GF. Indeed, if π : C Ñ D is a morphism in C0pG

0q-alg
a
, then

Fπ � ηD � π � η�1
C is a morphism from FC to FD by the argument above.

Finally, let D be an admissible C�-b-algebra. The argument above, applied to the
identity on GD, yields a morphism εD from FGD to D in C�-b-alga such that the

composition GD ηGDÝÝÝÑ GFGD GεDÝÝÝÑ GD is the identity. Since η is a natural transfor-
mation, also ε : FG Ñ id is one. For each admissible C0pG

0q-algebra C, the composition

FC
FηCÝÝÝÑ FGFC

εFCÝÝÑ FC is the identity by construction. From Theorem 2 of §IV.1 in
[18], we can conclude that F is a left adjoint to G such that η and ε form the unit and
counit, respectively, of the adjunction. Since η is a natural isomorphism, F is full and
faithful by Theorem 1 of §IV.3 in [18]. �
6.2. Actions of G and coactions of C0pGq. We next embed the category of admissible
actions of G as a full and coreflective subcategory into the category of all admissible
coactions of C0pGq.

The definition of an action of G requires the following preliminaries. Given C0pG
0q-

algebras pC, ρq and pD,σq, where D is commutative, we denote by CρbσD the C0pG
0q-

tensor product [5], and drop the subscript ρ or σ if this map is understood. Given
a C0pG

0q-algebra C and a continuous surjection t : G Ñ G0, we consider C0pGq as a
C0pG

0q-algebra via t� : C0pG
0q Ñ MpC0pGqq and let t�C :� C bt� C0pGq, which is a

C0pGq-algebra in a natural way. Each morphism π of C0pG
0q-algebras C,D induces a

morphism of t�π of C0pGq-algebras from t�C to t�D via cb f ÞÑ πpcqb f . An action of
G on a C0pG

0q-algebra C is an isomorphism σ : s�C Ñ r�C of C0pGq-algebras such that
the restrictions of σ to the fibers satisfy σx � σy � σxy for all px, yq P Gs�rG [17]. A
morphism between actions pC, σCq and pD,σDq of G is a morphism of C0pG

0q-algebras
π from C to D satisfying σD � s�π � r�π � σC .

Definition 6.7. We call an action pC, σq of G admissible if the C0pG
0q-algebra C is

admissible, and we call a coaction pCγK , δq of C0pGq admissible if CγK is an admissible
C�-b-algebra and rδpCqp1b

b
C0pGqqs � C b

b
C0pGq in LpKγb

b
αHq.

Remark 6.8. If σ is an action of G on a continuous C0pG
0q-algebra, then the subset

Y :� tu P G0 | Cu � 0u � G0 is open, C is an admissible C0pY q-algebra, and σ restricts
to an action of the subgroupoid G|Y :� tx P G | rpxq, spxq P Y u � G.

Lemma 6.9. Let CγK and Dε
L be admissible C�-b-algebras, where D is commutative.

Then there exists an isomorphism Cργ bρε D Ñ Cγb
b
εD, c b d ÞÑ cb

b
d.
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Proof. Use Lemma 2.7 in [5] and apply Proposition 4.1 in [5] to the field of representations
C ãÑ LpKγq � Lpγq, noting that γ =ρε D � r|γy1Ds as a Hilbert C�-D-module via
ξ = d ÞÑ |ξy1d and that pCγb

b
εDqr|γy1Ds � r|γy1Ds. �

We use the isomorphism above without further notice.

Proposition 6.10. (i) Let pCγK , δq be an admissible coaction of C0pGq. There ex-
ists a unique action σδ of G on pC, ργq given by c b f ÞÑ δpcqp1b

b
fq.

(ii) Let pC, σq be an admissible action of G. There exists a unique admissible, in-
jective coaction δσ of C0pGq on FC given by ηCpcq ÞÑ pr�ηCqpσpc b 1qq.

Proof. (i) Since δpCq and 1b
b
C0pGq commute, there exists a unique �-homomorphism σ̃

from the algebraic tensor product CdC0pGq to r�C such that σ̃pcdfq � δpcqp1b
b
fq for

all c P C, f P C0pGq. Since δ is a coaction, δpcργpgqq � δpcqρ
pγ�pβq

pgq � δpcqp1 b
b
s�pgqq

for all g P C0pG
0q. From Lemma 2.7 in [5], we can conclude that σ̃ factorizes to a

�-homomorphism σ � σδ : s�C Ñ r�C satisfying the formula in (i). This σ is surjective
because rδpCqp1 b

b
C0pGqqs � C b

b
C0pGq. In particular, σx is surjective for each x P G.

We claim that σx � σy � σxy for all px, yq P Gs�rG. Define r1 : Gs�rG Ñ G0 by
px, yq ÞÑ rpxq. By Lemma 6.9, we have isomorphisms Cγb

b
αC0pGqpβb

b
αC0pGq � C br�

C0pGqs� br� C0pGq � C br�1
C0pGs�rGq � r�1C. Using formula (5.3), we find

σx � σy � pspyq � σx � py � δ � ppx,yq � pδ � idq � δ,

σxy � pspyq � pxy � δ � ppx,yq � pid �p∆q � δ,(6.2)

and the claim follows. Finally, σu � idCu for each u P G0 because σu is surjective and
idempotent, and σx is injective for each x P G because σspxq � σx�1 � σx is injective.
Therefore, σ is injective.

(ii) Let D :� ηCpCqlCb
b
αC0pGq. Then D :� ppECqlCb

b
αHpβ

, Dq is an admissible C�-b-

algebra. Define δ : C Ñ D by c ÞÑ pr�ηCqpσpcb1qq. Let c P C, g P C0pG
0q. Then cgb1 �

c b s�pgq in MpC bs� C0pGqq and therefore δpcgq � δpcqp1 b
b
s�pgqq � δpcqρ

plC�pβq
pgq.

Consequently, δ is a morphism of C0pG
0q-algebras from C to pD, ρ

lC�pβ
q � GD. By

definition of F and ε, the morphism δσ :� εD�Fδ : FC Ñ FGD Ñ D satisfies δσ�ηC � δ,

and a similar calculation as in (6.2) shows that pδσ � idq�δσ � pid �p∆q�δσ. Consequently,

δσ is a coaction of p pA, p∆q. Since σ is injective, so are δ and δσ. Finally, δσ is admissible
because rδσpηCpCqqp1b

b
C0pGqqs � pr�ηCqpσps

�Cqq � r�ηCpCq � rηCpCq b
b
C0pGqs. �

Corollary 6.11. Every admissible coaction of C0pGq is injective, left-full, and right-full.

Proof. If pCγK , δq is an admissible coaction, then the relations rC0pGqαs � α and rCγs �
γ imply rδpCq|αy2s � rδpCqp1 b

b
C0pGqq|αy2s � rpC b

b
C0pGqq|αy2s � r|αy2Cs and

rδpCq|γy1C0pGqs � rδpCqp1 b
b
C0pGqq|γy1s � rpC b

b
C0pGqq|γy1s � r|γy1C0pGqs. Finally,

δ is injective because σδ is injective and δpcq � σδpc b 1q for all c P C. �
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Proposition 6.12. Let pC, δCq, pD, δDq be admissible coactions with associated actions
σC � σδC , σD � σδD , and let π P C�-b-algapC,Dq � C0pG

0q-alg
a
pGC,GDq. Then

pπ � idq � δC � δD � π if and only if r�π � σC � σD � s�π.

Proof. Write C � CγK . The assertion holds because for all c P C and f P C0pGq,

ppπ � idqpδCpcqqqp1b
b
fq � pπ � idqpδCpcqp1b

b
fqq � pr�π � σCqpc b fq,

δDpπpcqqp1b
b
fq � σDpπpcq b fq � pσD � s�πqpc b fq. �

We denote by G-acta and CoactaC0pGq
the categories of all admissible actions of G

and all admissible coactions of C0pGq, respectively.

Theorem 6.13. There exists an embedding as a full and coreflective subcategory pF̂, Ĝ, η̂, ε̂q
of G-acta into CoactaC0pGq

, where

(i) F̂ is given by pC, σq ÞÑ pFC, δσq on objects and π ÞÑ Fπ on morphisms;

(ii) Ĝ is given by pC, δq ÞÑ pGC, σδq on objects and π ÞÑ Gπ � π on morphisms;
(iii) η̂pC,σq � ηC and ε̂pC,δq � εC for all objects pC, σq and pC, δq.

Proof. The assignments Ĝ and F̂ are well defined on objects and morphisms by Proposi-
tion 6.10 and 6.12. For each admissible action pC, σq, we get ηC P G-actappC, σq, ĜF̂pC, σqq
because σδσpηCpcq b fq � δσpηCpcqqp1 b

b
fq � r�ηCpσpc b fqq for all c P C, f P C0pGq,

and Proposition 6.12 implies that εC � η�1
GC P CoactaC0pGq

pF̂ĜpC, δq, pC, δqq for each

admissible coaction pC, δq. Now, the assertion follows from Theorem 6.6. �

6.3. Comparison of the associated reduced crossed products. The reduced crossed
product for an action pC, σq of G is defined as follows [17]. The subspace CcpG;C, σq :�
CcpGqr

�C � r�C carries the structure of a �-algebra and the structure of a pre-Hilbert
C�-module over C such that

pabqx �

»
Grpxq

ayσypby�1xq dλrpxqpyq, pa�qx � σxpa
�
x�1q,

xa|byu �

»
Gu
σyppay�1q�by�1qdλupyq � pa�bqu, pacqx � axσxpcspxqq

for all a, b P CcpG;C, σq, u P G0 and c P C, x P G. Denote the completion of this pre-
Hilbert C�-module by L2pG,λ�1;C, σq. Using the relation xa|bdyu � pabdqu � xb�a|dyu,
which holds for all a, b, d P CcpG;C, σq, u P G0, and a routine norm estimate, one
verifies the existence of a �-homomorphism π : CcpG;C, σq Ñ LpL2pG,λ�1;C, σqq such
that πpbqd � bd for all b, d P CcpG;C, σq. Then the reduced crossed product of pC, σq is
the C�-algebra C �σ,r G :� rπpCcpG;C, σqqs � LpL2pG,λ�1;C, σqq.

Proposition 6.14. Let pCγK , δq be an admissible coaction of C0pGq, consider C as a
C0pG

0q-algebra via ργ, and let σ � σδ. Then there exists an isomorphism C �σδ,r G Ñ
C �r C

�
r pGq given by πpc b fq ÞÑ δpcqpidb

b
ULpfqUq for all c P C, f P CcpGq.
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Proof. Let δU :� Adpidb
b
Uq �δ : C Ñ LpKγb

b
pαHq. We equip CcpG;C, σq with the struc-

ture of a pre-Hilbert C�-module over C such that

pacqx � axcspxq and xa|byu �

»
Gu

paxq
�bx dλ�1

u pxq

for all a, b P CcpG;C, σq, c P C, u P G0, and denote by L2pG,λ�1;Cq the completion.
One easily checks that there exists a unique unitary Φ: L2pG,λ�1;Cq Ñ r|pαy2Cs �
rδU pCq|pαy2ys given by c b f ÞÑ |ĵpfqy2c, and that for all c P C, f P CcpGq, y P G,

Φ�1pδU pcq|ĵpfqy2qy � σy�1pcrpyqqfpyq.

Hence, there exists a unitary Ψ: L2pG,λ�1;C, σq Ñ rδU pCq|pαy2ys given by c b f ÞÑ

δU pcq|ĵpfqy2. Let c, d P C, f, g P CcpGq and ω � Φ�1pΨpcbfqq. Then δU pdqpidb
b
LpgqqΨ �

Ψπpd b gq because for all x P G,

Φ�1pδU pdqpidb
b
LpgqqΦpωqqx �

»
Gu

σx�1pdrpxqqgpxy
�1qωy dλ�1

u pyq

�

»
Gu

σx�1

�
drpxy�1qgpxy

�1qσxy�1pcrpyqqfpyq
�

dλ�1
u pyq

� Φ�1pΨpπpd b gqpc b fqqqx.

Since d P C and g P CcpGq were arbitrary, the assertion follows. �

7. Fell bundles on groupoids

We now gather preliminaries on Fell bundles that are needed in Sections 8 and 9. We
use the notion of a Banach bundle and standard notation; see [8].

7.1. Fell bundles on groupoids and their C�-algebras. We first recall the notion
of a Fell bundle on G and the definition of the associated reduced C�-algebra [15]. Given
an upper semicontinuous Banach bundle p : F Ñ G, denote by F0 the restriction of F
to G0, by Fsp�rpF the restriction of F �F to Gs�rG, by Fx for each x P G the fiber at
x, by ΓcpFq the space of continuous sections of F with compact support, and by Γ0pF0q
the space of continuous sections of F0 that vanish at infinity in norm.

Definition 7.1. A Fell bundle on G is an upper semicontinuous Banach bundle p : F Ñ
G with a continuous multiplication Fsp�rpF Ñ F and a continuous involution � : F Ñ
F such that for all e P F , pe1, e2q P Fsp�rpF , px, yq P Gs�rG,

(i) ppe1e2q � ppe1qppe2q and ppe�q � ppeq�1;
(ii) the map Fx � Fy Ñ Fxy, pe11, e12q ÞÑ e11e

1
2, is bilinear and the map Fx Ñ Fx�1,

e1 ÞÑ e1�, is conjugate linear;
(iii) pe1e2qe3 � e1pe2e3q, pe1e2q

� � e�2e
�
1 , and pe�q� � e;

(iv) }e1e2} ¤ }e1}}e2}, }e
�e} � }e}2, and e�e ¥ 0 in the C�-algebra Fspppeqq.

We call F saturated if rFxFys � Fxy for all px, yq P Gs�rG, and admissible if Γ0pF0q
is an admissible C0pG

0q-algebra with respect to the pointwise operations.
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Let F be a Fell bundle on G. The associated reduced C�-algebra is defined as follows.
The space ΓcpFq is a �-algebra with respect to the multiplication and involution given
by

pcdqpxq �

»
Grpxq

cpyqdpy�1xqdλrpxqpyq �

»
Gspxq

cpxz�1qdpzqdλ�1
spxqpzq(7.1)

and c�pxq � cpx�1q�, respectively, and a pre-Hilbert C�-module over Γ0pF0q with respect
to the structure maps

xc|dypuq �

»
Gu

cpxq�dpxq dλ�1
u pxq � pc�dqpuq, pceqpxq � cpxqepspxqq,

where c, d P ΓcpFq, e P Γ0pF0q, x P G. Denote by Γ2pF , λ�1q the completion of this
pre-Hilbert C�-module. Then there exists a �-homomorphism

LF : ΓcpFq Ñ LpΓ2pF , λ�1qq, LF paqb � ab for all a, b P ΓcpFq,
and C�

r pFq :� rLF pΓcpFqqs � LpΓ2pF , λ�1qq is the reduced C�-algebra of F . We identify
ΓcpFq with LF pΓcpFqq � C�

r pFq via LF .
We equip ΓcpFq with the inductive limit topology; thus, a net converges if it converges

uniformly and if the supports of its members are contained in some compact set. We
shall use the following result; see Proposition 2.3 in [8].

Lemma 7.2. Let E be an upper semicontinuous Banach bundle on a locally compact,
second countable, Hausdorff space X and let Γ1 � ΓcpEq be a subspace such that

(i) Γ1 is closed under pointwise multiplication with elements of CcpXq;
(ii) tfpxq | f P Γ1u � Ex is dense for each x P X.

Then Γ1 is dense in ΓcpEq.
Given f P ΓcpFq and g P Γ0pF0q, define fg, gf P ΓcpFq by pfgqpxq � fpxqgpspxqq,

pgfqpxq � gprpxqqfpxq for all x P G. Using the relation rFxs � rFxF�
xFxs, where x P G,

and Lemma 7.2, we find:

Lemma 7.3. ΓcpFqΓ0pF0q and Γ0pF0qΓcpFq are linearly dense in ΓcpFq. �
7.2. The multiplier bundle of a Fell bundle. Given a Fell bundle F on G, we define
a multiplier bundle MpFq on G, extending the definition in §VIII.2.14 of [12]. Given a
subspace C � G, we denote by F |C the restriction of F to C.

Definition 7.4. Let x P G. A multiplier of F of order x is a map T : F |Gspxq Ñ F |Grpxq
such that TFy � Fxy for all y P Gspxq and such that there exists a map T � : F |Grpxq Ñ
F |Gspxq such that e�Tf � pT �eq�f for all e P F |Grpxq, f P F |Gspxq. We denote by MpFqx
the set of all multipliers of F of order x.

As for adjointable operators of Hilbert C�-modules, one deduces from the definition
the following simple properties. Let x P G. Then for each T P MpFqx, the map T �

is uniquely determined, T � P MpFqx�1 , and T �� � T . Moreover, each T P MpFxq
is fiberwise linear in the sense that T pκe � fq � κTe � Tf for all κ P C, e, f P Fy,
y P Gspxq. The restrictions Tspxq : Fspxq Ñ Fx and pT �qx : Fx Ñ Fspxq are adjoint

operators of Hilbert C�-modules over Fspxq, and since Fy � rFrpyqFys for each y P Gspxq,
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the map MpFqx Ñ LpFspxq,Fxq, T ÞÑ Tspxq, is a bijection. Clearly, we have a natural
embedding Fx ãÑMpFqx, where each f P F acts as a multiplier via left multiplication.

For each y P Gspxq, we have MpFqxMpFqy �MpFqxy, and for each f P Fz, z P Grpxq,
we let fT :� pT �f�q�.

Definition 7.5. For each x P G, consider MpFqx as a Banach space via the identifi-
cation with LpFspxq,Fxq. Let MpFq � ²xPGMpFqx and denote by p̃ : MpFq Ñ G the
natural map. The strict topology on MpFq is the weakest topology that makes p̃ and the
mapsMpFq Ñ F of the form c ÞÑ c �dpspp̃pcqqq and c ÞÑ dprpp̃pcqqq�c continuous for each
d P ΓcpF0q. Denote by ΓcpMpFqq the space of all sections that are strictly continuous,
norm-bounded, and compactly supported.

Remark 7.6. The bundle MpFq satisfies all axioms of a Fell bundle except for the
fact that it is no Banach bundle with respect to the strict topology unless MpFq � F .
Indeed, for each u P G0, the subspace topology onMpFqu � LpFuq �MpFuq is the strict
topology and coincides with the norm topology only if MpFuq � Fu.

Given f P ΓcpMpFqq and g P Γ0pF0q, define fg, gf P ΓcpFq by pfgqpxq � fpxqgpspxqq,
pgfqpxq � gprpxqqfpxq for all x P G again.

Lemma 7.7. (i) Let c P ΓcpMpFqq and d P ΓcpFq. Then there exists a section

cd P ΓcpFq such that pcdqpxq �
³
Grpxq cpyqdpy

�1xqdλrpxqpyq for all x P G.

(ii) ΓcpMpFqq carries a structure of a �-algebra such that c�pxq � cpx�1q� and

pcdqpxqe �
³
Grpxq cpyqdpy

�1xqe dλrpxq for all c, d P ΓcpMpFqq, x P G, e P Fspxq.
(iii) There exists a �-homomorphism LMpFq : ΓcpMpFqq Ñ MpC�

r pFqq such that
LMpFqpcqLF pdq � LF pcdq for all c P ΓcpMpFqq, d P ΓcpFq.

(iv) ΓcpMpFqq is closed under pointwise multiplication with elements of CcpGq.

Proof. (i) Define cd : G Ñ F as above, and let ε ¡ 0. Using Lemma 7.3, we find a se-
quence pgnqn in the span of Γ0pF0qΓcpFq that converges to d in the inductive limit topol-

ogy. Since ΓcpMpFqqΓ0pF0q � ΓcpFq, the map hn : x ÞÑ
³
Grpxq cpyqgnpy

�1xq dλrpxqpyq
lies in ΓcpFq for each n. Using the fact that c has compact support and bounded norm,
one easily concludes that phnqn converges in the inductive limit topology to cd which
therefore is in ΓcpFq.

(ii) Note that pcdqpxq is well defined because the map y ÞÑ dpy�1xqe is in ΓcpFq and
thus i) applies. Now, the assertion follows from standard arguments.

(iii) One easily sees that there exists a representation LMpFq : ΓcpMpFqq Ñ LpΓ2pFqq
such that LMpFqpcqd � cd for all c P ΓcpMpFqq, d P ΓcpFq, and that LMpFqpcqLF pdqe �
cde � LF pcdqe for all c P ΓcpMpFqq, d, e P ΓcpFq.

(iv) This follows immediately from the fact that ΓcpFq is closed under pointwise
multiplication by elements of CcpGq. �

7.3. Morphisms between Fell bundles. Let F and G be Fell bundles on G.

Definition 7.8. A (fibrewise nondegenerate) morphism from F to G is a continuous
map T : F ÑMpGq that satisfies the following conditions:

(i) for each x P G, the map T restricts to a linear map Tx : Fx ÑMpGqx;
(ii) T pe1qT pe2q � T pe1e2q and T peq� � T pe�q for all pe1, e2q P Fsp�rpF , e P F ;
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(iii) Gx � rT pFxqGspxqs for each x P G0.

Let T be a morphism from F to G. Then Tu : Fu Ñ MpGqu is a nondegenerate
�-homomorphism for each u P G0; in particular, }Tu} ¤ 1. One easily concludes that
}Tx} ¤ 1 for each x P G. Hence, the formula f ÞÑ T � f defines �-homomorphisms
T� : ΓcpFq Ñ ΓcpMpGqq and T 0

� : Γ0pF0q ÑMpΓ0pG0qq.

Proposition 7.9. (i) T 0
� : Γ0pF0q ÑMpΓ0pG0qq is nondegenerate.

(ii) T�pΓcpFqqΓcpG0q is dense in ΓcpFq.
(iii) T� extends to a nondegenerate �-homomorphism T� : C�

r pFq ÑMpC�
r pGqq.

Proof. Assertions (i) and (ii) follow immediately from Lemma 7.2 and 7.7. Part (ii) and
a straightforward calculation show that there exists a unique unitary Ψ: Γ2pF , λ�1q=T 0

�

Γ0pG0q Ñ Γ2pG, λ�1q such that pΨpf = gqqpxq � T�pfqg for all f P ΓcpFq, g P Γ0pG0q.
The map C�

r pFq Ñ LpΓ2pG, λ�1qq given by f ÞÑ Ψpf = idqΨ� is the desired extension.
Lemma 7.3 and part (ii) imply that rT�pΓcpFqqΓcpGqs � rT�pΓcpFqqΓ0pG0qΓcpGqs �
rΓcpGqΓcpGqs � C�

r pGq. �

8. From Fell bundles on G to coactions of C�
r pGq

Let G be a groupoid, V the associated C�-pseudo-multiplicative unitary, and C�
r pGq

or, more precisely, pA,∆q the associated Hopf C�-bimodule as in Section 5. We relate
Fell bundles on G to coactions of C�

r pGq as follows. Let F be an admissible Fell bundle F
on G. We shall construct a coaction of C�

r pGq on C�
r pFq which is unitarily implemented

by a representation of V , and identify the reduced crossed product of this coaction with
the reduced C�-algebra of another Fell bundle. Finally, we show that this construction
is functorial.

A representation of the unitary V is a C�-pb, b:q-module γKpδ
together with a unitary

X : K
pδ
b
b:
αH Ñ Kγb

b
βH that satisfies Xpγ � αq � γ � α, Xppδ � βq � pδ � β, Xppδ � pβq �

γ � pβ, and X12X13V23 � V23X12; see §4 in [28]. We construct a coaction out of such a
representation as follows.

Lemma 8.1. Let pγKpδ
, Xq be a representation of V , let CγK be a C�-b-algebra such

that rC, ρ
pβ
pBqs � 0, define δ : C Ñ LpKγb

b
βHq by c ÞÑ Xpc b

b:
idqX�, and assume that

rδpCq|γy1As � r|γy1As and rδpCq|βy2s � r|βy2Cs. Then δ is injective, a morphism from
pKγ , Cq to pKγb

b
βHα, Cγ�

b

βAq, and a coaction of pA,∆q on CγK . If the inclusions above

are equalities, then δ is left- or right-full, respectively.

Proof. Evidently, δ is injective. It is a morphism of C�-b-algebras because X|ξy2c �
δpcqX|ξy2 for each ξ P α, c P C and because rX|αy2γs � γ � α and rpX|αy2q

�pγ � αqs �
rxα|2pγ � αqs � γ. Finally, for each c P C,

pδ � idqpδpcqq � X12X13c1X
�
13X

�
12

� X12X13V23c1V
�

23X
�
13X

�
12

� V23X12c1X
�
12V

�
23 � pid �∆qpδpcqq,

where c1 denotes c acting on the first factor of an iterated relative tensor product. �
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8.1. The representation of V associated to F . Denote by W �WpΓ0pF0qq the set
of all C0pG

0q-weights on Γ0pF0q and let φ PW.

Lemma 8.2. Let c, d P ΓcpFq. Then the map x ÞÑ φspxqpcpxq
�dpxqq lies in CcpGq.

Proof. The function G Ñ s�F0 given by x ÞÑ cpxq�dpxq is continuous and has compact
support, and the composition h : x ÞÑ φspxqpcpxq

�dpxqq is continuous because the map

F0 Ñ C given by f ÞÑ φppfqpfq is continuous. �

Define Hilbert C�-C0pG
0q-modules Γ2pF , λ;φq, Γ2pF , λ�1;φq and a Hilbert space

Kφ � Γ2pF , ν;φq as the respective completions of ΓcpFq, where for all c, d P ΓcpFq,
f P C0pG

0q, the inner product xc|dy and the product cf are given by

u ÞÑ

»
Gu
φspxqpcpxq

�dpxqq dλupxq, y ÞÑ cpyqfprpyqq in case of Γ2pF , λ;φq,

u ÞÑ

»
Gu

φspxqpcpxq
�dpxqq dλ�1

u pxq, y ÞÑ cpyqfpspyqq in case of Γ2pF , λ�1;φq,

and

»
G
φspxqpcpxq

�dpxqq dνpxq in case of Γ2pF , ν;φq.

Lemma 8.3. rxE|Eys � rφpΓ0pF0qqs for E P tΓ2pF , λ, φq,Γ2pF , λ�1;φqu.

Proof. Assume that pφpc�cqqpuq � 0 for some c P ΓcpF0q, u P G0. Choose d P ΓcpFq such
that d|G0 � c. Then the function on G given by x ÞÑ φspxqpdpxq

�dpxqq is non-negative
and nonzero at u, whence xd|dyEpuq � 0. Now, the assertion follows because rxE|Eys
and rφpΓ0pF0qqs are closed ideals in C0pG

0q. �
Let K �

À
φPW Kφ and identify each Kφ with a subspace of K. Given c P ΓcpFq and

f P C0pG
0q, define fc, cf, cD�1{2 P ΓcpFq by

fc : x ÞÑ fprpxqqcpxq, cf : x ÞÑ cpxqfpspxqq, cD�1{2 : x ÞÑ cpxqD�1{2pxq.

Let φ PW. Straightforward calculations show that there exist maps

jφ : Γ2pF , λ;φq Ñ LpK,Kφq and ĵφ : Γ2pF , λ�1;φq Ñ LpK,Kφq

such that jφpcqf � fc and ĵφpcqf � pcD�1{2qf for all c P ΓcpFq, f P CcpG0q, and

jφpcq
�jφpdq � xc|dyΓ2pF ,λ;φq, ĵφpcq

�ĵφpdq � xc|dyΓ2pF ,λ�1;φqfor all c, d P ΓcpFq.
Denote by γ � LpK,Kq and pδ � LpK,Kq the closed linear span of all subspaces

jφpΓ
2pF , λ;φqq and ĵφpΓ

2pF , λ�1;φqq, respectively, where φ P W. Lemmas 6.4 and 8.3
imply:

Lemma 8.4. γKpδ
is a C�-pb, b:q-module, and for all f P C0pG

0q and pcφqφ P
À

φ ΓcpFq �
K, we have ργpfqpcφqφ � pfcφqφ and ρ

pδ
pfqpcφqφ � pcφfqφ. �

For t � s, r, denote by pt,r1 : Gt�rG Ñ G the projection onto the first component,

by F2
t,r � ppt,r1 q�F the corresponding pull-back of F , and by Γ2pF2

t,r, ν
2
t,r;φq the Hilbert

space that is the completion of ΓcpF2
t,rq with respect to the inner product

xc|dy �

»
Gt�rG

φspxqpcpx, yq
�dpx, yqq dν2

t,rpx, yq.
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Straightforward calculations show that there exist unitaries

Φ: K
pδ
b
b:
αH Ñ

à
φPW

Γ2pF2
s,r, ν

2
s,r;φq, Ψ: Kγb

b
βH Ñ

à
φPW

Γ2pF2
r,r, ν

2
r,r;φq,

such that for all φ PW, c P ΓcpFq, f P CcpG0q, g P CcpGq,

Φ
�
ĵφpcq= f < jpgq

�
P Γ2pF2

s,r; ν
2
s,r;φq is given by px, yq ÞÑ ppcD�1{2qfqpxqgpyq,

Ψ
�
jφpcq= f < jpgq

�
P Γ2pF2

r,r; ν
2
r,r;φq is given by px, yq ÞÑ pfcqpxqgpyq.

We shall use the isomorphisms above without further notice. If pTφqφ is a norm-bounded
family of operators between Hilbert spaces pH1

φqφ and pH2
φqφ, we denote by

À
φ Tφ P

LpÀφH
1
φ,
À

φH
2
φq the operator given by pξφqφ ÞÑ pTφξφqφ. Similar arguments as those

used for the construction of V in Theorem 2.5 in [29] show:

Proposition 8.5. If φ PW, then exists a unitary Xφ : Γ2pF2
s,r, ν

2
s,r;φq Ñ Γ2pF2

r,r, ν
2
r,r;φq

such that pXφfqpx, yq � fpx, x�1yq for all f P ΓcpF2
s,rq, px, yq P Gr�rG, and the pair

pγKpδ
,
À

φXφq is a representation of V . �

8.2. The coaction of C�
r pGq on C�

r pFq. We apply Lemma 8.1 to the representation
pγKpδ

, Xq and obtain a coaction of C�
r pGq on C�

r pFq as follows.

Lemma 8.6. Let φ P W. There exists a representation πφ : C�
r pFq Ñ LpKφq such that

for all c, d P ΓcpFq, x P G,

pπφpcqdqpxq �

»
Grpxq

cpzqdpz�1xqD�1{2pzq dλrpxqpzq

and πφpcqĵφpdq � ĵφpcdq and πφpcqργpfq � πφpcfq for all c, d P ΓcpFq, f P C0pG
0q.

Proof. Identify Γ2pF , λ�1q =φ L
2pG0, µq with Kφ via c = f ÞÑ ĵφpcqf for all c P ΓcpFq,

f P CcpG
0q, and define πφ by c ÞÑ c=φ id. �

Define π : C�
r pFq Ñ LpKq by c ÞÑ

À
φ πφpcq. Lemmas 6.4 and 8.6 imply:

Lemma 8.7. The representation π is faithful, πpC�
r pFqqγK is a C�-b-algebra and one

has rπpC�
r pFqqpδs � pδ. �

Define δ : πpC�
r pFqq Ñ LpKγb

b
βHq by πpcq ÞÑ Xpπpcq b

b:
idqX�. Let c P C�

r pFq. Then

δpπpcqq �
À

φ δpπpcqqφ and each δpπpcqqφ P LpΓ2pF2
r,r, ν

2
r,r;φqq acts as follows.

Lemma 8.8. For all c P ΓcpFq, φ PW, d P ΓcpF2
r,rq, px, yq P Gr�rG,

�
δpπpcqqφd

�
px, yq �

»
Grpxq

cpzqdpz�1x, z�1yqD�1{2pzqdλrpxqpzq.

Proof. The verification is straightforward and similar to the calculation of the comulti-
plication ∆ on C�

r pGq; see §3.4 in [29]. �

Theorem 8.9. pπpC�
r pFqqγK , δq is a very fine and left-full coaction of C�

r pGq.

The proof involves the following two lemmas.
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Lemma 8.10. Let φ PW. Then there exist maps

Tφ : ΓcpF2
r,rq Ñ LpKφ,Γ

2pF2
r,r, ν

2
r,r;φqq, Sφ : ΓcpF2

r,rq Ñ LpH,Γ2pF2
r,r, ν

2
r,r;φqq

that are continuous with respect to the inductive topology on ΓcpF2
r,rq and the operator

norm, respectively, such that for all c P ΓcpF2
r,rq, d P ΓcpFq, f P CcpGq, px, yq P Gr�rG,

pTφpcqdqpx, yq �

»
Grpxq

cpz, yqdpz�1xqD�1{2pzq dλrpxqpzq,

pSφpcqfqpx, yq �

»
Grpyq

cpx, zqfpz�1yqD�1{2pzq dλrpyqpzq.

Proof. Let c, d, Tφpcqd as above. Then

}Tφpcqd}
2 �

»
G

»
Grpxq

»
Grpxq

»
Grpxq

φspxq
�
dpz�1

1 xq�cpz1, yq
�cpz2, yqdpz

�1
2 xq

�
�

�D�1{2pz1qD
�1{2pz2q dλrpxqpyqdλrpxqpz1qdλrpxqpz2q dνpxq.

We substitute x1 � z�1
1 x, z � z�1

1 z2, use the relations Dpz2q � Dpz1qDpzq and

D�1pz1q dλrpxqpz1q dνpxq � D�1pz1qdλrpz1qpxq dνpz1q

� dλspz1qpx1qdν�1pz1q � dλ�1
rpx1qpz1q dνpx1q,

and find

}Tφpcqd �

»
G

»
Grpx1q

»
Grpx

1q

»
Gspz1q

φspxqpdpx
1q�cpz1, yq

�cpz1z, yqdpz
�1x1qq�

�D�1{2pzq dλspz1qpyq dλrpx
1qpzq dλ�1

rpx1qpz1q dνpx1q

�

»
G

»
Grpx

1q

φspx1qpdpx
1qRcpzqdpz

�1x1qq dλrpx
1qpzqdνpx1q � xd|πφpRcqdyKφ ,

where Rc P ΓcpFq is given by

Rcpzq �

»
Grpzq

»
Gspz1q

cpz1, yq
�cpz1z, yqdλspz1qpyqdλ�1

rpzqpz1q for all z P G.

Hence, Tφpcq extends to a bounded linear operator of norm }Tφpcq}
2 ¤ }πφpRcq}. If

pcnqn is a sequence in ΓcpF2
r,rq converging to c in the inductive limit topology, then the

functions Rpc�cnq defined similarly as Rc converge to 0 in the inductive limit topology

and hence }Tφpc� cnq}
2 ¤ }πφpRpc�cnqq} converges to 0.

The proof of the assertion concerning Sφ is very similar. �

Given c, d P ΓcpFq and f P CcpGq, define ωc,d,f P ΓcpF2
r,rq by

px, yq ÞÑ

»
Grpxq

cpzqdpz�1xqfpz�1yq dλrpxqpzq.

Lemma 8.11. The linear span of all elements ωc,d,f as above is dense in ΓcpF2
r,rq with

respect to the inductive limit topology.
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Proof. Let px, yq P Gr�rG, e P Fx, let C � Gr�rG be a compact neighbourhood of
px, yq, and let ε ¡ 0. Since rFrpxqFxs � Fx, we can choose c1, d1 P ΓcpFq such that

}c1pzqd1pz�1xq � e}   ε for all z in some neighbourhood of rpxq in Grpxq. Next, we can
choose hc, hd, f P CcpGq such that the elements c, d P ΓcpFq given by cpzq � c1pzqhcpzq
and dpzq � d1pzqhdpzq for all z P G satisfy }ωc,d,f px, yq � e}   ε and suppωc,d,f � C. A
standard partition of unity argument concludes the proof. �

Proof of Theorem 8.9. We show that Lemma 8.1 applies. Let φ P W, c, d P ΓcpFq,
f, g P CcpGq. Define e1, e2, e3, e4 P Γ2pF2

r,r, ν
2
r,r;φq and ω1, ω2, ω3, ω4 P ΓcpF2

r,rq by

e1 � δpπpcqqφ|jpfqy2d, ω1pz, yq � cpzqfpz�1yq for all pz, yq P Gr�rG,

e2 � |jpfqy2πφpcqd, ω2pz, yq � cpzqfpyq for all pz, yq P Gr�rG,

e3 � |jφpcqy1Lpfqg, ω3px, zq � cpxqfpzq for all px, zq P Gr�rG,

e4 � δpπpcqqφ|jφpdqy1Lpfqg, ω4 � ωc,d,f .

Using Lemma 8.8, we find that for all px, yq P Gr�rG,

e1px, yq �

»
Grpxq

cpzqD�1{2pzqdpz�1xqfpz�1yq dλrpxqpzq � pTφpω1qdqpx, yq,

e2px, yq �

»
Grpxq

cpzqdpz�1xqD�1{2pzq dλrpxqpzqfpyq � pTφpω2qdqpx, yq,

e3px, yq � cpxq

»
Grpyq

fpzqD�1{2pzqgpz�1yq dλrpyqpzq � pSφpω3qgqpx, yq,

e4px, yq �

»
Grpxq

cpz1qD
�1{2pz1qdpz

�1
1 xqpLpfqgqpz�1

1 yqdλrpxqpz1q

�

»
Grpxq

»
Gspz1q

cpz1qD
�1{2pz1qdpz

�1
1 xqfpz2q�

�D�1{2pz2qgpz
�1
2 z�1

1 yq dλspz1qpz2qdλrpxqpz1q

�

»
Grpxq

»
Grpxq

cpz1qdpz
�1
1 xqfpz�1

1 z12q�

�D�1{2pz12qgpz
1
2
�1yqdλrpxqpz12qdλrpxqpz1q

� pSφpωc,d,f qgqpx, yq.

By Lemmas 7.2 and 8.11, sections of the form like ω1, ω2, ω3 or ω4, respectively, are lin-
early dense in ΓcpF2

r,rq. Therefore, rδpπpC�
r pFqqqφ|αy2s � rTφpΓcpF2

r,rqqs � r|αy2πφpC
�
r pFqqs

and similarly rδpπpC�
r pFqqq|γy1C�

r pGqs � r
�
φPW SφpΓcpF2

r,rqqs � r|γy1C
�
r pGqs. �

Given g, g1 P CcpGq, define hg,g1 P CcpGq by

hg,g1pzq �

»
Grpzq

gpyqg1pz�1yqdλrpzqpyq for all z P G.(8.1)

Lemma 8.12. Let c P ΓcpFq, g, g1 P CcpGq. Then xjpgq|2δpπpcqqφ|jpg
1qy2 � πφpc

1q,
where c1pxq � cpxqhg,g1pxq for all x P G.
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Proof. The operators on both sides map each d P ΓcpFq to the section

x ÞÑ

»
Grpxq

»
Grpxq

gpyqcpzqdpz�1xqg1pz�1yqD�1{2pzq dλrpxqpzq dλrpxqpyq. �

8.3. The reduced crossed product of the coaction. The bundle F2
s,r carries the

structure of a Fell bundle, and the reduced crossed product πpC�
r pFqq �r C0pGq for the

coaction δ constructed above can be identified with C�
r pF2

s,rq as follows.
Denote by G 
 G the transformation groupoid for the action of G on itself given by

right multiplication. Thus, G 
 G � Gs�rG as a set, pG 
 Gq0 �
�
uPG0tuu � Gu can

be identified with G via prpyq, yq � y, the range map r̃, the source map s̃, and the

multiplication are given by px, yq
r̃
ÞÑ xy, px, yq

s̃
ÞÑ y, and ppx, yq, px1, y1qq ÞÑ pxx1, y1q,

respectively, and the topology on G
G is the weakest topology that makes r̃, s̃ and the
map px, yq ÞÑ x continuous. We equip G 
 G with the right Haar system λ̃�1 given by

λ̃�1
y pC � tyuq � λ�1

rpyqpCq for all C � Grpyq, y P G.

The bundle F2
s,r is a Fell bundle on G 
 G with respect to the multiplication and

involution given by ppf, yq, pf 1, y1qq ÞÑ pff 1, y1q and pf, yq ÞÑ pf�, ppfqyq. The convolution
product in ΓcpF2

s,rq is given by

pcdqpx, yq �

»
Grpyq

cpxz�1, zyqdpz, yqdλ�1
rpyqpzq(8.2)

for all c, d P ΓcpF2
s,rq, px, yq P Gs�rG, because pG 
 Gqs̃px,yq � Grpyq � tyu and

px, yqpz, yq�1 � pxz�1, zyq for all z P Grpyq.

Proposition 8.13. There exists a unique isomorphism πpC�
r pFqq�r C0pGq Ñ C�

r pF2
s,rq

such that δpπpcqqp1 b
b
fq ÞÑ LF2

s,r
pdq whenever c P ΓcpFq, f P CcpGq, and dpx, yq �

cpxqfpyq for all px, yq P Gs�rG.

Let φ P W. Then the map r�φ : Γ0ppF2
s,rq

0q Ñ C0pGq given by pr�φpcqqpyq �

φrpyqpcprpyq, yqq for all c P Γ0ppF2
s,rq

0q and y P G is a C0pGq-weight. One easily ver-

ifies that there exists a representation Lr�φ : C�
r pF2

s,rq Ñ LpΓ2pF2
s,r, λ̃

�1; r�φqq such that

Lr�φpcqd � cd for all c, d P ΓcpF2
s,rq.

Lemma 8.14. (i) There exists a unique unitary Uφ : Γ2pF2
s,r, λ̃

�1; r�φq = H Ñ

Γ2pF2
s,r, ν

2
s,r;φq � K

pδ
b
b:
αH such that pUφpe = gqqpx, yq � epx, yqgpyqD�1{2pxq

for all e P ΓcpF2
s,rq, g P CcpGq, px, yq P Gs�rG.

(ii) δpπpcqqp1b
b
fqXφUφ � XφUφpLr�φpdq= idq for all c, d, f as in Proposition 8.13.

Proof. (i) For all e, g as in above,

}Uφpe= gq}2 �

»
G

»
Grpyq

φspxqpepx, yq
�epx, yqq|gpyq|2 dλ�1

rpyqpxqdνpyq � }e= g}2.

(ii) Let c, d, e, f, g, px, yq as above and p∆pfqφ � X�
φp1 b

b
fqXφ. A short calculation

shows that pp∆pfqφUφpe = gq
�
px, yq � fpxyqepx, yqgpyqD�1{2pxq. Using (8.2), we find
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that
�
pπφpcq b

b:
idqp∆pfqφUφpe= gq

�
px, yq is equal to

»
Grpxq

cpzqfpz�1xyqepz�1x, yqgpyqD�1{2pzqD�1{2pz�1xyqdλrpxqpzq

�

»
Gspxq

cpxz�1qfpzyqepz, yqgpyqD�1{2pxyq dλ�1
spxqpzq

�

»
Gspxq

dpxz�1, zyqepz, yqgpyqD�1{2pxyqdλ�1
spxqpzq � pUφpde= gqqpx, yq.

So, δpπpcqqp1b
b
fqXφUφ � Xφpπφpcq b

b:
idqp∆pfqφXφUφ � XφUφpLr�φpdq= idq. �

Proof of Proposition 8.13. Consider the �-homomorphism

Φ: C�
r pF2

s,rq Ñ LpKγb
b
βHq, LF2

s,r
pdq ÞÑ

à
φPW

XφUφpLr�φpdq= idqU�
φX

�
φ .

By part (ii) of the lemma above, ΦpC�
r pF2

s,rqq contains rδpπpC�
r pFqqqp1 b

b
C0pGqqs �

πpC�
r pFqq �r C0pGq. The same lemma implies that this inclusion is an equality because

the map a Ñ
À

φ a = id is continuous with respect to the inductive limit topology on

ΓcpF2
s,rq and sections of the form px, yq ÞÑ cpxqfpyq, where c P ΓcpFq, f P CcpGq, are

dense in ΓcpF2
s,rq by Lemma 7.2. Finally, Lemma 6.4 implies that r

�
φ ker r�φs � 0, and

therefore Φ is injective. �

Proposition 8.15. If F is saturated, then C�
r pF2

s,rq � KpΓ2pF , λ�1qq.

Proof. To simplify notation, let Γ2 � Γ2pF , λ�1q, Γ̃2 � Γ2pF2
s,r, λ̃

�1q, Γ0 � Γ0pF0q,

Γ̃0 � Γ0ppF2
s,rq

0q. There exists a unitary Ψ: Γ2 =s� C0pGq Ñ Γ̃2 such that pΨpc =
fqqpx, yq � cpxyqfpyq for all c P ΓcpFq, f P CcpGq, px, yq P Gs�rG, because

xΨpc= fq|Ψpc1 = f 1qypprpyq, yqq �

»
Grpyq

cpxyq�c1pxyqdλ�1
rpyqpxqfpyqf

1pyq

� fpyqxc|c1yΓ2pspyqqfpyq � xc= f |c1 = f 1ypyq

for all c, c1 P ΓcpFq, f, f 1 P CcpGq, y P G by right-invariance of λ�1. The �-homo-

morphism Φ: KpΓ2q Ñ LpΓ̃2q given by k ÞÑ Ψpk=s� idqΨ� is injective because s� : C0pG
0q Ñ

LpC0pGqq is injective, and the claim follows once we have shown that ΦpKpΓ2qq �
C�
r pF2

s,rq. Let d, d1 P ΓcpFq and denote by |dyxd1| P KpΓ2q the operator given by

e ÞÑ dxd1|ey. Then for all c, f, px, yq as above,�
Ψp|dyxd1|c= fq

�
px, yq �

»
Gspyq

dpxyqd1pzq�cpzqfpyqdλ�1
spyqpzq

�

»
Gspyq

dpxyqd1pzq�
�
Ψpc= fq

�
pzy�1, yqdλ�1

spyqpzq

�

»
Grpyq

dpxyqd1pz1yq�
�
Ψpc= fq

�
pz1, yq dλ�1

rpyqpz
1q.
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Comparing with equation (8.2), we find that Ψp|dyxd1| = idqΨ� � LF2
s,r
peq, where e P

ΓcpF2
s,rq is given by epxz�1, zyq � dpxyqd1pzyq�, or equivalently, by epx1, y1q � dpx1y1qd1py1q�

for all px1, y1q P Gs�rG. Since F is saturated, Lemma 7.2 implies that sections of this
form are dense in ΓcpF2

s,rq with respect to the inductive limit topology, and since the
map e ÞÑ LF2

s,r
peq is continuous with respect to this topology, we can conclude that

ΦpKpΓ2qq � ΨpKpΓ2q= idqΨ� � C�
r pF2

s,rq. �

Corollary 8.16. If F is saturated, then πpC�
r pFqq �r C0pGq and Γ0pF0q are Morita

equivalent.

Proof. One easily verifies that Γ2pF , λ�1q is full. �
Example 8.17. Let σ be an action of G on an admissible C0pG

0q-algebra C and let δσ
be the corresponding coaction of C0pGq on FC (Proposition 6.10). Then there exists an
admissible Fell bundle C on G with fibre Cx � Crpxq for each x P G, continuous sections
Γ0pCq � r�C, and multiplication and involution given by cd � cσxpdq, c

� � σx�1pc�q
for all c P Cx, d P Cy, px, yq P Gs�rG [15], and the identity on ΓcpCq � CcpGqr

�C
extends to an isomorphism C�

r pCq Ñ C �r G. One easily verifies that with respect to
the isomorphism πpC�

r pCqq � C�
r pCq � C �r G � FC �r C

�
r pGq of Proposition 6.14, the

coaction of Theorem 8.9 coincides with the dual coaction on FC �r C
�
r pGq. Moreover,

the Fell bundle C is saturated and C�
r pCq �r C0pGq � FC �r C

�
r pGq �r C0pGq is Morita

equivalent to Γ0pC0q � C, as we already know by Theorem 4.11.

Remark 8.18. The Fell bundle F can be equipped with the structure of an F2
s,r-F0-

equivalence in the sense of [19] in a straightforward way.

8.4. Functoriality of the construction. Let G, F be admissible Fell bundles on

G with associated representations ppKG , γG , pδGq, XGq, ppKF , γF , pδF q, XF q and coactions
pπGpC�

r pGqqγGKG
, δGq, pπF pC�

r pFqqγFKF
, δF q, and let T be a morphism from G to F .

Proposition 8.19. There exists a unique morphism T̃� from
�
πGpC�

r pGqqγGKG
, δGq to�

πF pC�
r pFqqγFKF

, δF q that satisfies T̃�pπGpaqq � πF pT�paqq for all a P ΓcpGq.
The proof involves the following construction.

Lemma 8.20. Let φ P WpΓ0pF0qq, f P Γ0pF0q and define ψ P WpΓ0pG0qq by g ÞÑ
φpf�T 0

� pgqfq.

(i) There exists an isometry T fφ : Kψ Ñ Kφ such that T φf g � T�pgqf for all g P

ΓcpGq.
(ii) T fφ jψpgq � jφpT�pgqfq, T

f
φ ĵψpgq � ĵψpT�pgqfq, and T fφ πψpgq � πφpT�pgqqT

f
φ for

all g P ΓcpGq.
Denote also the map KG Ñ Kψ ãÑ KF given by pξψ1qψ1 ÞÑ T fφ ξψ by T fφ .

(iii) T fφ is a semi-morphism from pKG , pδG , γGq to pKF , pδF , γF q and pT fφ b
b

idqXG �

XF pT
f
φ b

b:
idq.

(iv) δF pπF phqqpT
f
φ b

b
idqδGpπGpgqq � δF pπF phT�pgqqqpT

f
φ b

b
idq for all h P ΓcpFq,

g P ΓcpGq.
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Proof. (i) Uniqueness is clear. Existence follows from the fact that for all g, g1 P ΓcpGq,

xT�pgqf |T�pg
1qfyKφ �

»
G
φspxq

�
fpspxqq�T pgpxq�g1pxqqfpspxqq

�
dνpxq

�

»
G
ψspxqpgpxq

�g1pxqq dνpxq � xg|gyKψ .

(ii) Straightforward.

(iii) By (ii), T fφ γG � γF and T fφ
pδG � pδF . For all ω P ΓcpG2

s,rq and px, yq P Gr�rG,

ppT fφ b
b

idqXGωqpx, yq � ωpx, x�1yqfpspxqq � pXF pT
f
φ b

b:
idqωqpx, yq.

(iv) By parts (ii) and (iii),

XF pπF phq b
b:

idqX�
F pT

f
φ b

b
idqXGpπGpgq b

b:
idqX�

G � XF pπF phT�pgqq b
b:

idqX�
F pT

f
φ b

b
idq

for all g P ΓcpGq and h P ΓcpFq. �

Proof of Proposition 8.19. Denote by T � LpKG ,KF q the closed linear span of all op-

erators T fφ , where φ P WpΓ0pF0qq and f P Γ0pF0q. Then Lemma 8.20 and Proposition

7.9 imply that SπGpgq � πF pT�pgqqS for all S P T , g P ΓcpGq and that

rT γGs �
�¤
φ

jφ
�
T�pΓcpGqqΓ0pF0q

��
�
�¤
φ

jφpΓcpFqq
�
� γF .

By Proposition 7.9, T� extends to a nondegenerate �-homomorphism C�
r pGq ÑMpC�

r pFqq.
Henceforth, there exists a semi-morphism T̃� from πGpC�

r pGqqγGKG
to πF pC�

r pFqqγFKF
such

that T̃�pπGpgqq � πF pT�pgqq for all g P ΓcpGq. For all h P πF pΓcpFqq, g P πGpΓcpGqq,
S P T ,

δF phq � pT̃� � idqpδGpgqq � pS b
b

idq � δF phqpS b
b

idqδGpgq � δF phT̃�pgqqpS b
b

idq

by Lemma 8.20, and therefore δF phq � pT̃� � idqpδGpgqq � δF phT̃�pgqq. �

Denote by FellaG the category of all admissible Fell bundles on G, and by Coacta
C�
r pGq

the category of very fine left-full coactions of C�
r pGq.

Theorem 8.21. The assignments F ÞÑ pπF pC�
r pFqqγFKF

, δF q and T ÞÑ T̃� form a faithful

functor F̌ : FellaG Ñ Coacta
C�
r pGq

.

Proof. Functoriality of the constructions is evident. Assume that F̌S � F̌T for some
morphisms S, T from F to G in FellaG. Then the maps S�, T� : ΓcpFq Ñ ΓcpMpGqq
coincide because πG is injective. Since tapxq | a P ΓcpFqu � Fx for each x P G and
Spapxqq � pS�aqpxq � pT�aqpxq � T papxqq for each a P ΓcpFq, x P G, we can conclude
that S � T . �
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9. From coactions of C�
r pGq to Fell bundles for étale G

We now assume that the groupoid G is étale in the sense that the set G of all open
subsets U � G for which the restrictions rU � r|U : U Ñ rpUq and sU � s|U : U Ñ spUq
are homeomorphisms is a cover of G; see [23]. Moreover, we assume that the Haar
systems λ and λ�1 are the families of counting measures. Then the functor F̌ has a
right adjoint Ǧ and embeds the category of admissible Fell bundles into a category of
very fine coactions of C�

r pGq as a full and coreflective subcategory. The construction
of the functor Ǧ uses the correspondence between Banach bundles and convex Banach
modules developed in [8].

9.1. The Fell bundle of a coaction of C�
r pGq. Let δ be an injective coaction of

C�
r pGq on a C�-b-algebra C � CγK . Since G is étale, ρβpBq � C�

r pGq and δpCq|γy1 �
r|γy1C

�
r pGqs. For each U P G, we define a closed subspace

CU :� tc P rCργpC0pspUqqqs | δpcq|γy1 � r|γy1LpC0pUqqsu � C,

denote by sU� : C0pUq Ñ C0pspUqq and rU� : C0pUq Ñ C0prpUqq the push-forward of
functions along sU and rU , respectively, and consider CU as a right Banach C0pUq-
module via the formula c � f :� cργpsU�pfqq. Denote by Γf pFq the space of all sections
of F that can be written as finite sums of sections in Γ0pF |U q, where U P G. Then
Γf pFq is a �-algebra with respect to the operations defined in (7.1), and one has natural
inclusions ΓcpFq � Γf pFq � C�

r pFq of �-algebras.

Proposition 9.1. There exist a continuous Fell bundle F on G and a �-homomorphism
ι : Γf pFq Ñ C such that for each U P G, the map ι restricts to an isometric isomorphism
ιU : Γ0pF |U q Ñ CU of Banach C0pUq-modules. If pF 1, ι1q is another such pair, then there
exists an isomorphism T : F Ñ F 1 such that ι1 � T� � ι.

The proof requires some preliminaries. First, for all c P C, f P C0pG
0q,

δpcργpfqq � δpcqρpγ�αqpfq � δpcqp1b
b
ραpfqq � δpcqp1b

b
r�pfqq.

Lemma 9.2. Let U, V P G.

(i) c � f � ργprU�pfqqc for each c P CU and f P C0pUq.
(ii) CV CU � CV U , pCU q

� � CU�1, and CU � rCV C0pUqs � CV if U � V .
(iii) CspUq is a continuous C0pspUqq-algebra.
(iv) CU is a convex and continuous Banach C0pUq-module.

Proof. (i) Let c, f as above. Since Lpgqr�psU�pfqq � r�prU�pfqqLpgq for all g P C0pUq,
we have δpc � fq � δpcqp1b

b
r�psU�pfqqq � p1b

b
r�prU�pfqqqδpcq � δpργprU�pfqqcq and by

injectivity of δ also c � f � ργprU�pfqqc.
(ii) Clearly, δpCV CU q|γy1 � |γy1LpC0pV Uqq. Using (i) twice, we find

CV CU � rCV ργpC0pspV qqC0prpUqqqCU s

� rCV ργpC0pspV q X rpUqqCU s � rCργpC0pspV Uqqqs.
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Consequently, CV CU � CV U . By (i) again, we have pCU q
� � rργpC0prpUqqqCU s

� �
rCργpC0pspU

�1qqqs, and using the relation δpC�
U q|γy1 � r|γy1C

�
r pGqs, we obtain

δpC�
U q|γy1 � r|γy1xγ|1δpCU q

�|γy1s

� r|γy1LpC0pUqq
�xγ|1|γy1s � r|γy1LpC0pU

�1qqs.

If U � V , then CU � rCV C0pUqs � CV , and CV C0pUq � CU because

δpCV C0pUqq|γy1 � δpCV q|γy1r
�pC0pspUqqq

� r|γy1LpC0pV qqr
�pC0pspUqqqs � r|γy1LpC0pUqqs.

(iii) By (ii), CspUq is a C�-algebra. Consider |γy1 as a Hilbert C�-module over

r�pC0pG
0qq � C0pG

0q. Since δpCG0q|γy1 � |γy1 and δpc � fq|ηy1 � δpcq|ηy1r
�pfq for

all c P CG0 , f P C0pG
0q, η P γ, the formula c � |ηy1 :� δpcq|ηy1 defines a faithful field of

representations CG0 Ñ Lp|γy1q in the sense of Theorem 3.3 in [6]. Consequently, CG0 is
a continuous C0pG

0q-algebra and CspUq a continuous C0pspUqq-algebra.

(iv) Let c, c1 P CU and f, f 1 P C0pUq such that 0 ¤ f, f 1 and f � f 1 ¤ 1. Then }c � f �
c1 �f 1}2 � }c�c �g2�c�c1 �gg1�c1�c �g1g�c1�c1 �g12}, where g � sU�pfq, g

1 � sU�pf
1q. Since

g2�gg2�g1g�g12 ¤ 1 and c�c, c1�c1, c�c1, c1�c1 belong to the continuous C0pspUqq-algebra
CU�1U , which is a convex Banach C0pspUqq-module, we get }cf�c1f 1}2 ¤ maxt}c}, }c1}u2.
Finally, the norm }cu}

2 � }pc�cqu�1u} depends continuously on u P U because CU�1U is
a continuous C0pspUqq-algebra. �
Proof of Proposition 9.1. Using Lemma 9.2 and [8], one easily verifies that there exists
a continuous Fell bundle F on G with an isometric isomorphism ιU : Γ0pF |U q Ñ CU of
Banach C0pUq-modules for each U P G such that for all U, V P G, the following properties

hold. First, the map Γ0pF |U q ãÑ Γ0pF |V q ιVÝÑ CV is equal to Γ0pF |U q ιUÝÑ CU ãÑ CV
if U � V , and second, ιU pfq

� � ιU�1pf�q, ιUV pfgq � ιU pfqιV pgq for all f P Γ0pF |U q,
g P Γ0pF |V q. Define ι : Γf pFq Ñ C as follows. Given a �

°
i ai P Γf pFq, where

ai P Γ0pF |Uiq and Ui P G, let ιpaq �
°
i ιUipaiq. Using the preceding two properties of ι,

one easily verifies that ι is well-defined and a �-homomorphism. �
Denote by p0 : Γf pFq Ñ Γ0pF0q the restriction.

Proposition 9.3. There exists a faithful conditional expectation p from the C�-algebra
rιpΓf pFqqs to CG0 satisfying p � ι � ιG0 � p0.

In the following lemma, fhξ,ξ1 denotes the pointwise product of functions f, hξ,ξ1 P
CcpGq, where hξ,ξ1 was defined in (8.1).

Lemma 9.4. Let ξ, ξ1 P CcpGq, c P C, f P CcpGq, η, η
1 P γ. Then:

(i) xη|1δpxjpξq|2δpcq|jpξ
1qy2q|η

1y1 � xjpξq|2∆pxη|1δpcq|η
1y1q|jpξ

1qy2;
(ii) xjpξq|2∆pLpfqq|jpξ1qy2 � Lpfhξ,ξ1q;
(iii) xjpξq|2δpc � fq|jpξ

1qy2 � c � pfhξ,ξ1q if c P CU and f P C0pUq for some U P G.

Proof. (i) If d � xjpξq|2δpcq|jpξ
1qy2, then

δpdq � xjpξq|3pδ � idqpδpcqq|jpξ1qy3 � xjpξq|3pid �∆qpδpcqq|jpξ
1qy3

and xη|1δpdq|η
1y1 � xjpξq|2∆pxη|1δpcq|η

1y1q|jpξ
1qy2.

(ii) This is a special case of Lemma 8.12.
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(iii) Let η, η1 P γ. Since c P CU , we have xη|1δpcq|η
1y1 � Lpgq for some g P C0pUq.

Let ξ2 � r�psU�pfqqξ and denote by dl, dr P C the left and the right hand side of the
equation in (iii), respectively. Then dl � xjpξq|2δpcq|jpξ

2qy2, and by (i) and (ii),

xη|1δpdlq|η
1y1 � xjpξq|2∆pxη|1δpcq|η

1y1q|jpξ
2qy2 � xjpξq|2Lpgq|jpξ

2qy2 � Lpghξ,ξ2q,

xη|1δpdrq|η
1y1 � xη|1δpcq|η

1y1r
�psU�pfhξ,ξ1qq � LpgqLpsU�pfhξ,ξ1qq.

We can conclude that xη|1δpdlq|η
1y1 � xη|1δpdrq|η

1y1 because for all x P G,

pghξ,ξ2qpxq � gpxq

»
Grpxq

ξpyqfpxqξ1px�1yq dλrpxqpyq � gpxqpsU�pfhξ,ξ1qqpspxqq.

Since η, η1 P γ were arbitrary and δ is injective, we must have dl � dr. �
Proof of Proposition 9.3. Given a subset U � G, denote by χU its characteristic func-
tion. Using the same formulas as for elements of CcpGq, we can define a map jpξq : KÑ H
and the function hξ,ξ1 for the characteristic function ξ � ξ1 � χG0 of G0 � G, and
then Lemma 9.4 still holds. Define p : C Ñ C by c ÞÑ xjpχG0q|2δpcq|jpχG0qy2. Then
}p} ¤ }jpχG0q}2 � 1, and the relation hχG0 ,χG0 � χG0 and Lemma 9.4 imply that

p|CG0 � id and p|CU � 0 whenever U P G and U X G0 � H. Using a partition of

unity argument and the fact that G0 � G is open and closed, we can conclude that
p � ι � ιG0 � p0.

It remains to show that p is faithful. Using the right-regular representation of G,
one easily verifies that rC�

r pGq
1jpχG0qKs � H. Therefore, the map q : C�

r pGq Ñ LpKq,
a ÞÑ jpχG0q�ajpχG0q, is faithful in the sense that qpa�aq � 0 if a � 0. If c P rιpΓf pFqqs
and ppc�cq � 0, then η�ppc�cqη � qpxη�|1δpc

�cq|ηy1q � 0 and hence xη�|1δpc
�cq|ηy1 � 0

and δpcq|ηy1 � 0 for all η P γ, whence δpcq � 0 and c � 0 by injectivity of δ. �
Proposition 9.3 and [15, Fact 3.11] imply:

Corollary 9.5. ι extends to an embedding C�
r pFq Ñ C. �

We denote the extension above by ι again.

Proposition 9.6. If δ is fine, then ι : C�
r pFq Ñ C is a �-isomorphism.

Proof. We only need to show that C is equal to the linear span of all CU , where U P G.
Consider an element d P C of the form d � xjpξq|2δpcq|jpξ

1qy2, where c P C, ξ P CcpV q, ξ
1 P

CcpV
1q for some V, V 1 P G. Since G is étale and δ is fine, the closed linear span of all

elements of the form like d is equal to rxα|2δpCq|αy2s � rxα|2|αy2Cs � C. We show that
d P CU , where U � V V 1�1 P G, and then the claim follows. Let η, η1 P γ. By Lemma
9.4,

xη|1δpdq|η
1y1 P xjpξq|2∆pC�

r pGqq|jpξ
1qy2 � rLpCcpGqhξ,ξ1qs � LpC0pUqq.

Using the relation δpdq|γy1 � r|γy1C
�
r pGqs, we get

δpdq|γy1 � r|γy1xγ|1δpdq|γy1s � r|γy1LpC0pUqqs.

Moreover, since hξ,ξ1 P CcpUq, we can choose g P C0pUq with hξ,ξ1g � hξ,ξ1 . Then
Lpfhξ,ξ1qr

�psU�pgqq � Lpfhξ,ξ1q for each f P C0pUq, and hence xη|1δpdργpsU�pgqqq|η
1y1 �

xη|1δpdq|η
1y1r

�psU�pgqq � xη|1δpdq|η
1y1. Since δ is injective, we can conclude d �

dργpsU�pgqq P CργpC0pspUqqq and finally d P CU . �
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Proposition 9.7. If δ is fine, then F is admissible.

Proof. The proof is similar to the proof of Lemma 6.2 (i). By 9.2 (iii), Γ0pF0q � CG0

is a continuous C0pG
0q-algebra. Let u P G0, denote by Iu � C0pG

0q the ideal of all
functions vanishing at u, and assume Fu � 0. Then Γ0pF0q � rΓ0pF0qIus and rC�

r pFqs �
rC�

r pFqΓ0pF0qs � rC�
r pFqIus, whence C � rCργpIuqs. Define jpχG0q as in the proof of

Proposition 9.3. Then rδpCq|γy1C
�
r pGqs � r|γy1C

�
r pGqs and

rr�pC0pG
0qqC�

r pGqs � rxγ|1|γy1C
�
r pGqs � rxγ|1δpCIuq|γy1C

�
r pGqs

� rxγ|1|γy1r
�pIuqC

�
r pGqs � rr�pIuqC

�
r pGqs,

whence rjpχG0q�C�
r pGqjpχG0qs � Iu � C0pG

0q, a contradiction. �

The construction of the Fell bundle is functorial with respect to the following class of
morphisms.

Definition 9.8. A morphism ρ of coactions pCγK , δCq and pDε
L, δDq of C�

r pGq is strongly
nondegenerate if rρpCqDG0s � D.

Proposition 9.9. Let π be a strongly nondegenerate morphism of fine coactions pCγK , δCq,
pDε

L, δDq with associated Fell bundles F , G and �-homomorphisms ιF , ιG. Then there
exists a unique morphism T from F to G such that ιG � T� � π � ιF .

Proof. Let U, V P G. Then πpCU qDV � DUV because

δDpπpCU qDV q|εy1 � ppπ � idqpδCpCU qqqδDpDV q|εy1

� ppπ � idqpδCpCU qqq|εy1LpC0pV qq

� |εy1LpC0pUqqLpC0pV qq � |εy1LpC0pUV qq

and πpCU qDV � rπpCργpC0pspUqqqqDV s � rπpCqDρεpC0pspUV qqqs,

where the last inclusion follows similarly as in the proof of Lemma 9.2 (ii). Define a
map SU,V : Γ0pF |U q � Γ0pG|V q Ñ Γ0pG|UV q by pf, gq ÞÑ ι�1

G pπpιF pfqqιGpgqq, let px, yq P
pU � V q X Gs�rG, and denote by Ix � Γ0pF |U q, Iy � Γ0pG|V q, Ixy � Γ0pG|UV q the
subspaces of all sections vanishing at x, y, and xy, respectively. Using Lemma 9.2 (i),
one easily verifies that SU,V maps Ix � Γ0pG|V q and Γ0pF |U q � Iy into Ixy. Hence, there
exists a unique map Sx,y : Fx � Gy Ñ Gxy such that Sx,ypfpxq, gpyqq � pSU,V pf, gqqpxyq
for all f P Γ0pF |U q, g P Γ0pG|V q, and this map depends on px, yq but not on pU, V q.
For each x P G and c P Fx, define T pcq : G|Gspxq Ñ G|Grpxq by T pcqd � Sx,ypc, dq for

each y P Gspxq, d P Gy. One easily checks that then T is a continuous map from F to
MpGq which satisfies conditions (i) and (ii) of Definition 7.8, and that the representation
π̃ :� ι�1

G � π � ιF : C�
r pFq Ñ MpC�

r pGqq satisfies π̃pfqg � pT � fqg for all f P ΓcpFq,
g P ΓcpGq. We show that T also satisfies condition (iii) of Definition 7.8. Since π is
strongly nondegenerate, D � rπpCqDG0s, that is, C�

r pGq � rπ̃pC�
r pFqqΓ0pG0qs and hence

Γ2pG, λ�1q � rπ̃pC�
r pFqqΓ0pG0qs. In particular, Gx � rT pFxqGspxqs for each x P G because

Gspxq is discrete. �

9.2. The unit and counit of the adjunction. Denote by Coactas
C�
r pGq

the category of

very fine left-full coactions of C�
r pGq with all strongly nondegenerate morphisms. Then
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the functor F̌ : FellaG Ñ Coacta
C�
r pGq

constructed in the preceding section actually takes

values in Coactas
C�
r pGq

:

Lemma 9.10. Let T be a morphism of admissible Fell bundles F ,G on G. Then the
morphism F̌T from F̌F to F̌G is strongly nondegenerate.

Proof. Immediate from Proposition 7.9 ii). �
The constructions in Proposition 9.1 and Proposition 9.9 yield a functor Ǧ from

Coactas
C�
r pGq

to FellaG. We now obtain an embedding as a full and coreflective subcategory

pF̌, Ǧ, η̌, ε̌q of FellaG into Coactas
C�
r pGq

.

Proposition 9.11. Let F be an admissible Fell bundle, pπF pC�
r pFqqγFKF

, δF q � F̌F the

associated fine coaction, and G � ǦF̌F and ιG : C�
r pGq Ñ πF pC�

r pFqq the Fell bundle
and the �-homomorphism associated to this coaction as above. Then there exists a unique
isomorphism η̌F : F Ñ G such that ιG � pη̌F q� � πF .

Proof. Let pCγK , δq � pπF pC�
r pFqqγFKF

, δF q and U P G. We show that CU � πF pΓ0pF |U qq.
Note that rthξ,ξ1 | ξ P CcprpUqq, ξ

1 P CcpUqus � C0pUq, where the functions hξ,ξ1 were
defined in (8.1). Using Lemma 9.4, we can conclude

CU � rxjpCcprpUqqq|2δpπF pΓcpFqqq|jpCcpUqqy2s.
By Lemma 8.12, we have for all ξ P CcprpUqq, f P ΓcpFq, ξ1 P CcpUq,

xjpξq|2δpπF pfqq|jpξ1qy2 � πF pfhξ,ξ1q P πF pΓ0pF |U qq,
where fhξ,ξ1 denotes the pointwise product. Consequently, CU � πF pΓ0pF |U qq. Since
U P G was arbitrary, we can conclude that there exists an isomorphism η̌F : F Ñ G of
Banach bundles such that ιG � pη̌F q� � πF : ΓcpFq Ñ C. Using the fact that pη̌F q� is a
�-homomorphism and that G is étale, one easily concludes that η̌F is an isomorphism of
Fell bundles. �
Proposition 9.12. Let pC, δq be a very fine coaction of C�

r pGq, where C � CγK , and let
F , ι : C�

r pFq Ñ C be the associated Fell bundle and �-isomorphism. Then there exists a
unique strongly nondegenerate morphism ε̌pC,δq from pπF pC�

r pFqqγFKF
, δF q to pC, δq such

that ε̌pC,δq � πF � ι.

Lemma 9.13. Let U P G, ξ P CcpUq, η P γ, and ω � |ηy1jpξq P γ � α � LpK,Kγb
b
βHq.

(i) There exists a C0pG
0q-weight φ : Γ0pF0q Ñ C0pG

0q � LpKq, f ÞÑ ω�δpιpfqqω.
(ii) There exists a unique isometry Sω : Kφ � Γ2pF , ν;φq Ñ Kγb

b
βH such that

Sω ĵφpfq � δpιpfqqω for all f P ΓcpFq, and Sωπφpfq � δpιpfqqSω for all f P
ΓcpFq.

(iii) SωjφpΓcpFqq � γ � α.

Proof. (i) First, ω�δpCG0qω � rα�xγ|1|γy1LpC0pG
0qqαs � rα�xγ|1|γy1αs � C0pG

0q �
LpKq. Second, observe that for all c P CG0 , f P C0pG

0q,

φpcfq � jpξq�xη|1δpcfq|ηy1jpξq

� jpξq�xη|1δpcq|ηy1r
�pfqjpξq � jpξq�xη|1δpcq|ηy1jpξqf � φpcqf.



146 THOMAS TIMMERMANN

(ii) As before, denote by p0 : Γf pFq Ñ Γ0pF0q the restriction. Let U P G, f, f 1 P
ΓcpFq, and g � f�f 1. Using the relation supphξ,ξ � G0 and Lemma 9.4, we find

ω�δpιpfqq�δpιpf 1qqω � η�xjpξq|2δpιpgqq|jpξqy2η
�

� η�ιpg � hξ,ξqη

� ω�δpιpp0pgqqqω
� � φpp0pgqq � xf |f 1yΓ2pF ,λ�1,φq.

The existence of Sω follows. Finally, Sωπφpfq � δpιpfqqSω since Sωπφpfqĵφpgq �

Sω ĵφpfgq � δpιpfgqqω � δpιpfqqSω ĵφpgq for all f, g P ΓcpFq.
(iii) Let V P G, f P ΓcpF |V q, ζ P CcpG

0q, and define ζ 1 P L2pG0, µq by ζ 1pspxqq �

ζprpxqqD1{2pxq for all x P V and ζ 1pyq � 0 for all y P G0zspV q. Then pjφpfqζqpxq �

fpxqζprpxqq � pĵφpfqζ
1qpxq for all x P G and therefore

Sωjφpfqζ � Sω ĵφpfqζ
1 � δpιpfqqωζ 1 � δpιpfqq|ηy1jpξqζ

1.

Since f P ΓcpF |V q, there exist f 1 P LpC0pV qq, η
1 P γ such that δpιpfqq|ηy1 � |η1y1Lpf

1q.
Now,

Sωjφpfqζ � δpιpfqq|ηy1jpξqζ
1 � |η1y1Lpf

1qjpξqζ 1 � |η1yjpLpf 1qξqζ

because pLpf 1qjpξqζ 1qpzq � 0 for z R V U and

pLpf 1qjpξqζ 1qpxyq � D�1{2pxqf 1pxqξpyqζ 1prpyqq

� f 1pxqζprpxqqξpyq � jpLpf 1qξqζpxyq

for all px, yq P pV � Uq XGs�rG. Thus, Sωjφpfqζ P γ � α. The claim follows. �

Proof of Proposition 9.12. Since πF is injective, we can define ε̌ � ε̌pC,δq :� ι � π�1
F . We

show that δ � ε̌ is a morphism from πF pC�
r pFqqγFKF

to δpCqγ�αKγb
b
βH

. For each C0pG
0q-

weight φ on Γ0pF0q, denote by pφ : KF Ñ Kφ the canonical projection. Let S �
LpKF ,Kγb

b
βHq be the closed linear span of all operators of the form Sωpφ, where

U, ξ, η, ω, φ are as in the lemma above. Then Sa � δpε̌paqq for each S P S, a P πF pC�
r pFqq,

and rSγF s � rδpιpΓcpFqqqpγ � αqs � γ � α. The claim follows. Since δ is an isomorphism
from C to δpCqγ�αKγb

b
βH

, we can conclude that ε̌ is a morphism from πF pC�
r pFqqγFKF

to C.
The relation pε̌ � idq � δ � δ � ε̌ follows from the fact that

xjpξq|2δpε̌pgq � fq|jpξ
1qy2 � ε̌pgq � pfhξ,ξ1q

� ε̌pg � pfhξ,ξ1qq � ε̌
�
xjpξq|2δpπF pgqq|jpξ1qy2

�
for all U P G, g P ΓcpF |U q, f P CcpUq, ξ, ξ1 P CcpGq by Lemma 9.4. �

Corollary 9.14. Every very fine coaction of C�
r pGq is left-full.

Proof. Let pC, δq be a very fine coaction of C�
r pGq, let pπF pC�

r pFqqγFKF
, δF q and ε̌pC,δq be as

above, and let I :� tT P LsppKF , γF q, pK, γqq | Tx � ε̌pC,δqpxqT for all x P πF pC�
r pFqqu.
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Then γ � rIγF s because ε̌pC,δq is a morphism, and since δF is left-full,

rδpCq|γy1C
�
r pGqs� rpε̌pC,δq � idqpδF pπF pC�

r pFqqqqpI b
b

idq|γFy1C�
r pGqs

� rpI b
b

idqδF pπF pC�
r pFqqq|γFy1C�

r pGqs

� rpI b
b

idq|γFy1C�
r pGqs � r|γy1C

�
r pGqs. �

Theorem 9.15. pF̌, Ǧ, η̌, ε̌q is an embedding of FellaG into Coactas
C�
r pGq

as a full and

coreflective subcategory.

Proof. One easily verifies that Ǧ is faithful and that the families pη̌F qF and pε̌pC,δqqpC,δq
are natural transformations as desired. Since η̌ is a natural isomorphism, F̌ is full and
faithful; see Theorem IV.3.1 in [18]. �

This work was supported by the SFB 478 “Geometrische Strukturen in der Mathe-
matik” and funded by the Deutsche Forschungsgemeinschaft (DFG).
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Abstract. We introduce dynamical analogues of the free orthogonal and free unitary
quantum groups, which are no longer Hopf algebras but Hopf algebroids or quantum
groupoids. These objects are constructed on the purely algebraic level and on the level
of universal C∗-algebras. As an example, we recover the dynamical SUq(2) studied by
Koelink and Rosengren, and construct a refinement that includes several interesting
limit cases.
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1. Introduction

Dynamical quantum groups were introduced by Etingof and Varchenko as an alge-
braic tool to study the quantum dynamical Yang-Baxter equation appearing in statistical
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mechanics [7, 8, 9]. Roughly, one can associate to every dynamical quantum group a
monoidal category of dynamical representations, and to every solution R of the dynam-
ical Yang-Baxter equation a dynamical quantum group AR with a specific dynamical
representation π such that R corresponds to a braiding on the monoidal category gen-
erated by π.

In this article, we introduce two families of dynamical quantum groups ABo (∇, F )
and ABu (∇, F ) which are natural generalizations of the free orthogonal and the free
unitary quantum groups introduced by Wang [18] and van Daele [17]. Roughly, these
dynamical quantum groups are universal with respect to the property that they possess
a corepresentation v such that F becomes a morphism of corepresentations from the
inverse of the transpose v−T or from (v−T)−T, respectively, to v.

For a specific choice of B,∇, F , the free orthogonal dynamical quantum group turns
out to coincide with the dynamical analogue of SUq(2) that arises from a trigonometric
dynamical R-matrix and was studied by Koelink and Rosengren [11]. We refine the
definition of this variant of SUq(2) so that the resulting global dynamical quantum
group includes the classical SU(2), the non-dynamical SUq(2) of Woronowicz [21], the
dynamical SUq(2) and further interesting limit cases which can be recovered from the
global object by suitable base changes.

In the non-dynamical case, free orthogonal and free unitary quantum groups are
most conveniently constructed on the level of universal C∗-algebras, where Woronowicz’s
theory of compact matrix quantum groups applies [20]. We shall, however, start on the
purely algebraic level and then pass to the level of universal C∗-algebras, where the main
problem is to identify a good definition of a dynamical quantum group.

These new classes of dynamical quantum groups give rise to several interesting ques-
tions, for example, whether it is possible to obtain a classification similar as in [19], to
determine their categories of representations as in [2] and [3], or to relate their represen-
tation theory to special functions as it was done in [11] in the special case of SUq(2).

Let us now describe the organization and contents of this article in some more detail.
The first part of this article (§2) is devoted to the purely algebraic setting.
We start with a summary on dynamical quantum groups (§2.1). Roughly, these objects

can be regarded as Hopf algebras, that is, as algebras A equipped with a comultiplication
∆, counit ε and antipode S, where the field of scalars has been replaced by a commutative
algebra B equipped with an action of a group Γ. The comultiplication ∆ does not take
values in the ordinary tensor product A⊗A, but in a product A⊗̃A that takes B and Γ
into account, and the counit takes values in the crossed product algebra B o Γ which is
the unit for the product −⊗̃−. If B is trivial, however, these dynamical quantum groups
are just Γ-graded Hopf algebras (§2.2). In general, we shall use the term (B,Γ)-Hopf
algebroid instead of dynamical quantum group to be more precise.

The free orthogonal and unitary dynamical quantum groups are defined as follows. Let
B be a unital, commutative algebra with a left action of a group Γ, let ∇ = (γ1, . . . , γn)
be an n-tuple in Γ and let F ∈ GLn(B) such that Fij = 0 whenever γi 6= γ−1

j .

Definition. The free orthogonal dynamical quantum ABo (∇, F ) is the universal algebra
with a homomorphism r × s : B ⊗B → ABo (∇, F ) and a v ∈ GLn(ABo (∇, F )) satisfying

(a) vijr(b)s(b
′) = r(γi(b))s(γj(b

′))vij for all b, b′ ∈ B and i, j ∈ {1, . . . , n},
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(b) rn(F̂ )v−T = vsn(F ), where v−T denotes the transpose of v−1 and F̂ = (γi(Fij))i,j.

Theorem. ABo (∇, F ) can be equipped with the structure of a (B,Γ)-Hopf algebroid such
that ∆(vij) =

∑
k vik⊗̃vkj, ε(vij) = δi,jγi, and S(vij) = (v−1)ij for all i, j.

Assume now that B is equipped with an involution and let F ∈ GLn(B) such that
F ∗ = F and Fij = 0 whenever γi 6= γj .

Definition. The free unitary dynamical quantum ABu (∇, F ) is the universal ∗-algebra
with a homomorphism r × s : B ⊗ B → ABu (∇, F ) and a unitary v ∈ GLn(ABu (∇, F ))

satisfying the condition (a) above and (c) v̄ is invertible and rn(F̂ )v̄−T = vsn(F ).

Theorem. ABu (∇, F ) can be equipped with the structure of a (B,Γ)-Hopf ∗-algebroid
such that ∆(vij) =

∑
k vik⊗̃vkj, ε(vij) = δi,jγi, S(vij) = (v−1)ij for all i, j.

The formulas for ∆(vij) and ε(vij) above imply that the matrices v above are corepre-
sentations of ABo (∇, F ) and ABu (∇, F ), respectively, and the conditions (b) and (c) assert
that F is an intertwiner from v−T or v̄−T, respectively, to v. Such intertwiner relations
admit plenty functorial transformations which are studied systematically in §2.3, and
yield short proofs of the results above in §2.4. There, we also consider involutions on
certain quotients ABo (∇, F,G) of ABo (∇, F ) which are parameterized by an additional
matrix G ∈ GLn(B).

Interestingly, the square of the antipode on the dynamical quantum groups ABo (∇, F )

and ABu (∇, F ) can be described in terms of a natural family of characters (θ(k))k which,
like the counit ε, take values in B o Γ. This family is an analogue of Woronowicz’s
fundamental family of characters on a compact quantum group.

As a main example of the constructions above, we recover the dynamical quantum
group FR(SU(2)) of Koelink and Rosengren [11] associated to a deformation parame-
ter q 6= 1 as the free orthogonal dynamical quantum group ABo (∇, F,G), where B is
the meromorphic functions on the plane, Γ = Z acting by shifts, ∇ = (1,−1) and

F =

(
0 1

f̃ 0

)
, where f̃ is the meromorphic function λ 7→ q−1(q2λ − q−2)/(q2λ − 1), and

G =

(
0 −1
q−1 0

)
. In §2.6, we show how this example can be refined such that the re-

sulting dynamical quantum group ABo (∇, F,G) includes FR(SU(2)) and, simultaneously,
a number of interesting limit cases which can be recovered from the global object by
suitable base changes.

The second part of this article (§3) extends the definition of dynamical quantum groups
to the level of universal C∗-algebras. Here, B is assumed to be a unital, commutative
C∗-algebra and Γ acts via automorphisms. The main tasks is to find a C∗-algebraic
analogue of the product −⊗̃− that describes the target of the comultiplication. As in
the algebraic setting, we construct this product in two steps, by first forming a cotensor
product with respect to the Hopf C∗-algebra C∗(Γ) naturally associated to the group
Γ (§3.1), and then taking a quotient with respect to B (§3.2). Given the monoidal
product, all definitions carry over from the algebraic setting to the setting of universal
C∗-algebras easily (§3.3).
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2. The purely algebraic level

Throughout this section, we assume all algebras and homomorphisms to be unital
over a fixed common ground field, and B to be a commutative algebra equipped with a
left action of a group Γ.

2.1. Preliminaries on dynamical quantum groups. This subsection summarizes
the basics of dynamical quantum groups used in this article. We introduce the monoidal
category of (B,Γ)-algebras, then define (B,Γ)-Hopf algebroids, and finally consider base
changes and the setting of ∗-algebras. Except for the base change, most of this material
is contained in [8] and [11] in slightly different guise. We omit all proofs because they
are straightforward.

Let Bev = B⊗B. A Bev-algebra is an algebra with a homomorphism r×s : Bev → A,
or equivalently, with homomorphisms rA = r, sA = s : B → A whose images commute.
A morphism of Bev-algebras is a Bev-linear homomorphism. Write Γev = Γ × Γ and
let e ∈ Γ be the unit. Given a Γev-graded algebra A, we write ∂a = (∂ra, ∂

s
a) = (γ, γ′)

whenever a ∈ Aγ,γ′ .
2.1.1. Definition. A (B,Γ)-algebra is a Γev-graded Bev-algebra such that (r×s)(Bev) ⊆
Ae,e and ar(b) = r(∂ra(b))a, as(b) = s(∂sa(b))a for all b ∈ B, a ∈ A. A morphism of
(B,Γ)-algebras is a morphism of Γev-graded Bev-algebras. We denote by Alg(B,Γ) the

category of all (B,Γ)-algebras.

2.1.2. Example. Denote by B o Γ the crossed product, that is, the universal algebra
containing B and Γ such that e = 1B and bγ · b′γ′ = bγ(b′)γγ′ for all b, b′ ∈ B, γ, γ′ ∈ Γ.
This is a (B,Γ)-algebra, where ∂bγ = (γ, γ) and r(b) = s(b) = b for all b ∈ B, γ ∈ Γ.

The category of all (B,Γ)-algebras can be equipped with a monoidal structure [12] as
follows. Let A and C be (B,Γ)-algebras. Then the subalgebra

A
Γ
⊗ C :=

∑

γ,γ′,γ′′∈Γ

Aγ,γ′ ⊗ Cγ′,γ′′ ⊂ A⊗ C

is a (B,Γ)-algebra, where ∂a⊗c = (∂ra, ∂
s
c ) for all a ∈ A, c ∈ C and (r × s)(b ⊗ b′) =

rA(b) ⊗ sC(b′) for all b, b′ ∈ B. Let I ⊆ A
Γ
⊗ C be the ideal generated by {sA(b) ⊗ 1 −

1 ⊗ rC(b) : b ∈ B}. Then A⊗̃C := A
Γ
⊗ C/I is a (B,Γ)-algebra again, called the fiber

product of A and C. Write a⊗̃c for the image of an element a⊗ c in A⊗̃C.
The product (A,C) 7→ A⊗̃C is functorial, associative and unital in the following sense.

2.1.3. Lemma. i) For all morphisms of (B,Γ)-algebras π1 : A1 → C1, π2 : A2 →
C2, there exists a morphism π1⊗̃π2 : A1⊗̃A2 → C1⊗̃C2, a1⊗̃a2 7→ π1(a1)⊗̃π2(a2).

ii) For all (B,Γ)-algebras A,C,D, there is an isomorphism (A⊗̃C)⊗̃D → A⊗̃(C⊗̃D),
(a⊗̃c)⊗̃d 7→ a⊗̃(c⊗̃d).

iii) For each (B,Γ)-algebra A, there exist isomorphisms (BoΓ)⊗̃A→ A and A⊗̃(Bo
Γ)→ A, given by bγ⊗̃a 7→ r(b)a and a⊗̃bγ 7→ s(b)a, respectively.

Of course, the isomorphisms above are compatible in a natural sense.

2.1.4. Remark. The product −⊗̃− is related to the left and right Takeuchi products
−B×− and − ×B − as follows. Given a Bev-algebra A, we write •A or A• when we
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regard A as a B-bimodule via b · a · b′ := r(b)s(b′)a or b · a · b′ := ar(b)s(b′), respectively.
Then the left and right Takeuchi products of Bev-algebras A and C are the Bev-algebras

AB×C :=

{∑

i

ai ⊗
B
ci ∈ •A⊗

B
•C

∣∣∣∣∣ ∀b ∈ B :
∑

i

aisA(b)⊗
B
ci =

∑

i

ai ⊗
B
cirC(b)

}
,

A×B C :=

{∑

i

ai ⊗
B
ci ∈ A• ⊗

B
C•

∣∣∣∣∣ ∀b ∈ B :
∑

i

sA(b)ai ⊗
B
ci =

∑

i

ai ⊗
B
rC(b)ci

}
,

where the multiplication is defined factorwise and the embedding of Bev is given by
b⊗ b′ 7→ rA(b)⊗

B
sC(b′). The assignments (A,C) 7→ AB×C and (A,C) 7→ A×BC extend

to bifunctors on the category of Bev-algebras and turn it into a lax monoidal category
[6]. The obvious forgetful functor U from (B,Γ)-algebras to Bev-algebras is compatible
with these products in the sense that for every pair of (B,Γ)-algebras A,C, the inclusion

A
Γ
⊗ C ↪→ A⊗C factorizes to inclusions of A⊗̃C into AB×C and A×BC, yielding natural

transformations from U(−⊗̃−) to U(−)B×U(−) and U(−)×B U(−), respectively.

Briefly, a (B,Γ)-Hopf algebroid is a coalgebra in Alg(B,Γ) equipped with an antipode.
To make this definition precise, we need two involutions on Alg(B,Γ). Given an algebra A,
we denote by Aop its opposite, that is, the same vector space with reversed multiplication.

2.1.5. Lemma. There exist automorphisms (−)op and (−)co of Alg(B,Γ) such that for

each (B,Γ)-algebra A and each morphism φ : A → C, we have Aco = A as an algebra
and

(Aop)γ,γ′ = Aγ−1,γ′−1 for all γ, γ′ ∈ Γ, rAop = rA, sAop = sA, φop = φ,

(Aco)γ,γ′ = Aγ′,γ for all γ, γ′ ∈ Γ, rAco = sA, sAco = rA, φco = φ.

Furthermore, (−)op ◦ (−)op = id, (−)co ◦ (−)co = id, (−)op ◦ (−)co = (−)co ◦ (−)op.

2.1.6. Remark. The automorphisms above are compatible with the monoidal structure
as follows. Given (B,Γ)-algebras A,C, there exist isomorphisms (A⊗̃C)op → (Aop⊗̃C)op

and (A⊗̃C)co → Cco⊗̃Aco given by a⊗̃c 7→ a⊗̃c and a⊗̃c 7→ c⊗̃a, respectively. Moreover,
(BoΓ)co = BoΓ and there exists an isomorphism SBoΓ : BoΓ→ (BoΓ)op, bγ 7→ γ−1b,
and all of these isomorphisms and the isomorphisms in Lemma 2.1.3 are compatible in
a natural sense.

2.1.7. Definition. A (B,Γ)-Hopf algebroid is a (B,Γ)-algebra A equipped with mor-
phisms ∆: A→ A⊗̃A, ε : A→ B o Γ, and S : A→ Aco,op such that the diagrams below
commute,

A
∆ //

∆ ��

A⊗̃A
∆⊗̃ id��

A⊗̃A
id ⊗̃∆

// A⊗̃A⊗̃A,

A⊗̃A
ε⊗̃ id ��

A
∆oo ∆ //

id��

A⊗̃A
id ⊗̃ε��

(B o Γ)⊗̃A
∼= // A A⊗̃(B o Γ),

∼=oo
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A⊗̃A
S⊗̃ id ��

A
∆oo ∆ //

ε
��

A⊗̃A
id ⊗̃S��

Aco,op⊗̃A m̌ // A B o Γ
šoo r̂ // A A⊗̃Aco,opm̂oo

where the linear maps m̂, m̌, r̂, š are given by

m̂(a⊗̃a′) = aa′ = m̌(a⊗̃a′), r̂(bγ) = r(b), š(γb) = s(b)

for all a, a′ ∈ A, b ∈ B, γ ∈ Γ.
A morphism of (B,Γ)-Hopf algebroids (A,∆A, εA, SA), (C,∆C , εC , SC) is a morphism

of (B,Γ)-algebras π : A → C such that ∆C ◦ π = (π⊗̃π) ◦ ∆A, εC ◦ π = εA, SC ◦ π =
πco,op ◦ SA. We denote the category of all (B,Γ)-Hopf algebroids by Hopf (B,Γ).

A (B,Γ)-Hopf algebroid reduces to an h-Hopf algebroid in the sense of [11] when h
is a commutative Lie algebra, B is the algebra of meromorphic functions on the dual
h∗, and Γ = h∗ acts by shifting the argument. Let us note that the axioms above can
be weakened, see [11, Proposition 2.2], but our examples shall automatically satisfy the
apparently stronger conditions above.

2.1.8. Example. The (B,Γ)-algebra B o Γ is a (B,Γ)-Hopf algebroid, where ∆(bγ) =
bγ⊗̃γ = γ⊗̃bγ, ε(bγ) = bγ, and S(bγ) = γ−1b for all b ∈ B, γ ∈ Γ.

Let us comment on some straightforward properties of (B,Γ)-Hopf algebroids:

2.1.9. Remarks. Let (A,∆, ε, S) be a (B,Γ)-Hopf algebroid.

i) If γ 6= γ′, then ε(Aγ,γ′) = 0 because (B o Γ)γ,γ′ = 0.
ii) We have ∆(A)(1⊗̃Ae,∗) = A⊗̃A = (A∗,e⊗̃1)∆(A), where Ae,∗ =

∑
γ Ae,γ and

A∗,e =
∑

γ Aγ,e. Indeed, by [15, Proposition 1.3.7],
∑

(xS(y(1))⊗̃1)∆(y(2)) = x⊗̃y =
∑

∆(x(1))(1⊗̃S(x(2))y)

for all x ∈ Aγ,γ′ , y ∈ Aγ′,γ′′ , γ, γ
′, γ′′ ∈ Γ, where

∑
x(1)⊗̃x(2) = ∆(x) and∑

y(1)⊗̃y(2) = ∆(y).

(B,Γ)-Hopf algebroids fit into the general definition of Hopf algebroids [4] as follows.

2.1.10. Remark. Let (A,∆, ε, S) be a (B,Γ)-Hopf algebroid. Denote by •ε and ε• the
compositions of ε : A → B o Γ with the linear maps B o Γ → B given by bγ 7→ b and
γb 7→ b, respectively, and denote by •∆ and ∆• the compositions of ∆ with the natural
inclusions A⊗̃A→ •A⊗

B
•A and A⊗̃A→ A• ⊗

B
A•, respectively (see Remark 2.1.4).

i) The maps •ε, ε• : A→ B will in general not be homomorphisms, but satisfy

•ε(ar(•ε(a′)) = •ε(aa′) = •ε(as(•ε(a′)),

ε•(r(ε•(a))a′) = ε•(aa′) = ε•(s(ε•(a))a′)

for all a, a′ ∈ A. Indeed, since ε(a) = •ε(a)∂a for all homogeneous a′ ∈ A,

•ε(aa′)∂aa′ = •ε(a)∂a · •ε(a′)∂a′
= ∂a(•ε(a′))•ε(a)∂a∂a′ = •ε(ar(•ε(a′)))∂aa′

for all homogeneous a, a′ ∈ A, and the remaining equations follow similarly.
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ii) One easily verifies that (•A, •∆, •ε) and (A•,∆•, ε•) areB-corings, •A := (A, •∆, •ε)
is a left B-bialgebroid, and A• := (Aco,∆•, ε•) is a right B-bialgebroid in the
sense of [4]. Using the relations š ◦ ε = s ◦ ε• and r̂ ◦ ε = r ◦ •ε, one further-
more finds that (A•, •A, S) is a Hopf algebroid over B. To make the match with
Definition 4.1 in [4], one has to take H, sL, tL,∆L, εL, sR, tR,∆R, εR, S equal to
A, s, r, •∆, •ε, r, s,∆•, ε•, S, respectively.

Let B and C be commutative algebras with a left action of Γ and let φ : B → C be
a Γ-equivariant homomorphism. We then obtain base change functors φ∗ : Alg(B,Γ) →
Alg(C,Γ) and φ∗ : Hopf (B,Γ) → Hopf (C,Γ) as follows. Let A be a (B,Γ)-algebra. Regard

C as a B-module via φ, and A as a B-bimodule, where b · a · b′ = r(b)as(b′) for all
b, b′ ∈ B, a ∈ A. Then the vector space φ∗(A) := C ⊗

B
A ⊗

B
C carries the structure of a

(C,Γ)-algebra such that

(c⊗
B
a⊗
B
d)(c′ ⊗

B
a′ ⊗

B
d′) = c∂ra(c

′)⊗
B
aa′ ⊗

B
(∂sa′)

−1(d)d′,

∂c⊗
B
a⊗
B
d = ∂a, (r × s)(c⊗ c′) = c⊗

B
1⊗
B
c′ for all c, c′, d, d′ ∈ C, a, a′ ∈ A.

Every morphism of (B,Γ)-algebras π : A → A′ evidently yields a morphism of (C,Γ)-
algebras φ∗(π) : φ∗(A)→ φ∗(A′), c⊗

B
a⊗
B
c′ 7→ c⊗

B
π(a)⊗

B
c′, and the assignments A 7→ φ∗(A)

and φ 7→ φ∗(π) form a functor φ∗ : Alg(B,Γ) → Alg(C,Γ).

2.1.11. Lemma. i) There exists a morphism of (C,Γ)-algebras

φ(0) : φ∗(B o Γ)→ C o Γ, c⊗
B
bγ ⊗

B
c′ 7→ cφ(b)γc′ = cφ(b)γ(c′)γ.

ii) For all (B,Γ)-algebras A,D, there exists a unique morphism

φ
(2)
A,D : φ∗(A⊗̃D)→ φ∗(A)⊗̃φ∗(D), c⊗

B
(a⊗̃d)⊗

B
c′ 7→ (c⊗

B
a⊗
B

1)⊗̃(1⊗
B
d⊗
B
c′).

2.1.12. Proposition. Let (A,∆, ε, S) be a (B,Γ)-Hopf algebroid. Then φ∗(A) is (C,Γ)-
Hopf algebroid with respect to the morphisms

i) ∆′ : φ∗(A)
φ∗(∆)−−−−→ φ∗(A⊗̃A)

φ
(2)
A,A−−−→ φ∗(A)⊗̃φ∗(A), given by c ⊗

B
a ⊗
B
c′ 7→ ∑

i(c ⊗
B

a′i ⊗
B

1)⊗̃(1⊗
B
a′′i ⊗

B
c′) whenever ∆(a) =

∑
a′i⊗̃a′′i ;

ii) ε′ : φ∗(A)
φ∗(ε)−−−→ φ∗(BoΓ)

φ(0)

−−→ CoΓ, given by c⊗
B
a⊗
B
c′ 7→∑

i cφ(bi)γic
′ whenever

ε(a) =
∑

i biγi;
iii) S′ : φ∗(A)→ (φ∗A)co,op given by c⊗

B
a⊗
B
c′ 7→ c′ ⊗

B
S(a)⊗

B
c.

The assignments (A,∆, ε, S) 7→ (φ∗(A),∆′, ε′, S′) as above and π 7→ φ∗(π) evidently
form a functor φ∗ : Hopf (B,Γ) → Hopf (C,Γ).

The preceding definitions and results extend to ∗-algebras as follows. Assume that B
is a ∗-algebra and that Γ preserves its involution.

A (B,Γ)-∗-algebra is a (B,Γ)-algebra with an involution that is compatible with the
grading and the involution on B, and a morphism of (B,Γ)-∗-algebras is a morphism of
(B,Γ)-algebra that preserves the involution. We denote by ∗-Alg(B,Γ) the category of all
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(B,Γ)-∗-algebras. This subcategory of Alg(B,Γ) is monoidal because the crossed product

B o Γ is a (B,Γ)-∗-algebra with respect to the involution given by (bγ)∗ = γ−1b∗, and
for all (B,Γ)-∗-algebras A,C, the fiber product A⊗̃C is a (B,Γ)-∗-algebra with respect
to the involution given by (a⊗̃c)∗ = a∗⊗̃c∗.
2.1.13. Definition. A (B,Γ)-Hopf ∗-algebroid is a (B,Γ)-Hopf algebroid (A,∆, ε, S)
where A is a (B,Γ)-∗-algebra and ∆ and ε are morphisms of (B,Γ)-∗-algebras. A mor-
phism of (B,Γ)-Hopf ∗-algebroids is a morphism of the underlying (B,Γ)-Hopf alge-
broid and (B,Γ)-∗-algebras. We denote by Hopf∗(B,Γ) the category of all (B,Γ)-Hopf

∗-algebroids.

2.1.14. Remark. If (A,∆, ε, S) is a (B,Γ)-Hopf ∗-algebroid, then ∗ ◦ S ◦ ∗ ◦ S = id; see
[11, Lemma 2.9].

We denote by A the conjugate algebra of a complex algebra A; this is the set A with
conjugated scalar multiplication and the same addition and multiplication. Thus, the
involution of a ∗-algebra A is an automorphism A→ A

op
.

2.1.15. Lemma. The category ∗-Alg(B,Γ) has an automorphism (−) such that for every

(B,Γ)-∗-algebra A and every morphism of (B,Γ)-∗-algebras φ : A→ C,

(A)γ,γ′ = Aγ,γ′ for all γ, γ′ ∈ Γ, rĀ = rA ◦ ∗, sĀ = sA ◦ ∗, φ = φ.

Furthermore, (−) ◦ (−) = id, (−) ◦ (−)op = (−)op ◦ (−), (−) ◦ (−)co = (−)co ◦ (−).

2.1.16. Remark. There exists an isomorphism B o Γ→ B o Γ, bγ 7→ b∗γ, and for each

pair of (B,Γ)-∗-algebras A,C, there exists an isomorphism A⊗̃C → A⊗̃C, a⊗̃c 7→ a⊗̃c.
Let also C be a commutative ∗-algebra with a left action of Γ and let φ : B → C

be a Γ-equivariant ∗-homomorphism. Then for every (B,Γ)-∗-algebra A, the (C,Γ)-
algebra φ∗(A) is a (C,Γ)-∗-algebra with respect to the involution given by (c⊗

B
a⊗
B
c′)∗ =

(∂ra)
−1(c)∗⊗

B
a∗⊗

B
∂sa(c

′)∗, and we obtain a functor φ∗ : ∗-Alg(B,Γ) → Alg∗(C,Γ). Likewise,

we obtain a functor φ∗ : Hopf∗(B,Γ) → Hopf∗(C,Γ).

2.2. The case of a trivial base algebra. Assume for this subsection that B = C
equipped with the trivial action of Γ. Then the category of all (C,Γ)-Hopf algebroids is
equivalent to the comma category of all Hopf algebras over CΓ as follows.

Recall that the group algebra CΓ is a Hopf ∗-algebra with involution, comultiplication,
counit and antipode given by γ∗ = γ−1, ∆CΓ(γ) = γ ⊗ γ, εCΓ(γ) = 1, SCΓ(γ) = γ−1 for
all γ ∈ Γ ⊂ CΓ. Objects of the comma category HopfCΓ are pairs consisting of a Hopf
algebra A and a morphism of Hopf algebras A → CΓ, and morphisms from (A, πA) to

(C, πC) are all morphisms A
φ−→ C such that πC ◦φ = πA. Likewise, we define the comma

category Hopf∗CΓ of Hopf ∗-algebras over CΓ.

Note that a (C,Γ)-algebra is just a Γ×Γ-graded algebra and A⊗̃C = A
Γ
⊗ C ⊆ A⊗C

for all (C,Γ)-algebras A,C. Moreover, Co Γ = CΓ, and for every (C,Γ)-algebra A, the
isomorphisms (Co Γ)⊗̃A→ A and A⊗̃(Co Γ)→ A are equal to εCΓ ⊗ id and id⊗εCΓ.

2.2.1. Lemma. Let (A,∆, ε, S) be a (C,Γ)-Hopf algebroid and let ε′ := εCΓ ◦ ε : A→ C.
The (A,∆, ε′, S) is a Hopf algebra and ε : A→ CΓ is morphism of Hopf algebras.
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Proof. The preceding observations easily imply that (A,∆, ε′, S) is a Hopf algebra. To
see that ε is a morphism of Hopf algebras, use the fact that ∆, ε, S are Γ×Γ-graded. �
2.2.2. Lemma. Let (A,∆, ε, S) be a Hopf algebra with a morphism π : A → CΓ. Then
A is a (C,Γ)-algebra with respect to the grading given by Aγ,γ′ = {a ∈ A : (π ⊗
id⊗π)(∆(a)) = γ ⊗ a ⊗ γ′} for all γ, γ′ ∈ Γ, and (A,∆, π, S) is a (C,Γ)-Hopf alge-
broid.

Proof. The formula above evidently defines a Γ × Γ-grading on A. Coassociativity of
∆ implies that ∆(A) ⊆ A⊗̃A. The remark preceding Lemma 2.2.1 and the relation
εCΓ ◦ π = ε imply (π⊗̃ id) ◦∆ = id = (id ⊗̃π) ◦∆. Finally, in the notation of Definition
2.1.7, m̌◦(S⊗̃ id)◦∆ = m◦(S⊗id)◦∆ = ε = š◦π and similarly m̂◦(id ⊗̃S)◦∆ = r̂◦π. �

Putting everything together, one easily verifies:

2.2.3. Proposition. There exists an equivalence of categories Hopf (C,Γ)

F
�
G

HopfCΓ,

where F(A,∆, ε, S) = ((A,∆, εCΓ ◦ ε, S), ε), Fφ = φ, G((A,∆, ε, S), π) = (A,∆, π, S)
with the grading on A defined as in Lemma 2.2.2, and Gφ = φ. Likewise, there exists
an equivalence Hopf∗(C,Γ) � Hopf∗CΓ.

Let us next consider the base change from C to a commutative algebra C along the
unital inclusion φ : C→ C for a (C,Γ)-Hopf algebroid (A,∆, ε, S).

2.2.4. Remark. The action of Γ on C and the morphism ε : A→ CΓ turn C into a left
module algebra over the Hopf algebra (A,∆, εCΓ ◦ ε, S), and φ∗(A,∆, ε, S) coincides with
the Hopf algebroids considered in [4, §3.4.6] and [10, Theorem 3.1], and is closely related
to the quantum transformation groupoid considered in [14, Example 2.6].

Assume that C is an algebra of functions on Γ on which Γ acts by left translations.

2.2.5. Proposition. Define m : A → End(A) and mr,ms : C → End(A) by m(a′)a =
a′a, mr(c)a = c(∂ra)a, ms(c)a = c(∂sa)a for all a, a′ ∈ A, c ∈ C. Then there exists a
homomorphism λ : φ∗(A) → End(A), c ⊗ a ⊗ c′ 7→ mr(c)m(a)ms(c

′), and λ is injective
if aAγ,γ′ 6= 0 for all non-zero a ∈ A and all γ, γ′ ∈ Γ.

Proof. First, note that

m(a′)mr(c)a = a′c(∂ra)a = c((∂ra′)
−1∂ra′a)a

′a = mr(∂
r
a′(c))m(a)a

and likewise m(a′)ms(c) = ms(∂
s
a′(c))m(a′) for all a, a′ ∈ A, c ∈ C. The existence

of λ follows. Assume that aAγ,γ′ 6= 0 for all non-zero a ∈ A and all γ, γ′ ∈ Γ. Let
d :=

∑
i ci ⊗ ai ⊗ c′i ∈ φ∗(A) be non-zero, where all ai are homogeneous. Identifying

C ⊗ A ⊗ C with a space of A-valued functions on Γ × Γ and using the assumption, we
first find γ, γ′ ∈ Γ such that a :=

∑
i ci(∂

r
aiγ)aic

′
i(γ
′) is non-zero, and then an a′ ∈ Aγ,γ′

such that λ(d)a′ = aa′ 6= 0. �
2.2.6. Remark. Regard elements of C as functionals on CΓ via c(

∑
i biγi) =

∑
i bic(γi).

Then mr(c)a = (c ◦ ε⊗ id)(∆(a)), ms(c)a = (id⊗c ◦ ε)(∆(a)) for all c ∈ C, a ∈ A.

2.2.7. Example. Let G be a compact Lie group, O(G) its Hopf algebra of representative
functions [16, §1.2] and T ⊆ G a torus of rank d. We now apply Proposition 2.2.5, where
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• A = O(G), regarded as a Hopf (C, T̂ )-algebroid as in Lemma 2.2.2 using the
homomorphism π : O(G) → O(T ) induced from the inclusion T ⊆ G, and the

isomorphism O(T ) ∼= CT̂ ,
• C = U t is the enveloping algebra of the Lie algebra t of T , regarded as a polyno-

mial algebra of functions on T̂ such that X(χ) = d
dt

∣∣
t=0

χ(e(tX)), where e : t→ T
denotes the exponential map.

If we regard U t as functionals on the algebra CT̂ ∼= O(T ) as in Remark 2.2.6, then
X(f) = d

dt

∣∣
t=0

f(e(tX)) and hence mr,ms : U t→ End(O(G)) are given by

(mr(X)a)(x) =
d

dt

∣∣∣
t=0

a(e(tX)x), (ms(X)a)(x) =
d

dt

∣∣∣
t=0

a(xe(tX))

for all X ∈ t, a ∈ O(G), x ∈ G. Thus λ(O(G)) ⊆ End(O(G)) is the algebra generated
by multiplication operators for functions in O(G) and by left and right differentiation
operators along T ⊆ G.

If G is connected, then O(G) has no zero-divisors and hence λ is injective as soon as

for all χ, χ′ ∈ T̂ , there exists some non-zero a ∈ O(G) such that a(xyz) = χ(x)a(y)χ′(z)
for all x, z ∈ T and y ∈ G.

2.3. Intertwiners for (B,Γ)-algebras. In this subsection, we study relations of the
form used to define the free orthogonal and free unitary dynamical quantum groups
ABo (∇, F ) and ABu (∇, F ), and show that such relations admit a number of natural trans-
formations. Conceptually, these relations express that certain matrices are intertwiners
or morphisms of corepresentations, and the transformations correspond to certain func-
tors of corepresentation categories. Although elementary, these observations provide
short and systematic proofs for the main results in the following subsection.

Regard Mn(B) as a subalgebra of Mn(B o Γ), and let A be a (B,Γ)-algebra. Given
a linear map φ : A → C between algebras, we denote by φn : Mn(A) → Mn(C) its
entry-wise extension to n× n-matrices.

2.3.1. Definition. A matrix u ∈ Mn(A) is homogeneous if there exist γ1, . . . , γn ∈ A
such that uij ∈ Aγi,γj for all i, j. In that case, let ∂u,i := γi for all i and ∂u :=
diag(γ1, . . . , γn) ∈ Mn(B o Γ). An intertwiner for homogeneous matrices u, v ∈ Mn(A)
is an F ∈ GLn(B) satisfying ∂vF∂

−1
u ∈ Mn(B) and rn(∂vF∂

−1
u )u = vsn(F ). We write

such an intertwiner as u
F−→ v and let F̂ := ∂vF∂

−1
u if u, v are understood.

If u
F−→ v and v

G−→ w are intertwiners, then evidently so are v
F−1

−−→ u and u
GF−−→ w.

2.3.2. Definition. We denote by Rn(A) the category of all homogeneous matrices in
Mn(A) together with their intertwiners as morphisms, and by R×n (A) and R×Tn (A) the
full subcategories formed by all homogeneous v in GLn(A) or GLn(A)T, respectively.

Evidently, Rn(A) is a groupoid, and the assignment A 7→ Rn(A) extends to a functor
from (B,Γ)-algebras to groupoids.

We shall make frequent use of the following straightforward relations.

2.3.3. Lemma. Let u, v ∈Mn(A) be homogeneous, F ∈Mn(B) and F̂ = ∂vF∂
−1
u . Then

F̂ ∈Mn(B) ⇔ (Fij = 0 whenever ∂v,i 6= ∂u,j).
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Assume that these condition holds. Then F̂ = (∂v,i(Fij))i,j = (∂u,j(Fij))i,j and

F̂T = ∂uF
T∂−1

v , (∂vF )−T = F−T∂−1
u , (F∂−1

u )−T = ∂vF
−T.

If B is a ∗-algebra and Γ preserves the involution, then ∂vF = F∂−1
u and F∂u = ∂−1

v F .

Given u, v ∈ Mn(A) such that ∂suik = ∂rvkj for all i, k, j, let u�̃v := (
∑

k uik⊗̃vkj)i,j ∈
Mn(A⊗̃A).

2.3.4. Lemma. There exist functors

ε : Rn(A)→ Rn(B o Γ), u 7→ ∂u, (u
F−→ v) 7→ (∂u

F−→ ∂v),

∆ : Rn(A)→ Rn(A⊗̃A), u 7→ u�̃u, (u
F−→ v) 7→ (u�̃u F−→ v�̃v),

(−)op : Rn(A)→ Rn(Aop), u 7→ uop := u, (u
F−→ v) 7→ (uop

F̂−→ vop),

and ∂u�̃u = ∂u, ∂uop = ∂−1
u for all u ∈ Rn(A).

Proof. For each u ∈ Rn(A), the matrices ∂u, u�̃u, uop evidently are homogeneous, and

for every intertwiner u
F−→ v, Lemma 2.3.3 implies

rn(F̂ )u�̃u = vsn(F )�̃u = v�̃rn(F̂ )u = v�̃vsn(F ),

rn(∂vopF̂ ∂
−1
uop)u

op = rn(F )opuop = (rn(F̂ )u)op = (vsn(F ))op = vopsn(F̂ )op.

Functoriality of the assignments is evident. �

2.3.5. Lemma. There exist contravariant functors

(−)T,co : Rn(A)→ Rn(Aco), u 7→ uT,co := uT, (u
F−→ v) 7→ (vT,co

FT

−−→ uT,co),

(−)−co : R×n (A)→ Rn(Aco), u 7→ u−co := u−1, (u
F−→ v) 7→ (v−co F̂−1

−−→ u−co),

and ∂uT,co = ∂u and ∂u−co = ∂−1
u for all u.

Proof. If u ∈ Rn(A), then uT,co evidently is homogeneous as claimed. Assume u ∈
R×n (A). We claim that u−co is homogeneous and ∂u−co = ∂−1

u . For each i, j, let wij be

the homogeneous part of (u−1)ij of degree (∂−1
u,j , ∂

−1
u,i ). Then

∑
l uilwlj is homogeneous

of degree (∂u,i∂
−1
u,j , e) and coincides with the homogeneous part of the sum

∑
l uil(u

−1)lj
of the same degree for each i, j. Hence, uw = uu−1 and the claim follows.

Let u
F−→ v be an intertwiner. Using Lemma 2.3.3, one easily verifies that

sn(∂uT,coF
T∂−1

vT,co
)vT = sn(F̂ )TvT = (vsn(F ))T = (rn(F̂ )u)T = uTrn(FT),

sn(∂u−coF̂−1∂−1
v−co)v

−1 = sn(F−1)v−1 = u−1rn(F̂−1).

Finally, functoriality of the assignments is easily checked. �
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Forming suitable compositions, we obtain further co- or contravariant functors

(−)−T = (−)T,co ◦ (−)−co : R×n (A)→ R×Tn (A),

{
u 7→ u−T := (u−1)T,

(u
F−→ v) 7→ (u−T F̂−T

−−−→ v−T),

(−)−

T

= (−)−co ◦ (−)T,co : R×Tn (A)→ R×n (A),

{
u 7→ u−

T

:= (uT)−1,

(u
F−→ v) 7→ (u−

TF̂−T

−−−→ v−

T

)

and

(−)−co,op = (−)op ◦ (−)−co : R×n (A)→ Rn(Aco,op),

{
u 7→ (u−co)op,

(u
F−→ v) 7→ (v−co,op F

−1

−−→ u−co,op),

where ∂u−co,op = ∂u and ∂u−T = ∂
u−

T= ∂−1
u for all u.

2.3.6. Lemma. The following relations hold:

i) (−)op ◦ (−)−T = (−)−

T

◦ (−)op, ii) (−)−T ◦ (−)op = (−)op ◦ (−)−

T

,

iii) (−)−T ◦∆ = ∆ ◦ (−)−T, iv) (−)−T ◦ (−)−co,op = (−)−co,op ◦ (−)−T.

Proof. i) We first check that the compositions agree on objects. Let us write vop if we
regard v ∈ Mn(A) as an element of Mn(Aop). Then map Mn(A) → Mn(Aop) given by
v 7→ (vT)op = (vop)T is an antihomomorphism and hence (v−T)op = (vT,op)−1 = (vop)−

T

for all v ∈ GLn(A). The compositions also agree on morphisms because for every

intertwiner u
F−→ v, we have ∂v−T(∂vF∂

−1
u )−T∂−1

u−T = ∂−Tv ∂vF
−T∂−1

u ∂u = F−T.
ii) This equation follows similarly like i).

iii) Let u ∈ R×n (A). Then (u�̃u)−T = u−T�̃u−T because
∑

k

(u�̃u)ik(u
−T�̃u−T)jk =

∑

k,l,m

uil(u
−1)mj⊗̃ulk(u−1)km = δi,j1⊗̃1.

and similarly
∑

k(u
−T�̃u−T)ki(u�̃u)kj = δi,j1⊗̃1. For morphisms, we have nothing to

check because ∂u�̃u = ∂u.

iv) This equation follows from the relation (−)−T ◦ (−)op ◦ (−)−co = (−)op ◦ (−)−

T

◦
(−)−co = (−)op ◦ (−)−co ◦ (−)T,co ◦ (−)−co. �

Assume for a moment that (A,∆, ε, S) is a Hopf (B,Γ)-algebroid.

2.3.7. Definition. A matrix corepresentation of (A,∆, ε, S) is a v ∈ Rn(A) for some

n ∈ N satisfying ∆n(v) = v�̃v, εn(v) = ∂v, Sn(v) = v−1.

2.3.8. Lemma. If v
F−→ w is a morphism in Rn(A) and v is a matrix corepresentation,

then so is w.

Proof. Applying the morphisms ∆, ε, S and the functors ∆, ε, (−)−co,op to v
F−→ w or its

inverse, we get intertwiners w�̃w F−1

−−→ v�̃v = ∆n(v)
F−→ ∆n(w), ∂w

F−1

−−→ ∂v = εn(v)
F−→

εn(w) and w−co,op F−1

−−→ v−co,op = Sn(v)
F−→ Sn(w). �
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Let us now discuss the involutive case.
Given a ∗-algebra C and a matrix v ∈Mn(C), we write v := (v∗ij)i,j = (v∗)T.

Assume that B is a ∗-algebra, that Γ preserves the involution, and that A is a (B,Γ)-
algebra. Then there exists an obvious functor Rn(A) → Rn(Ā), given by u 7→ u and

(u
F−→ v) 7→ (u

F−→ v). Composition with (−)op gives a functor

(−)op : Rn(A)→ Rn(A
op

), u 7→ uop := uop, (u
F−→ v) 7→ (uop

F̂−→ vop),

and ∂uop = ∂−1
u for all u. For later use, we note the following relation.

2.3.9. Lemma. Let u−T F−→ v be an intertwiner in R×n (A)∩R×,Tn (A). Then (vop)−T F ∗−−→
uop is an intertwiner in R×n (A

op
) ∩R×,Tn (A

op
).

Proof. Subsequent applications of the functors (−)op, (−)−T yield intertwiners (v−T)op =

(vop)−

TF̂
−1

−−→ uop and (uop)−T F
−T

=F−∗−−−−−−→ vop. �
Finally, assume that A is a (B,Γ)-∗-algebra. Then there exists a functor

(−)∗,co : Rn(A)→ Rn(Aco), u 7→ u∗,co := u∗, (u
F−→ v) 7→ (v∗,co F̂ ∗−−→ u∗,co),

because sn(F ∗)v∗ = u∗rn(F̂ ∗) for every intertwiner u
F−→ v, and ∂u∗,co = ∂−1

u . Composing
with (−)T,co for Aco and with (−)−T, respectively, we get functors

(−) : Rn(A)→ Rn(A), u 7→ u = (u∗ij)i,j , (u
F−→ v) 7→ (u

F̂−→ v),(1)

Rn(A)→ Rn(A), u 7→ u = u−T = u−
T

, (u
F−→ v) 7→ (u−T F−∗−−−→ v−T).(2)

2.4. The free orthogonal and free unitary dynamical quantum groups. Using
the preparations of the last subsection, we now show that the algebras ABo (∇, F ) and
ABu (∇, F ) are (B,Γ)-Hopf algebroids as claimed in the introduction.

Let B be a commutative algebra with an action of a group Γ as before, and let
γ1, . . . , γn ∈ Γ and ∇ = diag(γ1, . . . , γn) ∈Mn(B o Γ).

Let F ∈ GLn(B) be ∇-odd in the sense that ∇F∇ ∈Mn(B). The first definition and
theorem in the introduction can be reformulated as follows.

2.4.1. Definition. The free orthogonal dynamical quantum group over B with param-
eters (∇, F ) is the universal (B,Γ)-algebra ABo (∇, F ) with a v ∈ R×n (ABo (∇, F )) such

that ∂v = ∇ and v−T F−→ v is an intertwiner.

2.4.2. Theorem. The (B,Γ)-algebra ABo (∇, F ) can be equipped with a unique structure
of a (B,Γ)-Hopf algebroid such that v becomes a matrix corepresentation.

Proof. The existence of morphisms ∆: A → A⊗̃A, ε : A → B o Γ, S : A → Aco,op

satisfying ∆n(v) = v�̃v, εn(v) = ∇, Sn(v) = v−1 follows from the universal property of
A and the relations

∆(v−T F−→ v) = ((v�̃v)−T F−→ v�̃v), ε(v−T F−→ v) = (∇−T F−→ ∇),

(v−T F−→ v)−co,op = (v−co,op F−1

−−→ (v−co,op)−T);
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see Lemma 2.3.5 and 2.3.6. Straightforward calculations show that (A,∆, ε, S) is a
(B,Γ)-Hopf algebroid. �
2.4.3. Remarks. i) In the definition of ABo (∇, F ), we may evidently assume that

Γ is generated by the diagonal components γ1, . . . , γn of ∇.
ii) Denote by B0 ⊆ B the smallest Γ-invariant subalgebra containing the entries

of F and F−1, and by ι : B0 → B the inclusion. Then there exists an obvious
isomorphism ABo (∇, F ) ∼= ι∗AB0

o (∇, F ).

iii) Let H ∈ GLn(B) be ∇-even and Ĥ = ∇H∇−1. Then there exists an isomor-

phism ABo (∇, HFĤT)→ ABo (∇, F ) of (B,Γ)-Hopf algebroids whose extension to

matrices sends v ∈ ABo (∇, HFĤT) to w := rn(Ĥ)vsn(H)−1 ∈ ABo (∇, F ). Indeed,
there exists such a morphism of (B,Γ)-algebras because in ABo (∇, F ), we have

intertwiners v
H−→ w, v−T Ĥ−T

−−−→ w−T and v−T F−→ v, whence w−T HFĤT

−−−−→ w, and
this morphism is compatible with ∆, ε, S because w is a matrix corepresentation
by Lemma 2.3.8. A similar argument yields the inverse of this morphism.

Assume that B carries an involution which is preserved by Γ, and let F ∈ GLn(B) be
self-adjoint and ∇-even in the sense that ∇F∇−1 ∈Mn(B). The second definition and
theorem in the introduction can be reformulated as follows.

2.4.4. Definition. The free unitary dynamical quantum group over B with parameters
(∇, F ) is the universal (B,Γ)-∗-algebra ABu (∇, F ) with a unitary u ∈ R×n (ABu (∇, F ))

such that ∂v = ∇ and (v−T)−T F−→ v is an intertwiner.

2.4.5. Theorem. The ∗-algebra ABu (∇, F ) can be equipped with a unique structure of a
(B,Γ)-Hopf ∗-algebroid such that v becomes a matrix corepresentation.

To prove this result, we introduce an auxiliary (B,Γ)-algebra which does not involve
the involution on B.

2.4.6. Definition. We denote by ABu′(∇, F ) the universal (B,Γ)-algebra with v, w ∈
R×n (A) such that ∂v = ∇, ∂w = ∇−1 and v−T 1−→ w, w−T F−→ v are intertwiners.

Using the same techniques as in the proof of Theorem 2.4.2, one finds:

2.4.7. Proposition. The (B,Γ)-algebra ABu′(∇, F ) can be equipped with a unique struc-
ture of a (B,Γ)-Hopf algebroid such that v and w become matrix corepresentations.

2.4.8. Proposition. The (B,Γ)-algebra ABu′(∇, F ) can be equipped with an involution
such that it becomes a (B,Γ)-Hopf ∗-algebroid and w = v̄.

Proof. Let A := ABu′(∇, F ). By Lemma 2.3.9, we have intertwiners (wop)−T 1−→ vop and

(vop)−T F ∗=F−−−−→ wop. The universal property of A yields a homomorphism j : A → A
op

satisfying jn(v) = wop and jn(w) = vop. Composition of j with the canonical map
Āop → A yields the desired involution, which is easily seen to be compatible with the
comultiplication and counit. �

Theorem 2.4.5 now is an immediate corollary to the following result:

2.4.9. Theorem. There exists a unique ∗-isomorphism ABu (∇, F ) → ABu′(∇, F ) whose
extension to matrices sends u to v.
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Proof. One easily verifies that the universal properties of A := ABu (∇, F ) and A′ :=
ABu′(∇, F ) yield homomorphisms A → A′ and A′ → A whose extensions to matrices
satisfy u 7→ v and v 7→ u, w 7→ ū, respectively. �

The following analogues of Remarks 2.4.3 apply to ABu (∇, F ):

2.4.10. Remarks. i) We may assume that Γ is generated by the diagonal compo-
nents of ∇, and if ι : B0 ↪→ B denotes the inclusion of the smallest Γ-invariant
∗-subalgebra containing the entries of F and F−1, then ABu (∇, F ) ∼= ι∗AB0

u (∇, F ).

ii) Let H ∈ GLn(B) be ∇-even and unitary, and let Ĥ = ∇H∇−1. Then there
exists an isomorphism ABu (∇, HFH∗) → ABu (∇, F ) of (B,Γ)-Hopf algebroids
whose extension to matrices sends the matrix u ∈ ABu (∇, HFH∗) to z :=

rn(Ĥ)usn(H)−1 ∈ ABu (∇, F ). Indeed, there exists such a morphism of (B,Γ)-
algebras because z is a product of unitaries and in ABu (∇, F ), we have intertwiners

u
H−→ z, ū−T H−∗−−−→ z̄−T by (2), and ū−T F−→ u, whence z̄−T HFH∗−−−−→ z, and this

morphism is compatible with ∆, ε, S because z is a matrix corepresentation by
Lemma 2.3.8. A similar argument yields the inverse of this morphism.

We finally consider involutions on certain quotients of ABo (∇, F ).
Assume that F,G ∈ GLn(B) are ∇-odd and GF ∗ = FG∗. Let Q := G(∇Ḡ∇).

2.4.11. Definition. The free orthogonal dynamical quantum group over B with param-
eters (∇, F,G) is the universal (B,Γ)-algebra ABo (∇, F,G) with a v ∈ R×n (A) such that

∂v = ∇ and v−T F−→ v and v
Q−→ v are intertwiners.

The algebra ABo (∇, F,G) depends only on Q and not on G, but shall soon be equipped
with an involution that does depend on G.

Evidently, there exists a canonical quotient map ABo (∇, F )→ ABo (∇, F,G), and

ABo (∇, F,G) ∼= ABo (∇, F )/(r(q)− s(q)) if Q = diag(q, . . . , q),

ABo (∇, F,G) ∼= ABo (∇, F )/(r(qi)− s(qj)|i, j = 1, . . . , n) if Q = diag(q1, . . . , qn),

because in the second case (rn(Q̂)v)ij = rn(γi(qi))vij = vijrn(qi) and vsn(Q))ij =
vijsn(qj) in ABo (∇, F ) for all i, j.

2.4.12. Theorem. The (B,Γ)-algebra ABo (∇, F,G) can be equipped with a unique struc-

ture of a (B,Γ)-Hopf ∗-algebroid such that v̄
G−→ v becomes an intertwiner and v a matrix

corepresentation.

Proof. The existence of ∆, ε, S follows similarly as in the case of ABo (∇, F ); one only
needs to observe that additionally, application of the functors ∆, ε and (−)co,op to the

intertwiner (v
Q−→ v) yield intertwiners (v�̃v Q−→ v�̃v), (∇ Q−→ ∇) and ((v−1)co,op

Q−→
(v−1)co,op)
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Let us prove existence of the involution. Let w := rn(∇G∇)−1vsn(G). Then there

exist intertwiners w
G−→ v and

(v
G−1

−−−→ w) ◦ (v
Q−→ v) = (v

∇Ḡ∇−−−→ w),

(v
∇Ḡ∇−−−→ w)op ◦ (w

G−→ v)op = (vop
G−→ wop) ◦ (wop ∇Ḡ∇−−−→ vop)

= (wop Q−→ wop),

(v−T F−→ v) ◦ (w
(∇Ḡ∇)−1

−−−−−−→ v)−T = (v−T F−→ v) ◦ (w−T G∗−−→ v−T)

= (w−T FG∗=GF ∗−−−−−−−→ v),

((v
G−1

−−−→ w) ◦ (w−T GF ∗−−−→ v))op = (w−T F ∗−−→ w)op = ((wop)−T F−→ wop);

where we used Lemma 2.3.5 in the last line. The universal property of A := ABo (∇, F,G)

therefore yields a homomorphism j : A → A
op

such that jn(v) = wop, and this j corre-
sponds to a conjugate-linear antihomomorphism A → A, a 7→ a∗. To see that the map
a 7→ a∗ is involutive, we only need to check w = v. The functor (−) of (1) applied to

w
G−→ v yields w

Ĝ=∇Ḡ∇−−−−−→ v = w, and composition with w
G−→ v gives w

Q−→ v. Hence,
w = v.

Finally, the involution is compatible with the comultiplication and counit because w
is a matrix corepresentation by Lemma 2.3.8. �

2.4.13. Remarks. i) The canonical quotient map from ABo (∇, F ) to ABo (∇, F,G)
is a morphism of (B,Γ)-Hopf algebroids.

ii) Analogues of Remarks 2.4.3 and 2.4.10 apply to ABo (∇, F,G).
iii) Note that ABo (∇, F,G) is the universal (B,Γ)-∗-algebra with a v ∈ R×n (A) such

that ∂v = ∇ and v−T F−→ v and v̄
G−→ v are intertwiners. Indeed, the composition

of v̄
G−→ v with its image under the functor (−) in (1) yields v

Q−→ v.
iv) If F = G, then v = v−T and hence v is unitary. In general, assume that

H ∈ GLn(B) satisfies ∇H∇−1 ∈ Mn(B) and HHT ∈ C · G−1F . Then u :=
rn(H−1)vsn(∇−1H∇) is a unitary matrix corepresentation whose entries gener-

ate ABo (∇, F,G) as a (B,Γ)-algebra. Indeed, u
∇−1H∇−−−−−→ v is an intertwiner, and

applying (−) and (−)−T, respectively, we get u
H−→ v

G−→ v
F−1

−−→ v−T HT

−−→ u−T

which is scalar by assumption so that u = u−T.

We finally consider a simple example; a more complex one is considered in §2.6.

2.4.14. Example. Equip C[X] with an involution such that X∗ = X and an action of

Z such that X
k7→ X − k for all k ∈ Z, and let γ1 = 1, γ2 = −1, ∇ = diag(γ1, γ2) and

F = G =

(
0 −1
1 0

)
. Then A

C[X]
o (∇, F,G) ∼= ι∗(AC

o (∇, F,G)), where ι : C→ C[X] is the

canonical map.
The algebra AC

o (∇, F,G) equipped with ∆, εCΓ ◦ ε, S is a Hopf ∗-algebra by Lemma
2.2.1. It is generated by the entries of a unitary matrix v which satisfies v = G−1vG and
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therefore has the form v =

(
α −γ∗
γ α∗

)
. The relations vv∗ = 1 = v∗v then imply that

α, α∗, γ, γ∗ commute and αα∗ + γγ∗ = 1. Therefore, AC
o (∇, F,G) is isomorphic to the

Hopf ∗-algebra O(SU(2)) of representative functions on SU(2).

The algebra A
C[X]
o (∇, F,G) ∼= ι∗(AC

o (∇, F,G)) can be identified with the subalge-
bra of End(O(SU(2))) generated by multiplication operators associated to elements of
O(SU(2)) and left or right invariant differentiation operators along the diagonal torus
in SU(2); see Example 2.2.7.

2.5. The square of the antipode and the scaling character groups. The square of
the antipode on the free dynamical quantum groups ABo (∇, F ), ABu (∇, F ), ABo (∇, F,G)
can be described in terms of certain character groups as follows.

Recall the isomorphisms of Lemma 2.1.3 iii) and the anti-automorphism SBoΓ of BoΓ
given by bγ 7→ γ−1b.

2.5.1. Definition. Let (A,∆, ε, S) be a (B,Γ)-Hopf algebroid. A character group on A

is a family of morphisms θ = (θ(k) : A → B o Γ)k∈Z satisfying (θ(k)⊗̃θ(l)) ◦ ∆ = θk+l,

θ(0) = ε and θ(k) ◦ S = SBoΓ ◦ θ(−k) for all k, l ∈ Z. We call a character group θ scaling
if S2 = (θ(1)⊗̃ id ⊗̃θ(−1)) ◦∆(2), where ∆(2) = (∆⊗̃ id) ◦∆ = (id ⊗̃∆) ◦∆.

We construct scaling character groups using intertwiners of the form u
H−→ S2

n(u) for
suitable matrix corepresentations u.

2.5.2. Lemma. Let (A,∆, ε, S) be a (B,Γ)-Hopf algebroid, let θ = (θ(k) : A→ BoΓ)k∈Z
be a family of morphisms satisfying (θ(k)⊗̃θ(l)) ◦ ∆ = θk+l for all k, l ∈ Z, and let
u ∈ R×n (A) be a matrix corepresentation.

i) S2
n(u) = (u−T)−T.

ii) Let H = ∂−1
u θ

(1)
n (u). Then H ∈ GLn(B), ∂uH∂

−1
u ∈Mn(B) and θ

(k)
n (u) = ∂uH

k

for all k ∈ Z.

iii) θ
(0)
n = εn(u) and θ

(k)
n (Sn(u)) = SBoΓ

n (θ
(−k)
n (u)) for all k ∈ Z.

iv) S2
n(u) = ((θ(1)⊗̃ id ⊗̃θ(−1))◦∆(2))n(u) if and only if u

H−→ S2
n(u) is an intertwiner.

Proof. i) The map Mn(A)→Mn(A) given by x 7→ Sn(x)T is an antihomomorphism and
therefore preserves inverses. Hence, S2

n(u) = Sn(u−T)T = (Sn(u)T)−T = (u−T)−T.

ii) Since each θ(k) preserves the grading, there exists a family (Hk)k∈Z of elements of

GLn(B) satisfying ∂uHk∂
−1
u ∈Mn(B) and θ

(k)
n (u) = ∂uHk for all k ∈ Z. The assumption

on θ implies that HkHl = Hk+l for all k, l ∈ Z, and consequently, Hk = Hk
1 for all k ∈ Z.

iii) By ii), θ
(0)
n (u) = ∂u = εn(u) and

θ(k)
n (Sn(u)) = θ(k)

n (u−1) = θ(k)
n (u)−1 = H−k∂−1

u

= SBoΓ
n (∂uH

−k) = SBoΓ
n (θ(−k)

n (u)).

iv) This follows from the relation

((θ(1)⊗̃ id ⊗̃θ(−1)) ◦∆(2))n(u) = θ(1)
n (u)�̃u�̃θ(−1)

n (u)

= ∂uH�̃u�̃∂uH−1 = rn(∂uH∂
−1
u )usn(H−1). �

We first apply the lemma above to ABo (∇, F ).
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2.5.3. Proposition. Let F ∈ GLn(B) be ∇-odd. Then ABo (∇, F ) has an intertwiner

v
H−→ S2(v) and a scaling character group θ such that θ

(k)
n (v) = ∇Hk for all k ∈ Z,

where H = (∇F∇)TF−1.

Proof. By Lemma 2.5.2 i), (v−T F−→ v) ◦ (v−T F−→ v)−T = S2(v)
H−1

−−−→ v. To construct θ,
let k ∈ Z and x = ∇Hk. By Lemma 2.3.3, x−T = (H−T)k∇−1 and hence

(∇F∇)x−T = ∇F∇(∇−1F−1∇−1FT)k∇−1 = ∇(∇−1FT∇−1F−1)kF = xF.

The universal property of ABo (∇, F ) yields a morphism θ(k) : ABo (∇, F ) → B o Γ such

that θ
(k)
n (v) = x. Using Lemma 2.5.2, one easily verifies that the family (θ(k))k is a

scaling character group. �

Assume that B carries an involution which is preserved by Γ. We call a character
group (θ(k))k on a (B,Γ)-Hopf ∗-algebroid imaginary if θ(k) ◦ ∗ = ∗ ◦ θ(−k) for all k ∈ Z.

2.5.4. Proposition. Let F ∈ GLn(B) be ∇-even. Then ABu (∇, F ) has intertwiners

u
F−1

−−→ S2
n(u) and ū

(∇F∇−1)T−−−−−−−→ S2
n(ū), and an imaginary scaling character group θ such

that θ
(k)
n (u) = ∇F−k and θ

(k)
n (ū) = F kT∇−1 for all k ∈ Z.

Proof. By Lemma 2.5.2 i), the first intertwiner is the inverse of S2
n(u) = (u−T)−T =

ū−T F−→ u, and the second intertwiner is the inverse of (ū−T F−→ u)−T. To construct θ,
let k ∈ Z and x = ∇F−k, y = F kT∇−1. Using Lemma 2.3.3, we find

y = x−T, y−T = x, (∇F∇−1)y−T = (∇F∇−1)x = ∇F 1−k = xF.

The universal property of the algebra ABu′(∇, F ) and Theorem 2.4.9 yield a morphism

θ(k) : ABu (∇, F ) → B o Γ such that θ
(k)
n (u) = x and θ

(k)
n (ū) = y. Using Lemma 2.5.2,

one easily verifies that the family (θ(k))k is a scaling character group. It is imaginary
because by Lemma 2.3.3,

θ
(−k)
n (u) = ∇F k = F

k∇−1 = FTk∇−1 = θ(k)
n (ū) for all k ∈ Z. �

The case ABo (∇, F,G) requires some preparation. Let F,G ∈ GLn(B) be ∇-odd and

H = (∇F∇)TF−1 = ∇−1FT∇−1F−1, Q = G∇Ḡ∇

as before. We say that a diagram with arrows labeled by matrices commutes if for all
possible directed paths with the same starting and ending point in the diagram, the
products of the labels along the arrows coincide.
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2.5.5. Lemma. In the diagram below, (A) commutes if and only if (D) commutes, and
(B) commutes if and only (C) commutes:

•//
∇F−T∇

��
∇G∇(D)

•//
F

��
∇−1GT∇−1(B)

•��
∇G∇

•//∇−1F̄−1∇−1
��
G(C)

•//F
T

��
G

T(A)

•��
G

•//∇F−T∇•//F•

If all squares commute, then HQ = QH, G∇H−1 = HG∇, and QF = F∇QT∇−1.

Proof. Applying the transformation X 7→ X−T and reversing invertible arrows, one can
obtain (D) from (A) and (C) from (B). If all small squares commute, then the three
asserted relations follow from the commutativity of the large square, of the lower two
squares, and of the left two squares, respectively. �
2.5.6. Proposition. Let F,G ∈ GLn(B) be ∇-odd. Assume that FG∗ = GF ∗ and
F ∗(∇Ḡ∇)∗ = (∇Ḡ∇)F , and let H = ∇−1FT∇−1F−1. Then ABo (∇, F,G) has an

intertwiner v
H−→ S2(v) and an imaginary scaling character group (θ(k))k such that

θ
(k)
n (v) = ∇Hk.

Proof. We can re-use the arguments in the proof of Proposition 2.5.3 and only have to

show additionally that ∇Hk Q−→ ∇Hk is an intertwiner and that θ
(−1)
n (v̄) = θ

(1)
n (v). But

by the lemma above, (∇Q∇−1)∇Hk = ∇QHk = ∇HkQ and

θ(−1)
n (v̄) = θ(1)

n (Gv(∇G∇)−1) = G∇H−1∇−1G
−1∇−1 = H∇−1 = θ

(1)
n (v). �

2.5.7. Remark. Applying the functor (2) to v−T F−→ v, v̄
G−→ v, v

∇Ḡ∇−−−→ v̄, we obtain

intertwiners v̄−T F ∗−−→ v, v̄−T G∗−−→ v−T, v−T
(∇Ḡ∇)∗−−−−−→ v̄−T, and the conditions FG∗ = GF ∗

and F ∗(∇Ḡ∇)∗ = (∇Ḡ∇)F amount to commutativity of the squares

v̄−T F ∗ //

G∗ ��

v̄

G
��

v−T
F
// v

and v−T F //

(∇Ḡ∇)∗ ��

v

∇Ḡ∇
��

v̄−T
F ∗
// v̄.

If Q = G∇Ḡ∇ is scalar, then both conditions evidently are equivalent.

2.6. The full dynamical quantum group SUdyn
Q (2). In [11], Koelink and Rosengren

studied a dynamical quantum group FR(SU(2)) that arises from a dynamical R-matrix
via the generalized FRT-construction of Etingof and Varchenko. We first recall its def-
inition, then show that this dynamical quantum group coincides with ABo (∇, F,G) for
specific choice of B,Γ,∇, F,G, and finally construct a refinement that includes several
interesting limit cases.

We shall slightly reformulate the definition of FR(SL(2)) and FR(SU(2)) given in [11,
§2.2] so that it fits better with our approach.
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Fix q ∈ (0, 1). Let M(C) be the algebra of meromorphic functions on the plane and

let Z act on B such that b
k7→ b(k) := b( · − k) for all b ∈ B, k ∈ Z. Define f ∈M(C) by

f(λ) = q−1 q
2(λ+1) − q−2

q2(λ+1) − 1
=
qλ+2 − q−(λ+2)

qλ+1 − q−(λ−1)
for all λ ∈ C.(3)

Then the (M(C),Z)-Hopf algebroid FR(SL(2)) is the universal (M(C),Z)-algebra with
generators α, β, γ, δ satisfying

∂α = (1, 1), ∂β = (1,−1), ∂γ = (−1, 1), ∂δ = (−1,−1),(4)

αβ = s(f(1))βα, αγ = r(f)γα, βδ = r(f)δβ, γδ = s(f(1))δγ,(5)

r(f)

s(f)
δα− 1

s(f)
βγ = αδ − r(f)γβ =

r(f(1))

s(f(1))
αδ − r(f(1))βγ = δα− 1

s(f(1))
γβ = 1,(6)

and with comultiplication, counit and antipode given by

∆(α) = α⊗̃α+ β⊗̃γ, ∆(β) = α⊗̃β + β⊗̃δ,
∆(γ) = γ⊗̃α+ δ⊗̃γ, ∆(δ) = γ⊗̃β + δ⊗̃δ,(7)

ε(α) = ∂rα = ∂sα, ε(β) = ε(γ) = 0, ε(δ) = ∂rδ = ∂sδ ,(8)

S(α) =
r(f)

s(f)
δ, S(β) = − 1

s(f)
β, S(γ) = −r(f)γ, S(δ) = α.(9)

Equip M(C) with the involution given by b∗(λ) = b(λ) for all b ∈ M(C), λ ∈ C. Then
FR(SL(2)) can be equipped with an involution such that

α∗ = δ, β∗ = −qγ, γ∗ = −q−1β, δ∗ = α,(10)

and one obtains a (M(C),Z)-Hopf ∗-algebroid which is denoted by FR(SU(2)) [11].

2.6.1. Proposition. Let ∇ = diag(1,−1), F =

(
0 −1
f−1

(1) 0

)
and G =

(
0 −1
q−1 0

)
. Then

there exist isomorphisms of (M(C),Z)-Hopf (*-)algebroids A
M(C)
o (∇, F ) → FR(SL(2))

and A
M(C)
o (∇, F,G)→ FR(SU(2)) whose extensions to matrices map v to

(
α β
γ δ

)
.

Proof. First, note that the function λ 7→ qλ and hence also f is self-adjoint, and that

F̂ := ∇F∇ =

(
0 −1
f−1 0

)
, Ĝ := ∇G∇ = G, FG∗ =

(
1 0
0 (qf(1))

−1

)
= GF ∗.

Therefore, A := A
M(C)
o (∇, F ) and A

M(C)
o (∇, F,G) are well-defined. Since ∇G∇G =

G2 = q−1 ∈M2(M(C)), the latter algebra coincides with the former.

Write v ∈M2(A) as v =

(
α′ β′

γ′ δ′

)
and write (4)′–(10)′ for the relations (4)–(10) with

α′, β′, γ′, δ′ instead of α, β, γ, δ. Then the relation ∂v = ∇ is equivalent to (4)′. The

relation v−T = r2(F̂−1)vs2(F ) is equivalent to

v−1 =

((
0 r(f)
−1 0

)(
α′ β′

γ′ δ′

)(
0 −1

s(f−1
(1) ) 0

))T

=

(
r(f)
s(f)δ

′ − 1
s(f)β

′

−r(f)γ′ α′

)
,
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and multiplying out v−1v = 1 = vv−1 and using (4)′, we find that this relation is
equivalent to (5)′ and (6)′. Hence, there exists an isomorphism of (M(C),Z)-algebras
A → FR(SL(2)) sending α′, β′, γ′, δ′ to α, β, γ, δ. This isomorphism is compatible with
the involution, comultiplication, counit and antipode because (7)′–(10)′ are equivalent

to ∆2(v) = v�̃v, ε2(v) = ∂v, S2(v) = v−1 and

v̄ = r2(Ĝ−1)vs2(G) =

(
0 q
−1 0

)(
α′ β′

γ′ δ′

)(
0 −1
q−1 0

)
=

(
δ′ −qγ′

−q−1β′ α′

)
. �

We now refine the definition above as follows. The first idea is to replace the base
M(C) by the Z-invariant subalgebra containing f and f−1. This subalgebra can be
described in terms of the functions x(λ) = qλ, y(λ) = q−λ and z = x−y as follows. Since
f = z(−2)/z(−1), this subalgebra is generated by all fractions z(k)/z(l), where k, l ∈ Z,

and since z(−1)− qz = (q−1− q)q−λ, also by all fractions x/z(k) and y/z(k), where k ∈ Z.
The second idea is to drop the relation xy = 1 to allow the limit cases λ → ±∞, and
regard x, y as canonical coordinates on CP 1. Finally, we also regard q as a variable.

Let us now turn to the details. Denote by R ⊂ C(Q) the localization of C[Q] with
respect to Q and the polynomials

Sk = (1−Q2k)/(1−Q2) = 1 +Q2 + · · ·+Q2(k−1), where k ∈ N.

Let Z act on the algebra C(Q,X, Y ) of rational functions in Q,X, Y by

Q(k) = Q, X(k) = Q−kX, Y(k) = QkY for all k ∈ Z,

where the lower index (k) denotes the action of k. Denote by B ⊂ C(Q,X, Y ) the
subalgebra generated by R and all elements

Zk,l := (X − Y )(k)/(X − Y )(l), where k, l ∈ Z.

We equip B with the induced action of Z and the involution given by Q = Q∗ and
Z∗k,l = Zk,l for all k, l ∈ Z. Note that this involution is the one inherited from C(Q,X, Y )
when Q = Q∗ and either X∗ = X, Y ∗ = Y or X∗ = −X, Y ∗ = −Y . Finally, let

∇ = (1,−1), F =

(
0 −1

Z0,−1 0

)
, G =

(
0 −Q
1 0

)
.

Then FG∗ = G∗F and G∇Ḡ∇ = G2 = diag(−Q,−Q).

2.6.2. Definition. We let O(SUdyn
Q (2)) := ABo (∇, F,G).

Thus, O(SUdyn
Q (2)) is generated by the entries α, β, γ, δ of a 2 × 2-matrix v which

satisfy the relations (4)–(10) with Z−2,−1 and Q instead of f and q. This (B,Z)-Hopf
∗-algebroid aggregates several other interesting quantum groups and quantum groupoids
which can be obtained by suitable base changes as follows.

Denote by z ∈M(C) the function λ 7→ qλ− q−λ. Equip C(λ) with an involution such
that λ∗ = λ, and a Z-action such that λ(k) = λ− k. Let Ω = (0, 1]× [−∞,∞] and let Z
act on C(Ω) by g(k)(q, t) = g(q, t− k) for all g ∈ C(Ω), (q, t) ∈ Ω, k ∈ Z.
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2.6.3. Lemma. There exist Z-equivariant ∗-homomorphisms

i) πqM(C) : B →M(C), Q 7→ q, Zk,l 7→
z(k)

z(l)
for q ∈ (0, 1) ∪ (1,∞),

ii) π1
M(C) : B → C(λ), Q 7→ 1, Zk,l 7→

λ− k
λ− l ,

iii) π±∞ : B → R, Q 7→ Q, Zk,l 7→
Q±k

Q±l
= Q±k∓l,

iv) πq±∞ : B → C, Q 7→ q, Zk,l 7→ q±k∓l for q ∈ (0,∞),

v) πΩ : B → C(Ω), Q 7→ ((q, t) 7→ q) , Zk,l 7→
(

(q, t) 7→
{
qt−k+qk−t

qt−l+ql−t , t ∈ R,
q±k∓l, t = ±∞

)
.

Proof. i) Restrict the homomorphism π : C(Q,X, Y ) → M(C) given by Q 7→ q, X 7→
(λ 7→ qλ), Y 7→ (λ 7→ q−λ) to B.

ii) Use i) and the fact that for all k, l ∈ Z and λ ∈ C \ {l},

lim
q→1

πqM(C)(Zk,l)(λ) = lim
q→1

qλ−k − qk−λ
qλ−l − ql−λ =

λ− k
λ− l .

iii) Define π : C[Q,X, Y ] → R by Q 7→ Q, X 7→ 1, Y 7→ 0. Then π extends to the
localization B of C[Q,X, Y ], giving π−∞, because π((X − Y )(k)) = Q−k is invertible for
all k ∈ Z. This homomorphism π−∞ evidently is involutive, and Z-equivariant because
π−∞(Zk+j,l+j) = π−∞(Zk,l) for all j ∈ Z. Similarly, one obtains π+∞.

iv) Immediate from iii).
v) Define π : C[Q,X, Y ] → C((0, 1] × R) by Q 7→ ((q, t) 7→ q), X 7→ ((q, t) 7→ iqt),

Y 7→ ((q, t) 7→ −iqt). Since π((X − Y )(k)) = i(qt−k + qk−t) is invertible for all t ∈ R,
k ∈ Z, this π extends to B. Moreover, each π(Zk,l) extends to a continuous function on
C(Ω) as desired, giving πΩ. �

Note that π1
+∞ = π1

−∞. Using this map, we obtain for each algebra C with an action
by Z an Z-equivariant homomorphism π1

C : B → C sending Q and each Zk,l to 1C .

2.6.4. Proposition. There exist isomorphisms of Hopf ∗-algebroids as follows:

i) (πqM(C))∗O(SUdyn
Q (2)) ∼= FR(SU(2)) for each q ∈ (0, 1) ∪ (1,∞);

ii) (πq−∞)∗O(SUdyn
Q (2)) ∼= O(SUq(2)) for each q ∈ (0,∞);

iii) (πq∞)∗O(SUdyn
Q (2)) ∼= O(SUq(2))op for each q ∈ (0,∞);

iv) (π1
C[X])∗O(SUdyn

Q (2)) is isomorphic to the (C[X],Z)-Hopf ∗-algebroid in Example

2.4.14.

Proof. i) This is immediate from the definitions and Proposition 2.6.1.

ii), iii) Let π± = πq±∞. Then (π±)∗O(SUdyn
Q (2)) is generated by the entries α′, β′, γ′, δ

of a matrix v′ such that β′ = −qγ′∗ and δ′ = α′∗. Moreover, v′−T = π±2 (F )−1v′π±2 (F )
and v̄′ = π±2 (G)−1v′π±2 (G), where

π−2 (F ) =

(
0 −1

π(Z0,−1) 0

)
=

(
0 −1
q−1 0

)
= π±2 (G), π+

2 (F ) =

(
0 −1
q 0

)
.
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In the case of π−, we find that v′ is unitary, and obtain the usual presentation of
O(SUq(2)). Multiplying out the relation v′−T = π+

2 (F )−1v′π+
2 (F ), one easily verifies

the assertion on π+.

iv) Immediate from the relations (π1
C[X])2(F ) = (π1

C[X])2(G) =

(
0 −1
1 0

)
. �

We expect most of the results of [11] to carry over from FR(SU(2)) to O(SUdyn
Q (2)).

3. The level of universal C∗-algebras

Throughout this section, we shall only work with unital C∗-algebras. We assume all
∗-homomorphisms to be unital, and B to be a commutative, unital C∗-algebra equipped
with a left action of a discrete group Γ. Given a subset X of a normed space V , we
denote by X ⊆ v its closure and by [X] ⊆ V the closed linear span of X.

3.1. The maximal cotensor product of C∗-algebras with respect to C∗(Γ). This
subsection reviews the cotensor product of C∗-algebras with respect to the Hopf C∗-
algebra C∗(Γ) and develops the main properties that will be needed in §3.2. The material
presented here is certainly well known to the experts, but we didn’t find a suitable
reference.

We first recall a few preliminaries.
Let A be a ∗-algebra. A representation of A is a ∗-homomorphism into a C∗-algebra.

Such a representation π is universal if every other representation of A factorizes uniquely
through π. A universal representation exists if and only if for each a ∈ A,

|a| := sup{‖π(a)‖ : π is a ∗-homomorphism of A into some C∗-algebra} <∞.
Indeed, if |a| is finite for all a ∈ A, then the separated completion of A with respect to
|−| carries a natural structure of a C∗-algebra, which is denoted by C∗(A) and called
the enveloping C∗-algebra of A, and the natural representation A→ C∗(A) is universal.

The maximal tensor product of C∗-algebras A and C is the enveloping C∗-algebra of
the algebraic tensor product A⊗ C, and will be denoted by A⊗̂C.

The full group C∗-algebra C∗(Γ) of Γ is the enveloping C∗-algebra of the group algebra
CΓ. We denote by ∆Γ : C∗(Γ)→ C∗(Γ)⊗̂C∗(Γ) the comultiplication, given by γ 7→ γ⊗γ
for all γ ∈ Γ, and by εΓ : C∗(Γ) → C the counit, given by γ 7→ 1 for all γ ∈ Γ. Clearly,
(εΓ⊗̂ id)∆Γ = id = (id ⊗̂εΓ)∆Γ.

A completely positive (contractive) map, or brielfy c.p.(c.)-map, from a C∗-algebra A
to a C∗-algebra C is a linear map φ : A→ C such that φn : Mn(A)→Mn(C) is positive
(and ‖φn‖ ≤ 1) for all n ∈ N.

3.1.1. Definition. A (C,Γ)-C∗-algebra is a unital C∗-algebra A with injective unital
∗-homomorphisms δA : A → C∗(Γ)⊗̂A and δ̄A : A → A⊗̂C∗(Γ) such that (id ⊗̂δA) ◦
δA = (∆Γ⊗̂ id) ◦ δA, (δ̄A⊗̂ id) ◦ δ̄A = (id ⊗̂∆Γ) ◦ δ̄A and (δA⊗̂ id) ◦ δ̄A = (id ⊗̂δ̄A) ◦ δA.
A morphism of (C,Γ)-C∗-algebras A and C is a unital ∗-homomorphism π : A → C
satisfying δC ◦π = (id ⊗̂π)◦ δA and δ̄C ◦π = (π⊗̂ id)◦ δ̄A. We denote by C∗-Alg(C,Γ) the

category of all (C,Γ)-C∗-algebras. Replacing ∗-homomorphisms by c.p.-maps, we define
c.p.-maps of (C,Γ)-C∗-algebras and the category C∗-Algc.p.

(C,Γ).
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3.1.2. Remark. Let A be a (C,Γ)-C∗-algebra. Then (εΓ⊗̂ id) ◦ δA = idA because

δA(εΓ⊗̂ id) ◦ δA = (εΓ⊗̂ id ⊗̂ id) ◦ (id ⊗̂δA) ◦ δA = ((εΓ⊗̂ id) ◦∆Γ⊗̂ id) ◦ δA = δA,

and likewise (id ⊗̂εΓ) ◦ δ̄A = idA.

Let A and C be (C,Γ)-C∗-algebras. Then the maximal tensor product A⊗̂C is a
(C,Γ)-C∗-algebra with respect to δA⊗̂ id and id ⊗̂δ̄C , and the assignments (A,C) 7→
A⊗̂C and (φ, ψ) 7→ φ⊗̂ψ define a product −⊗̂− on C∗-Alg

(c.p.)
(C,Γ) that is associative in

the obvious sense. Unless Γ is trivial, this product can not be unital because it forgets
δ̄A and δC .

With respect to the restrictions of δA⊗̂ id and id ⊗̂δ̄C , the subspace

A
Γ

⊗̂C := {x ∈ A⊗̂C : (δ̄A⊗̂ id)(x) = (id ⊗̂δC)(x)} ⊆ A⊗̂C
evidently is a (C,Γ)-C∗-algebra again. Moreover, given morphisms of (C,Γ)-C∗-algebras

φ : A → C and ψ : D → E, the product φ⊗̂ψ restricts to a morphism φ
Γ

⊗̂ψ : A
Γ

⊗̂D →
C

Γ

⊗̂E. We thus obtain a second product −
Γ

⊗̂ − on C∗-Alg
(c.p.)
(C,Γ) that is associative in

the natural sense, and unital in the following sense.
Regard C∗(Γ) as a (C,Γ)-C∗-algebra with respect to ∆Γ. Then for each (C,Γ)-C∗-

algebra A, the maps δA and δ̄A are isomorphisms of (C,Γ)-C∗-algebras

δA : A
∼=−→ C∗(Γ)

Γ

⊗̂A, δ̄A : A
∼=−→ A

Γ

⊗̂C∗(Γ).

Indeed, they evidently are morphisms, and surjective because

x = (εΓ⊗̂ id ⊗̂ id)((∆Γ⊗̂ id)(x)) = (εΓ⊗̂ id ⊗̂ id)((id ⊗̂δA)(x)) = δA((εΓ⊗̂ id)(x))

for each x ∈ C∗(Γ)
Γ

⊗̂A and likewise y = δ̄A((id ⊗̂εΓ)(y)) for each y ∈ A
Γ

⊗̂C∗(Γ).

We next construct a natural transformation p : (−⊗̂−)→ (−
Γ

⊗̂−) which will be needed
to prove associativity of the product of (B,Γ)-C∗-algebras in §3.2. The construction is
based on ideas taken from [1, §7], and carries over from C∗(Γ) to any Hopf C∗-algebra
H equipped with a Haar mean H⊗̂H → H; see also [13].

3.1.3. Lemma. There exists a unique state ν on C∗(Γ)⊗̂C∗(Γ) such that ν(γ ⊗ γ′) =
δγ,γ′1 for all γ, γ′ ∈ Γ. Moreover, ν◦∆Γ = εΓ and (id ⊗̂ν)◦(∆Γ⊗̂ id) = (ν⊗̂ id)◦(id ⊗̂∆Γ).

Proof. This follows from [13, Theorem 0.1], but let us include the short direct proof.
Uniqueness is clear. To construct ν, denote by (εγ)γ∈Γ the canonical orthonormal basis
of l2(Γ), by λ, ρ : C∗(Γ) → L(l2(Γ)) the representations given by λ(γ)εγ′ = εγγ′ and
ρ(γ)εγ′ = εγ′γ−1 for all γ, γ′ ∈ Γ, and by λ× ρ : C∗(Γ)⊗̂C∗(Γ)→ L(l2(Γ)) the represen-
tation given by x⊗y 7→ λ(x)ρ(y). Then ν := 〈εe|(λ×ρ)(−)εe〉 satisfies ν(γ⊗γ′) = δγ,γ′1
for all γ, γ′ ∈ Γ. The remaining equations follow easily. �
3.1.4. Lemma. i) For every (C,Γ)-C∗-algebra A, the maps

p̄A := (id ⊗̂ν)(δ̄A⊗̂ id) : A⊗̂C∗(Γ)→ A, pA := (ν⊗̂ id)(id ⊗̂δA) : C∗(Γ)⊗̂A→ A

are morphisms in C∗-Algc.p.
(C,Γ) and satisfy pA ◦ δA and p̄A ◦ δ̄A = id.
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ii) The families (pA)A, (p̄A)A are natural transformations from −⊗̂C∗(Γ) and C∗(Γ)⊗̂−,
respectively, to id, regarded as functors on C∗-Algc.p.

(C,Γ).

Proof. i) The map pA is a morphism in C∗-Algc.p.
(C,Γ) because δ̄A ◦pA = (pA⊗̂ id)◦ δ̄A and

δA ◦ pA = (ν⊗̂ id ⊗̂ id) ◦ (id ⊗̂ id ⊗̂δA)(id ⊗̂δA)

= (ν⊗̂ id ⊗̂ id) ◦ (id ⊗̂∆Γ⊗̂ id) ◦ (id ⊗̂δA)

= (id ⊗̂ν⊗̂ id) ◦ (∆Γ⊗̂ id ⊗̂ id) ◦ (id ⊗̂δA)

= (id ⊗̂ν⊗̂ id) ◦ (id ⊗̂ id ⊗̂δA) ◦ (∆Γ⊗̂ id) = (id ⊗̂pA) ◦ (∆Γ⊗̂ id).

Moreover, pA ◦ δA = (ν⊗̂ id)(id ⊗̂δA)δA = (ν∆Γ⊗̂ id)δA = (εΓ⊗̂ id)δA = id and similarly
p̄A ◦ δ̄A = id.

ii) This follows from the fact that (δA)A and (δ̄A)A are natural transformations. �
3.1.5. Proposition. i) Let A,C be (C,Γ)-C∗-algebras. Then the map

pA,C := (id ⊗̂ν⊗̂ id) ◦ (δ̄A⊗̂δC) : A⊗̂C → A⊗̂C
is equal to (id ⊗̂pC)◦(δ̄A⊗̂ id) and (p̄A⊗̂ id)◦(id ⊗̂δC), a morphism in C∗-Algc.p.

(C,Γ),

and a conditional expectation onto A
Γ

⊗̂C ⊆ A⊗̂C in the sense that pA,C(xyz) =

xpA,C(y)z for all x, z ∈ A
Γ

⊗̂C and y ∈ A⊗̂C.

ii) The family (pA,C)A,C is a natural transformation from −⊗̂− to −
Γ

⊗̂−, regarded
as functors on C∗-Algc.p.

(C,Γ) ×C∗-Algc.p.
(C,Γ).

Proof. i) The equality follows immediately from the definitions and implies that pA,C is

a morphism as claimed. Next, pA,C(A⊗̂C) ⊆ A
Γ

⊗̂C because

(δ̄A⊗̂ id) ◦ pA,C = (id ⊗̂ id ⊗̂ν⊗̂ id) ◦ (δ̄A⊗̂ id ⊗̂ id ⊗̂ id) ◦ (δ̄A⊗̂δC)

= (id ⊗̂ id ⊗̂ν⊗̂ id) ◦ (id ⊗̂∆Γ⊗̂ id ⊗̂ id) ◦ (δ̄A⊗̂δC)

= (id ⊗̂ν⊗̂ id ⊗̂ id) ◦ (id ⊗̂ id ⊗̂∆Γ⊗̂ id) ◦ (δ̄A⊗̂δC) = (id ⊗̂δC) ◦ pA,C .
On the other hand,

pA,C(x) = (p̄A⊗̂ id)((id ⊗̂δC)(x)) = (p̄A⊗̂ id)((δA⊗̂ id)(x)) = x

for all x ∈ A
Γ

⊗̂C. Thus, pA,C is a completely positive projection from A⊗̂C onto A
Γ

⊗̂C
and hence a conditional expectation (see, e.g., [5, Proposition 1.5.7]).

ii) Straightforward. �
Denote by ∗-Alg0

(C,Γ) ⊆ Alg∗(C,Γ) the full subcategory formed by all (C,Γ)-∗-algebras

that have an enveloping C∗-algebra. We shall need an adjoint pair of functors

∗-Alg0
(C,Γ)

C∗(−) //
C∗-Alg(C,Γ).

(−)∗,∗
oo(11)

The functor C∗(−) is defined as follows. Let A ∈ ∗-Alg0
(B,Γ). Using the universal

property of C∗(A), we obtain unique ∗-homomorphisms δC∗(A) : C∗(A)→ C∗(Γ)⊗̂C∗(A)
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and δ̄C∗(A) : C∗(A)→ C∗(A)⊗̂C∗(Γ) such that δC∗(A)(a) = γ ⊗ a and δ̄C∗(A)(a) = a⊗ γ′
for all a ∈ Aγ,γ′ , γ, γ′ ∈ A, and with respect to these ∗-homomorphisms, C∗(A) becomes a

(C,Γ)-C∗-algebra. Moreover, every morphism π : A→ C in ∗-Alg0
(C,Γ) extends uniquely

to a ∗-homomorphism C∗(π) : C∗(A)→ C∗(C) which is a morphism in C∗-Alg(C,Γ).

The functor (−)∗,∗ is defined as follows. Let A be a (C,Γ)-C∗-algebra and let

Aγ,γ′ := {a ∈ A : δ(a) = γ ⊗ a, δ̄(a) = a⊗ γ′} ⊆ A for all γ, γ′ ∈ Γ.

Then the sum A∗,∗ :=
∑

γ,γ′ Aγ,γ′ ⊆ A is a (C,Γ)-∗-algebra, and, every morphism

π : A → C of (C,Γ)-C∗-algebras restricts to a morphism π∗,∗ : A∗,∗ → C∗,∗ of (C,Γ)-∗-
algebras. We thus obtain a functor (−)∗,∗ : C∗-Alg(C,Γ) → Alg∗(C,Γ).

3.1.6. Lemma. (−)∗,∗ takes values in ∗-Alg0
(C,Γ).

Proof. Let A be a (C,Γ)-C∗-algebra. Then for every ∗-representation π of A∗,∗, the
restriction to the C∗-subalgebra Ae,e is contractive and thus ‖π(a)‖2 = ‖π(a∗a)‖ ≤
‖a∗a‖ = ‖a‖2 for all a ∈ Aγ,γ′ γ, γ

′ ∈ Γ. Since such elements a span A∗,∗, we can
conclude |a′| <∞ for all a′ ∈ A∗,∗. �

For every (C,Γ)-C∗-algebra A, the morphisms pA and p̄A yield a morphism

PA := p̄A ◦ (pA⊗̂ id) = pA ◦ (id ⊗̂p̄A) : C∗(Γ)⊗̂A⊗̂C∗(Γ)→ A

in C∗-Algc.p.
(C,Γ).

3.1.7. Lemma. i) Let A ∈ C∗-Alg(C,Γ). Then for all γ, γ′, β, β′ ∈ Γ,

PA(γ ⊗A⊗ γ′) = Aγ,γ′ , PA(β ⊗Aγ,γ′ ⊗ β′) = δβ,γδβ′,γ′Aγ,γ′ , A = A∗,∗.

ii) Let A ∈ ∗-Alg0
(C,Γ). Then C∗(A)γ,γ′ = Aγ,γ′ for all γ, γ′ ∈ Γ.

Proof. We only prove i); assertion ii) follows similarly. First, PA(γ ⊗ A ⊗ γ′) ⊆ Aγ,γ′
because PA is a morphism in C∗-Alg(C,Γ) and ∆Γ(γ′′) = γ′′ ⊗ γ′′ for γ′′ = γ, γ′ .

This inclusion, the relation C∗(Γ)⊗̂A⊗̂C∗(Γ) =
∑

γ,γ′ γ ⊗A⊗ γ′ and continuity and

surjectivity of PA imply A∗,∗ = A. The equation PA(β ⊗ Aγ,γ′ ⊗ β′) = δβ,γδβ′,γ′Aγ,γ′
follows from the definitions and implies that the inclusion PA(γ ⊗ A⊗ γ′) ⊆ Aγ,γ′ is an
equality. �

For every A in ∗-Alg0
(C,Γ) and C in C∗-Alg(C,Γ), we get canonical morphisms ηA : A→

C∗(A)∗,∗ in ∗-Alg0
(C,Γ) and εC : C∗(C∗,∗)→ C in C∗-Alg(C,Γ).

3.1.8. Proposition. The functors C∗(−) and (−)∗,∗ are adjoint, where the unit and
counit of the adjunction are the families (ηA)A and (εC)C , respectively. Furthermore,
(−)∗,∗ is faithful.

Proof. Let A ∈ ∗-Alg0
(B,Γ) and C ∈ C∗-Alg(B,Γ). Since the representation A → C∗(A)

has dense image and is universal, the assignment (C∗(A)
π−→ C) 7→ (A

ηA−→ C∗(A)∗,∗
π∗,∗−−→

C∗,∗) yields a bijective correspondence between morphisms C∗(A)→ C and morphisms
A→ C∗,∗. The functor (−)∗,∗ is faithful because A∗,∗ ⊆ A is dense. �
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3.1.9. Remark. Similar arguments as in the proof of Lemma 3.1.7 show that for all
A,C ∈ C∗-Alg(C,Γ), D,E ∈ ∗-Alg0

(C,Γ) and all γ, γ′′ ∈ Γ,

(A
Γ

⊗̂C)γ,γ′′ =
∑

γ′
Aγ,γ′ ⊗ Cγ′,γ′′ , (C∗(D)

Γ

⊗̂C∗(E))γ,γ′ =
∑

γ′
Dγ,γ′ ⊗ Eγ′,γ′′ .

A short exact sequence of (C,Γ)-C∗-algebra is a sequence of morphisms J
ι−→ A

π−→ C in
C∗-Alg(C,Γ) such that ker ι = 0, ι(J) = kerπ and π(A) = C. A functor on C∗-Alg(C,Γ)

is exact if it maps short exact sequences to short exact sequences.

3.1.10. Proposition. For every (C,Γ)-C∗-algebra D, the functors −
Γ

⊗̂D and D
Γ

⊗̂− on
C∗-Alg(C,Γ) are exact.

Proof. If J
ι−→ A

π−→ C is a short exact sequence in C∗-Alg(C,Γ), then J⊗̂D ι⊗̂ id−−−→

A⊗̂D π⊗̂ id−−−→ C⊗̂D is exact (see, e.g., [5, Proposition 3.7]), whence ker(ι
Γ

⊗̂ id) = 0 and

ker(π
Γ

⊗̂ id) = pA,D(ker(π⊗̂ id)) = pA,D((ι⊗̂ id)(J⊗̂D))

= (ι
Γ

⊗̂ id)(pJ,D(J⊗̂D)) = (ι
Γ

⊗̂ id)(J
Γ

⊗̂D),

(π
Γ

⊗̂ id)(A
Γ

⊗̂D) = (π
Γ

⊗̂ id)(pA,D(A⊗̂D))

= pC,D((π⊗̂ id)(A⊗̂D)) = pC,D(C⊗̂D) = C
Γ

⊗̂D. �

3.2. The monoidal category of (B,Γ)-C∗-algebras. We now define an analogue of
(B,Γ)-∗-algebras on the level of universal C∗-algebras, and construct a monoidal product
which is unital and associative.

3.2.1. Definition. A (B,Γ)-C∗-algebra is a (C,Γ)-C∗-algebra A equipped with unital ∗-
homomorphisms rA, sA : B → Ae,e such that A∗,∗ is a (B,Γ)-∗-algebra with respect to the
map rA×sA : B⊗B → Ae,e, b⊗b′ 7→ rA(b)sA(b′). A morphism of (B,Γ)-C∗-algebras is a
B⊗B-linear morphism of (C,Γ)-C∗-algebras. We denote by C∗-Alg(B,Γ) the category of

all (B,Γ)-C∗-algebras. Replacing ∗-homomorphisms by c.p.-maps, we define c.p.-maps
of (B,Γ)-C∗-algebras and the category C∗-Algc.p.

(B,Γ).

Denote by ∗-Alg0
(B,Γ) ⊆ ∗-Alg(B,Γ) the full subcategory formed by all (B,Γ)-∗-

algebras that have an enveloping C∗-algebra. This category is related to C∗-Alg(B,Γ)

as follows. If C ∈ C∗-Alg(B,Γ), then C∗,∗ ∈ ∗-Alg0
(B,Γ) by Lemma 3.1.6. Conversely,

if A ∈ ∗-Alg0
(B,Γ), then C∗(A) carries a natural structure of a (B,Γ)-C∗-algebra. The

canonical maps ηA : A → C∗(A)∗,∗ and εC : C∗(C∗,∗) → C are morphisms in ∗-Alg0
(B,Γ)

and C∗-Alg(B,Γ), respectively, and Proposition 3.1.8 therefore implies:

3.2.2. Corollary. The assignments A 7→ C∗(A), π 7→ C∗(π) and A 7→ A∗,∗, π 7→ π∗,∗
form a pair of adjoint functors

∗-Alg0
(B,Γ)

C∗(−) //
C∗-Alg(B,Γ)

(−)∗,∗,
oo
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where the unit and counit of the adjunction are the families (ηA)A and (εC)C , respectively.
Furthermore, (−)∗,∗ is faithful.

Let A and C be (B,Γ)-C∗-algebras. Then the (C,Γ)-C∗-algebra A
Γ

⊗̂C is a (B,Γ)-
C∗-algebra with respect to the ∗-homomorphisms r : b 7→ rA(b)⊗̂1 and s : b′ 7→ 1⊗̂sC(b′),

and the assignments (A,C) 7→ A
Γ

⊗̂ C and (φ, ψ) 7→ φ
Γ

⊗̂ ψ define a product −
Γ

⊗̂ − on

C∗-Alg
(c.p.)
(B,Γ) that is associative in the obvious sense. Using the map

tA,C : B → A
Γ

⊗̂C, b 7→ sA(b)⊗̂1− 1⊗̂rC(b),

we define an ideal (tA,C(B)) ⊆ A
Γ

⊗̂C. Since tA,C(B) ⊆ (A
Γ

⊗̂C)e,e, the quotient

A
Γ

⊗̂
B
C := (A

Γ

⊗̂C)/(tA,C(B)).

inherits the (B,Γ)-C∗-algebra structure of A
Γ

⊗̂C. For every pair of morphisms φ : A→ C

and ψ : D → E in C∗-Alg
(c.p.)
(B,Γ), the morphism φ

Γ

⊗̂ψ maps tA,D(B) to tC,E(B) and thus

factorizes to a morphism φ
Γ

⊗̂
B
ψ : A

Γ

⊗̂
B
D → C

Γ

⊗̂
B
E. We thus obtain a product −

Γ

⊗̂
B
−

on C∗-Alg
(c.p.)
(B,Γ), and the canonical quotient map qA,C : A

Γ

⊗̂C → A
Γ

⊗̂
B
C yields a natural

transformation q = (qA,C)A,C from −
Γ

⊗̂− to −
Γ

⊗̂
B
−.

3.2.3. Remarks. i) For all (B,Γ)-C∗-algebras A,C, one has [tA,C(B)(A
Γ

⊗̂ C)] =

tA,C(B) = [(A
Γ

⊗̂ C)tA,C(B)]. Indeed, a short calculation shows that for all
γ, γ′, γ′′ ∈ Γ, a ∈ Aγ,γ′ , c ∈ Cγ′,γ′′ , b ∈ B, (a⊗ c)tA,C(b) = tA,C(γ′(b))(a⊗ c), and
now the assertion follows from Remark 3.1.9.

ii) For every (B,Γ)-C∗-algebra D, the functors −
Γ

⊗̂
B
D and D

Γ

⊗̂
B
− on C∗-Alg(B,Γ)

preserve surjections because the functors −
Γ

⊗̂D and D
Γ

⊗̂− do so by Proposition
3.1.10.

We show that the full crossed product BôΓ := C∗(B o Γ) is the unit for the product

−
Γ

⊗̂
B
−. Denote by ιΓ : C∗(Γ)→ BôΓ the natural inclusion.

3.2.4. Proposition. i) For each (B,Γ)-C∗-algebra A, the ∗-homomorphisms

LA : A
δA−→ C∗(Γ)

Γ

⊗̂A ιΓ
Γ

⊗̂id−−−→ (BôΓ)
Γ

⊗̂A
qBôΓ,A−−−−→ (BôΓ)

Γ

⊗̂
B
A

and

RA : A
δ̄A−→ A

Γ

⊗̂C∗(Γ)
id

Γ

⊗̂ιΓ−−−→ A
Γ

⊗̂(BôΓ)
qA,BôΓ−−−−→ A

Γ

⊗̂
B

(BôΓ),
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are isomorphisms of (B,Γ)-C∗-algebras.
ii) The families R = (RA)A and L = (LA)A form natural isomorphism from id to

((BôΓ)
Γ

⊗̂
B
−) and (−

Γ

⊗̂
B

(BôΓ)), respectively, regarded as functors on C∗-Alg
(c.p.)
(B,Γ).

Proof. One easily checks that each LA is a morphism of (B,Γ)-C∗-algebras and that
L = (LA)A is a natural transformation. We show that LA is an isomorphism for every
(B,Γ)-C∗-algebra A. The assertions concerning R = (RA)A then follow similarly.

To prove that LA is surjective, we only need to show that (tBôΓ,A(B)) +C∗(Γ)
Γ

⊗̂A is

dense in (BôΓ)
Γ

⊗̂A. But by Remark 3.1.9, elements of the form

bγ ⊗ a = tBôΓ,A(b)(γ ⊗ a) + γ ⊗ rA(b)a, where b ∈ B, a ∈ Aγ,γ′ , γ, γ′ ∈ Γ,

are linearly dense in (BôΓ)
Γ

⊗̂A.
To prove that LA is injective, we only need to show that the intersection

J := (ιΓ(C∗(Γ))
Γ

⊗̂A) ∩ (tBôΓ,A(B)) ⊆ (BôΓ)
Γ

⊗̂A
equals 0. Since J = J∗,∗ by Lemma 3.1.7, it suffices to show that Jγ,γ′ = 0 for all
γ, γ′ ∈ Γ. Note that Jγ,γ′ = [γ ⊗ Aγ,γ′ ] ∩ [(Bγ ⊗ Aγ,γ′)tBôΓ,A(B)]. For each γ, γ′ ∈ Γ,

define a linear map Rγ,γ′ : Bγ ⊗Aγ,γ′ → Aγ,γ′ by bγ ⊗ a 7→ r(b)a. Then Re,e extends to

a ∗-homomorphism on the C∗-subalgebra B⊗̂Ae,e ⊆ (BôΓ)
Γ

⊗̂A, and each Rγ,γ′ extends

to a bounded linear map on [Bγ ⊗Aγ,γ′ ] ⊆ (BôΓ)
Γ

⊗̂A because

‖Rγ,γ′(z)‖2 = ‖Rγ,γ′(z)Rγ,γ′(z)∗‖ = ‖Re,e(zz∗)‖ ≤ ‖zz∗‖ = ‖z‖2

for all z ∈ Bγ ⊗ Aγ,γ′ . Now, Rγ,γ′(ztBôΓ,A(b)) = 0 for all z ∈ [Bγ ⊗ Aγ,γ′ ] and b ∈ B,

and Rγ,γ′(γ ⊗ a) = a for all a ∈ Aγ,γ′ . Consequently, Jγ,γ′ = 0. �

We now show that the product−
Γ

⊗̂
B
− is associative. Let A,C,D be (B,Γ)-C∗-algebras,

denote by aA,C,D : (A
Γ

⊗̂C)
Γ

⊗̂D → A
Γ

⊗̂(C
Γ

⊗̂D) the canonical isomorphism and let

ΦA,C,D := q(
A

Γ

⊗̂
B
C
)
,D
◦ (qA,C

Γ

⊗̂ id) : (A
Γ

⊗̂C)
Γ

⊗̂D → (A
Γ

⊗̂
B
C)

Γ

⊗̂
B
D,

ΨA,C,D := q
A,
(
C

Γ

⊗̂
B
D
) ◦ (id

Γ

⊗̂qC,D) : A
Γ

⊗̂(C
Γ

⊗̂D)→ A
Γ

⊗̂
B

(C
Γ

⊗̂
B
D).

3.2.5. Lemma. i) ker ΦA,C,D and ker ΨA,C,D are generated as ideals by tA,C(B) ⊗
1D + t(

A
Γ

⊗̂C,D
)(B) and 1A ⊗ tC,D(B) + t

A,
(
C

Γ

⊗̂D
)(B), respectively.

ii) There exists a unique isomorphism of (B,Γ)-C∗-algebras ãA,C,D : (A
Γ

⊗̂
B
C)

Γ

⊗̂
B
D →

A
Γ

⊗̂
B

(C
Γ

⊗̂
B
D) such that ãA,C,D ◦ ΦA,C,D = ΨA,C,D ◦ aA,C,D.
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Proof. i) By Proposition 3.1.10, ker(qA,C
Γ

⊗̂ idD) = (ker qA,C)
Γ

⊗̂D = (tA,C(B))
Γ

⊗̂D, and

ker q(
A

Γ

⊗̂
B
C
)
,D

is generated as an ideal by (qA,C
Γ

⊗̂ idD)
(
t(
A

Γ

⊗̂C,D
)(B)

)
. The assertion on

ΦA,C,D follows, and the assertion concerning ΨA,C,D follows similarly.
ii) Using i), one easily verifies that aA,C,D(ker ΦA,C,D) = ker ΨA,C,D. We thus get

an isomorphism ãA,C,D of C∗-algebras which is easily seen to be an isomorphism of
(B,Γ)-C∗-algebras. �

3.2.6. Proposition. The family (ãA,C,D)A,C,D is a natural isomorphism from (−
Γ

⊗̂
B
−)

Γ

⊗̂
B

− to −
Γ

⊗̂
B

(−
Γ

⊗̂
B
−).

Proof. By Lemma 3.2.5, we only need to check naturality which is straightforward. �
3.3. Free dynamical quantum groups on the level of universal C∗-algebras.
Given the monoidal structure on the category of all (B,Γ)-C∗-algebras, the definitions
in §2.1–§2.4 carry over as follows:

3.3.1. Definition. A compact (B,Γ)-Hopf C∗-algebroid is a (B,Γ)-C∗-algebra A with

a morphism ∆: A→ A
Γ

⊗̂
B
A satisfying

i) (∆
Γ

⊗̂
B

id) ◦∆ = (id
Γ

⊗̂
B

∆) ◦∆ ( coassociativity),

ii) [∆(A)(1 ⊗ Ae,∗)] = A
Γ

⊗̂
B
A = [(A∗,e ⊗ 1)∆(A)], where Ae,∗ = [

∑
γ Ae,γ ] ⊆ A and

A∗,e = [
∑

γ Aγ,e] ⊆ A ( cancellation).

A counit for a compact (B,Γ)-Hopf C∗-algebroid (A,∆) is a morphism ε : A→ BôΓ of

(B,Γ)-C∗-algebras satisfying (ε
Γ

⊗̂
B

id) ◦∆ = idA = (id
Γ

⊗̂
B
ε) ◦∆. A morphism of compact

(B,Γ)-Hopf C∗-algebroids (A,∆A) and (C,∆C) is a morphism π : A → C satisfying

∆C ◦π = (π
Γ

⊗̂
B
π)◦∆A. We denote the category of all compact (B,Γ)-Hopf C∗-algebroids

by C∗-Hopf (B,Γ).

Denote by Hopf0
(B,Γ) the full subcategory of Hopf∗(B,Γ) formed by all (B,Γ)-Hopf

∗-algebroids (A,∆, ε, S) where A ∈ ∗-Alg0
(B,Γ).

3.3.2. Proposition. Let (A,∆, ε, S) ∈ Hopf∗(B,Γ). Then ∆ extends to a morphism of

(B,Γ)-C∗-algebras ∆C∗(A) : C∗(A) → C∗(A)
Γ

⊗̂
B
C∗(A) such that (C∗(A),∆C∗(A)) is a

compact (B,Γ)-Hopf C∗-algebroid with the counit C∗(ε) : C∗(A)→ C∗(B o Γ) = BôΓ.

Proof. The composition of ∆ with the canonical map A⊗̃A → C∗(A)
Γ

⊗̂
B
C∗(A) extends

to a morphism ∆C∗(A) by the universal property of C∗(A). Coassociativity of ∆ and
density of A in C∗(A) imply coassociativity of ∆C∗(A), and cancellation follows from
Remark 2.1.9 ii). �
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The assignments (A,∆, ε, S) 7→ (C∗(A),∆C∗(A)) and π 7→ C∗(π) evidently form a

functor Hopf0
(B,Γ) → C∗-Hopf (B,Γ).

We now apply this functor to the free unitary and free orthogonal dynamical quantum
groups ABu (∇, F ) and ABo (∇, F,G) introduced in Definition 2.4.4, Theorem 2.4.5 and
Definition 2.4.11, Theorem 2.4.12, respectively.

Let γ1, . . . , γn ∈ Γ and ∇ = diag(γ1, . . . , γn) ∈Mn(B o Γ).
Assume that F ∈ GLn(B) be ∇-even in the sense that ∇F∇−1 ∈ Mn(B). Then the

(B,Γ)-Hopf ∗-algebroid ABu (∇, F ) is generated by a copy of B⊗B and entries of a unitary
matrix v ∈ Mn(ABu (∇, F )) and therefore has an enveloping C∗-algebra. Applying the
functor C∗(−) and unraveling the definitions, we find:

3.3.3. Corollary. C∗(ABu (∇, F )) is the universal C∗-algebra generated by a inclusion
r × s of B ⊗B and by the entries of a unitary n× n-matrix v subject to the relations

i) vijr(b) = r(γi(b))vij and vijs(b) = s(γj(b))vij for all i, j and b ∈ B,

ii) v−T = v̄ is invertible and rn(∇F∇−1)v̄−T = vsn(F ).

It has the structure of a compact (B,Γ)-Hopf C∗-algebroid with counit, where for all i, j,

δ(vij) = γi ⊗ vij , δ̄(vij) = vij ⊗ γj , ∆(vij) =
∑

k

vik ⊗ vkj , ε(vij) = δi,j .(12)

Let F,G ∈ GLn(B) be ∇-odd in the sense that ∇F∇,∇G∇ ∈ Mn(B), and assume
that GF ∗ = FG∗. If G−1F = λH̄HT for some λ ∈ C and some ∇-even H ∈ GLn(B),
then ABo (∇, F,G) is generated by a copy of B ⊗ B and entries of a unitary matrix
u ∈Mn(ABo (∇, F,G)) by Remark 2.4.13 iii), and therefore has an enveloping C∗-algebra.

3.3.4. Corollary. C∗(ABo (∇, F,G)) is is the universal C∗-algebra generated by a inclu-
sion r × s of B ⊗ B and by the entries of an invertible n × n-matrix v subject to the
relations

i) vijr(b) = r(γi(b))vij and vijs(b) = s(γj(b))vij for all i, j and b ∈ B,

ii) rn(∇F∇)v−T = vsn(F ) and rn(∇G∇)v̄ = vsn(G).

It carries the structure of a compact (B,Γ)-Hopf C∗-algebroid with counit such that (12)
holds.

Acknowledgments. I thank Erik Koelink for introducing me to dynamical quantum
groups and for stimulating discussions, and the referee for helpful suggestions.
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connection with the dynamical quantum Yang-Baxter equation, and measured quan-
tum groupoids were introduced by Enock, Lesieur and Vallin in their study of inclu-
sions of type II1 factors. In this article, we associate to suitable dynamical quantum
groups, which are a purely algebraic objects, Hopf C�-bimodules and measured quan-
tum groupoids on the level of von Neumann algebras. Assuming invariant integrals on
the dynamical quantum group, we first construct a fundamental unitary which yields
Hopf bimodules on the level of C�-algebras and von Neumann algebras. Next, we as-
sume properness of the dynamical quantum group and lift the integrals to the operator
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Introduction

Dynamical quantum groups were introduced by Etingof and Varchenko as an alge-
braic framework for the study of the dynamical quantum Yang-Baxter equation [6, 7, 8],
a variant of the Yang-Baxter equation arising in statistical mechanics. Every (rigid)
solution of this equation has a naturally associated tensor category of representations
which turns out to be equivalent to the category of representations of some dynamical
quantum group. In the case of the basic rational or basic trigonometric solution, this
dynamical quantum group can be regarded as a quantization of the function algebra on
some Poisson-Lie-groupoid. In general, it can be regarded as a quantum groupoid and
fits into the theory of Hopf algebroids developed by Böhm and others [1].

Measured quantum groupoids were introduced by Enock, Lesieur and Vallin [2, 13] to
capture generalized Galois symmetries of certain inclusions of type II1 factors [3, 4, 15].
Apart from this fundamental example in von Neumann algebra theory, which was also
considered in the algebraic setting [9, 19], and from the finite case, only few measured
quantum groupoids have been constructed and investigated yet [13, 29].

Up to now, connections between algebraic and operator-algebraic approaches to quan-
tum groupoids have only been explored in the finite case [14, 17, 28] and in the form of
a few examples and constructions that exist on both levels. The situation is very dif-
ferent in the area of quantum groups, where Woronowicz’s theory of compact quantum
groups [35] and van Daele’s theory of multiplier Hopf algebras with integrals [12, 31]
form a bridge between the algebraic and operator-algebraic approaches, combining the
computational convenience of the former with the power and richness of the latter.

Another approach to quantum groupoids which is equivalent to the algebraic and
operator algebraic one, at least in finite dimensions, is via fusion categories [5, 19].

In this article, we associate to suitable dynamical quantum groups, which are purely
algebraic objects, Hopf C�-bimodules and measured quantum groupoids on the level of
von Neumann algebras. The main example of a dynamical group we have in mind for
application is the dynamical SUqp2q studied by Koelink and Rosengren [10], and in a
subsequent article, we want to study the construction for this example in detail.

On the dynamical quantum groups, we have to impose several assumptions.
First, we need a left- and a right-invariant integral, which correspond to fiber-wise

integration on a groupoid, and a weight on the basis that is suitably quasi-invariant,
such that the resulting total integrals are faithful, positive, and coincide. In the case
of the dynamical SUqp2q, the left- and right-invariant integrals can be obtained from a
Peter-Weyl decomposition due to Koelink and Rosengren [10], while the quasi-invariant
weight on the basis can be chosen quite freely.

Second, we assume the dynamical quantum group to be proper, which is the natural
analogue of compactness and unitality for quantum groupoids, and to possess a specific
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approximate unit in the base algebra. The dynamical SUqp2q mentioned above even is
compact and thus satisfies this second assumption.

In particular, the dynamical quantum group need not be a Hopf algebroid, but only a
multiplier Hopf algebroid in the sense of [25]. The latter are closely related to the weak
multiplier Hopf algebras that were recently introduced by Van Daele and Wang [33, 34].

Third, we assume that the quasi-invariant weight on the basis admits a bounded
GNS-construction. Like the first condition, this one is very natural. In the case of the
dynamical SUqp2q, the base algebra is formed by all meromorphic functions on the plane
and does not admit any non-trivial bounded representations. To apply our construc-
tion, one therefore has to change the base and check that the Peter-Weyl decomposition
persists.

Given these assumptions, the measured quantum groupoid is constructed as follows.
The algebraic GNS-construction, applied to the total integral on the dynamical quan-

tum group, yields a Hilbert space of square-integrable functions on the dynamical quan-
tum group together with a natural representation by densely defined multiplication op-
erators. To obtain a C�-algebra or von Neumann algebra, one has to show that these
multiplication operators are bounded. To prove this and to lift the comultiplication to
the resulting C�-algebra and von Neumann algebra, we proceed as in the case of quantum
groups [23] and construct a fundamental unitary which is pseudo-multiplicative on the
level of von Neumann algebras and C�-algebras in the sense of [27] and [24], respectively.
The general theory of these unitaries then yields completions of the dynamical quantum
group in the form a Hopf C�-bimodule and a Hopf von-Neumann bimodule, and simul-
taneously a Pontrjagin dual in the same form. Finally, we extend the invariant integrals
to the level of operator algebras, using properness of the dynamical quantum group and
standard von Neumann algebra techniques.

This article is organized as follows.
Section 1 provides the algebraic basics on dynamical quantum groups and integration

that are needed for the construction in Section 2. We first generalize the definition of
a dynamical quantum group or h-Hopf algebroid, allowing the base to be non-unital,
then consider left- and right-invariant integrals on the total algebra and quasi-invariant
weights on the basis, and finally construct a �-algebra related to the Pontrjagin dual.
The main result of this section is the existence of a modular automorphism for the total
integral, which follows from a strong invariance property similarly as in the setting of
multiplier Hopf algebras [31].

Section 2 presents the construction of the measured quantum groupoid outlined above.
It uses Connes spatial theory, in particular the relative tensor product of Hilbert modules,
and the C�-algebraic analogue of that construction [22], and introduces the necessary
concepts along the way when they are needed.

We use standard notation and adopt the following conventions. All algebras will be
over the ground field C and we do not assume the existence of a unit element. Given a
vector space V with a subset X � V , we denote by xXy � V the linear span and, if V is
normed, by rXs � V the closed linear span of X. Inner products on Hilbert spaces will
be linear in the second and anti-linear in the first variable.
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1. Dynamical quantum groups with integrals on the algebraic level

This section summarizes and develops the basics on dynamical quantum groups and
integration used in this article. Before turning to details, let us outline the main concepts.

A dynamical quantum group is a special quantum groupoid and as such consists of
an algebra B called the basis, an algebra A, an embedding r : B Ñ A and an anti-
homomorphic embedding s : B Ñ A whose images commute, and a comultiplication,
antipode and counit. What makes it special is that the basis B is commutative, that
rpBq and spBq are central in A up to a twist which is controlled by an action of a group
Γ on B and a bigrading of A by Γ, and that the target of the comultiplication is a
well-behaved monoidal product Ab̃A.

Integration on a quantum groupoid involves several ingredients. The analogue of the
left- or right-invariance property of Haar measures on groups, Haar systems on groupoids,
and Haar weights on quantum groups can be formulated for conditional expectations from
A to rpBq or spBq, respectively. To obtain a total integration on A, such a partial integral
has to be composed with a suitable functional on B that is quasi-invariant with respect
to the action of Γ.

Let us now turn to details. We proceed as follows.
From the beginning, we assume all our algebras to possess an involution but not

necessarily a unit. We first recall terminology concerning non-unital algebras (§1.1),
then describe the monoidal product Ab̃A (§1.2), and define dynamical quantum groups
or, more precisely, multiplier pB,Γq-Hopf �-algebroids (§1.3). Afterwards, we introduce
and study integrals (§1.4–§1.6) and prove the existence of a modular automorphism that
controls the deviation of the total integral from being a trace. Using integration, we
finally construct the dual �-algebra of a multiplier pB,Γq-Hopf �-algebroid (§1.7).

1.1. Preliminaries on non-unital algebras. To handle non-unital algebras, we use
extra non-degeneracy assumptions and multiplier algebras [30, appendix] which are re-
called below.

Let R be an algebra, not necessarily unital. Given a left R-module M , we say that R
has local units for M if for each finite subset F �M , there exists some r P R such that
rm � m for all m P F [32]. The corresponding notion for right R-modules is defined
similarly. We say that R has local units if it has local units for R, regarded as a left and
as a right R-module.

Let R and S be algebras with local units, let N be an R-S-bimodule and assume
that R and S have local units for N . A multiplier of N is a pair T � pTρ, Tλq, where
Tρ : R Ñ N is a left R-module map and Tλ : S Ñ N a right S-module map satisfying
Tρprqs � rTλpsq for all r P R, s P S. Given such a multiplier, we write rT :� Tρprq and
Ts :� Tλpsq for all r P R, s P S. We denote the set of all multipliers of N by MpNq.
Clearly, N embeds intoMpNq andMpNq carries a natural structure of an R-S-bimodule
that is compatible with this embedding.

Regarding R as an R-R-bimodule, MpRq becomes an algebra via TT 1 � pT 1
ρ � Tρ, Tλ �

T 1
λq, and R embeds into MpRq as an essential ideal. If R is a �-algebra, then so is MpRq,

where the adjoint of a multiplier T � pTρ, Tλq P MpRq is the pair T � � pT �
ρ , T

�
λ q given

by T �
ρ prq � pTλpr

�qq� and T �
λ prq � pTρpr

�qq� for all r P R.
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The bimodule N is an MpRq-MpSq-bimodule via T prnsqT 1 :� TλprqnT
1
ρpsq for all

T P MpRq, r P R,n P N, s P S, T 1 P MpSq, and MpNq is an MpRq-MpSq-bimodule via
TT 1T 2 :� pT 2

ρ � T
1
ρ � Tρ, Tλ � T

1
λ � T

2
λ q for all T PMpRq, T 1 PMpNq, T 2 PMpSq.

A homomorphism π : RÑMpSq is non-degenerate if xπpRqSy � S � xSπpRqy; in that
case, it extends uniquely to a homomorphism MpRq ÑMpSq which is again denoted by
π (see [30]).

1.2. The category of pB,Γqev-algebras. Let B be a commutative �-algebra with local
units, let Γ be a group that acts on B on the left, and let e P Γ be the unit.

A pB,Γq-module is a Γ-graded B-bimodule V �
À

γPΓ Vγ for which B has local units,
where each Vγ is a B-bimodule and vb � γpbqv for all v P Vγ , b P B, γ P Γ. A morphism
of pB,Γq-modules V and W is a morphism of Γ-graded B-bimodules.

A pB,Γq-algebra is a Γ-graded �-algebra A �
À

γPΓAγ which has local units in Ae
and is equipped with a �-homomorphism B ÑMpAq that turns A into a pB,Γq-module.
Such a pB,Γq-algebra is proper if B maps into A.

Given a pB,Γq-algebra A and γ P Γ, we denote by MpAqγ � MpAq the space of all
multipliers T PMpAq satisfying TAγ1 � Aγγ1 and Aγ1T � Aγ1γ for all γ1 P Γ.

Amorphism of pB,Γq-algebras A and C is a non-degenerate, B-linear �-homomorphism
π : A Ñ MpCq satisfying πpAγq � MpCqγ for all γ P Γ. Such a morphism is proper if it
maps A into C.

Using the extension of non-degenerate homomorphisms to multipliers, one defines the
composition of morphisms and checks that pB,Γq-algebras form a category.

The tensor product BbB is a �-algebra with local units and a natural action of Γ�Γ.
Replacing pB,Γq by pB,Γqev :� pB b B,Γ � Γq in the definition above, we obtain the
category of all pB,Γqev-algebras.

Let A be a pB,Γqev-algebra. We call an element x P A homogeneous and write Bx � γ,
B̄x � γ1 if x P Aγ,γ1 for some γ, γ1 P Γ. Thus, BxBy � Bxy, B̄xB̄y � B̄xy and Bx� � B�1

x , B̄x� �
B̄�1
x for all homogeneous x, y P A. Define r � rA : B Ñ MpAq and s � sA : B Ñ MpAq
by rpbqa � pbb 1qa and spbqa � p1b bqa for all a P A, b P B. We write rA,Ar, sA,As if
we consider A as a B-module via left or right multiplication via r or s, respectively.

Clearly, B is a pB,Γq-algebra and B b B is a pB,Γqev-algebra with respect to the
trivial gradings. Every pB,Γq-algebra A can be regarded as a pB,Γqev-algebra, where
Apγ,γq � Aγ and Apγ,γ1q � 0 whenever γ � γ1, and pb b b1qa � bb1a for all b, b1 P B,
a P A. Conversely, every pB,Γqev-algebra A can be considered as a pB,Γq-algebra via
r : B Ñ MpAq and the grading given by Aγ :�

À
γ1 Aγ,γ1 , or via s : B Ñ MpAq and the

grading given by Aγ1 :�
À

γ Aγ,γ1 . We write pA, rq and pA, sq, respectively, to denote the
resulting pB,Γq-algebras.

Denote by B � Γ the crossed product for the action of Γ on B, that is, the universal
algebra containing B and Γ such that e � 1B and bγ � b1γ1 � bγpb1qγγ1 for all b, b1 P B,
γ, γ1 P Γ. This is a pB,Γq-algebra with respect to the natural inclusion B Ñ B � Γ and
the involution and grading given by pbγq� � γ�1b� and pB � Γqγ � Bγ for all b P B,
γ P Γ.
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The fiber product of pB,Γqev-algebras A and C is defined as follows. The subalgebra

A
Γ
b C :�

¸
γ,γ1,γ2PΓ

Aγ,γ1 b Cγ1,γ2 � Ab C

is a pB,Γqev-algebra, where pA
Γ
b Cqγ,γ2 �

°
γ1 Aγ,γ1 b Cγ1,γ2 for all γ, γ2 P Γ and

pr�sqpbbb1q � rApbqbsCpb
1q for all b, b1 P B. Let I �MpA

Γ
b Cq be the ideal generated

by tsApbq b 1� 1b rCpbq : b P Bu. Then the quotient

Ab̃C :� A
Γ
b C{pIpA

Γ
b Cqq

is a pB,Γqev-algebra again, called the fiber product of A and C. Write ab̃c for the image
of an element ab c in Ab̃C.

The assignment pA,Cq ÞÑ Ab̃C is functorial, associative and unital. Indeed, for all
morphisms of pB,Γqev-algebras π1 : A1 Ñ C1, π2 : A2 Ñ C2, there exists a morphism

π1b̃π2 : A1b̃A2 Ñ C1b̃C2, a1b̃a2 ÞÑ π1pa1qb̃π
2pa2q;(1)

for all pB,Γqev-algebras A,C,D, there exists an isomorphism

pAb̃Cqb̃D Ñ Ab̃pCb̃Dq, pab̃cqb̃d ÞÑ ab̃pcb̃dq,(2)

and for each pB,Γqev-algebra A, there exist isomorphisms

pB � Γqb̃AÑ A, bγb̃a ÞÑ rpbqa, Ab̃pB � Γq Ñ A, ab̃bγ ÞÑ spbqa.(3)

These isomorphisms are compatible in a natural sense and endow the category of pB,Γqev-
algebras with a monoidal structure. From now on, we shall use them without further
notice.

The category of pB,Γqev-algebras carries automorphisms p�qop and p�qco such that
for each pB,Γq-algebra A and each morphism φ : AÑ C, we have Aco � A as an algebra,
Aop is the opposite �-algebra of A, that is, the same vector space with the same involution
and reversed multiplication, and

pAopqγ,γ1 � Aγ�1,γ1�1 for all γ, γ1 P Γ, rAop � rA, sAop � sA, φop � φ,(4)

pAcoqγ,γ1 � Aγ1,γ for all γ, γ1 P Γ, rAco � sA, sAco � rA, φco � φ.(5)

These automorphisms are involutive and commute, that is,

p�qop � p�qop � id, p�qco � p�qco � id, p�qop � p�qco � p�qco � p�qop.

Furthermore, they are compatible with the monoidal structure as follows. Given pB,Γq-
algebras A,C, there exist isomorphisms pAb̃Cqop Ñ Aopb̃Cop and pAb̃Cqco Ñ Ccob̃Aco

given by ab̃c ÞÑ ab̃c and ab̃c ÞÑ cb̃a, respectively. Moreover, pB � Γqco � B � Γ,
there exists an isomorphism SB�Γ : B � Γ Ñ pB � Γqop, bγ ÞÑ γ�1b, and all of these
isomorphisms and the isomorphisms in (2) and (3) are compatible in a natural sense.
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1.3. Multiplier pB,Γq-Hopf �-algebroids. We shall work with variants of the h-Hopf
algebroids and pB,Γq-Hopf �-algebroids considered in [7, 10] and [21], respectively, where
the basis need no longer be unital. These variants consist of a pB,Γqev-algebra and a
comultiplication, counit and antipode, which will be introduced one after the other. To
quickly proceed to the main part of this article, we postulate all the usual properties of
these maps as axioms and leave a study of the axiomatics for later.

Given a pB,Γqev-algebra A, we denote by M̃pAb̃Aq � MpAb̃Aq the set of all T P
MpAb̃Aq for which all products of the form

T pxb̃1MpAqq, pxb̃1MpAqqT, T p1MpAqb̃yq, p1MpAqb̃yqT

where x P Aγ,e, y P Ae,γ , γ P Γ, lie in Ab̃A. Evidently, M̃pAb̃Aq is a �-subalgebra of
MpAb̃Aq.

1.3.1. Definition. A comultiplication on a pB,Γqev-algebra A is a morphism ∆ from
A to Ab̃A satisfying ∆pAq � M̃pAb̃Aq and p∆b̃ idq � ∆ � pid b̃∆q � ∆. A (proper)
multiplier pB,Γq-�-bialgebroid is a (proper) pB,Γqev-algebra with a comultiplication. A
morphism of multiplier pB,Γq-�-bialgebroids pA,∆Aq, pB,∆Bq is a morphism φ from A
to B satisfying ∆B � φ � pφb̃φq �∆A.

Let pA,∆q be a multiplier pB,Γq-�-bialgebroid.
We shall need to form products of the form ∆pxqp1 b yq or py b 1q∆pxq when By � e

or B̄y � e, respectively, which are defined as follows. Let x, y P A. The multiplication on
Ab A induces a canonical Ab̃A-Ab A-bimodule structure on sAb

B
rA and a canonical

AbA-Ab̃A-bimodule structure on Asb
B
Ar. Using the natural maps sMpAqb

B
rMpAq Ñ

MpsA b
B
rAq and MpAqs b

B
MpAqr Ñ MpAs b

B
Arq, we define multipliers 1 b

B
y, x b

B
1 P

MpsA b
B
rAq and x b

B
1, 1 b

B
y P MpAs b

B
Arq. Regarding MpsA b

B
rAq as an MpAb̃Aq-

MpA b Aq-bimodule and MpAs b
B
Arq as an MpA b Aq-MpAb̃Aq-bimodule (see §1.1),

we can then multiply these multipliers with ∆pxq or ∆pyq, respectively.

1.3.2. Lemma. The following linear maps are well-defined:

T1 : As b
B
sAÑ sAb

B
rA, xb

B
y ÞÑ ∆pxqp1b

B
yq,

T2 : Ar b
B
rAÑ As b

B
Ar, xb

B
y ÞÑ pxb

B
1q∆pyq,

T3 : sAb
B
As Ñ As b

B
Ar, xb

B
y ÞÑ p1b

B
yq∆pxq,

T4 : rAb
B
Ar Ñ sAb

B
rA, xb

B
y ÞÑ ∆pyqpxb

B
1q.

Proof. We only prove the assertion concerning T1, the cases of T2, . . . , T4 being similar.
Using the explanations above, we obtain a linear map A b A Ñ MpsA b

B
rAq, x b y ÞÑ

∆pxqp1 b
B
yq. This map factorizes through the quotient map A b A Ñ As b

B
sA because

∆pxspbqq � ∆pxqp1b̃spbqq for all x P A, b P B, and takes values in sAb
B
rA because ∆pAq

is contained in M̃pAb̃Aq. �
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We adopt the Sweedler notation and write ∆pxq �
°
xp1qb̃xp2q for x P A. This

notation requires extra care because ∆pxq need not lie in Ab̃A but only in M̃pAb̃Aq,
so that xp1q and xp2q do not simply represent elements of A. In this notation, the maps
introduced above take the form

T1 : xb
B
y ÞÑ

¸
xp1q b

B
xp2qy, T2 : xb

B
y ÞÑ

¸
xyp1q b

B
yp2q,

T3 : xb
B
y ÞÑ

¸
xp1q b

B
yxp2q, T4 : xb

B
y ÞÑ

¸
yp1qxb

B
yp2q.

We shall almost exclusively use the Sweedler notation for products as above. A detailed
explanation of this notation in the context of multiplier Hopf algebras is given in [30, 32].
Apart from the fact that we use tensor products of B-modules instead of tensor products
of vector spaces, this explanation carries over easily. As in the theory of (multiplier)
Hopf algebras, we extend the Sweedler notation to iterated applications of ∆, writing

p∆b̃ idqp∆pxqq �
¸
xp1qb̃xp2qb̃xp3q � pid b̃∆qp∆pxqq

for x P A, and to iterated applications of the maps T1, . . . , T4, writing, for example,

pT2 b
B

idqppidb
B
T1qpxb

B
y b
B
zqq �

¸
xyp1q b

B
yp2q b

B
yp3qz � pidb

B
T1qppT2 b

B
idqpxb

B
y b
B
zqq

for all x, y, z P A.

1.3.3. Definition. A counit for a multiplier pB,Γq-�-bialgebroid pA,∆q is a proper mor-
phism of pB,Γqev-algebras ε : AÑ B � Γ satisfying pεb̃ idq �∆ � idA � pid b̃εq �∆.

Let pA,∆q be a multiplier pB,Γq-�-bialgebroid with counit ε. Using the linear maps

7 : B � Γ Ñ B,
¸
γ

bγγ ÞÑ
¸
γ

bγ , 5 : B � Γ Ñ B,
¸
γ

γbγ ÞÑ
¸
γ

bγ ,

we define ε7, ε5 : A Ñ B by ε7 :� 7 � ε and ε5 :� 5 � ε. Define mr : Ar b
B
rA Ñ A and

ms : As b
B
sAÑ A by

°
i xi b

B
yi ÞÑ

°
i xiyi.

1.3.4. Remarks. i) Clearly, εpAγ,γ1q � pB � Γqγ,γ1 � 0 whenever γ, γ1 P Γ and
γ � γ1.

ii) If ε1 is a counit as well, then ε � ε � pid b̃ε1q �∆ � ε1 � pεb̃ idq �∆ � ε1.
iii) The condition pεb̃ idq �∆ � idA � pid b̃εq �∆ is equivalent to the relations¸

rpε7pxp1qqqxp2qy � xy �
¸
xyp1qspε

5pyp2qqq for all x, y P A,

and hence to commutativity of the diagrams

sAb
B
rA ε7b

B
id

''
As b

B
sA

T1 77

ms
// A,

As b
B
Ar idb

B
ε5

''
Ar b

B
rA

T2 77

mr
// A.

Furthermore, this condition is equivalent to the relations¸
xyp2qrpε

5pyp1qqq � xy �
¸
spε7pxp2qqqxp1qy for all x, y P A.
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The definition of the antipode involves the isomorphism

σA,A : pAb̃Aqco,op Ñ Aco,opb̃Aco,op, xb̃y ÞÑ yb̃x.

1.3.5. Definition. An antipode for a multiplier pB,Γq-�-bialgebroid pA,∆q with counit ε
is an isomorphism S : AÑ Aco,op of pB,Γqev-algebras that makes the following diagrams
commute:

As b
B
sA

T1 //

ε5b
B

id
��

sAb
B
rA

Sb
B

id

��
A Ar b

B
rAmr

oo

, Ar b
B
rA

T2 //

idb
B
ε7

��

As b
B
Ar

idb
B
S

��
A As b

B
sAms

oo

,

A
S //

∆ ��

Aco,op

∆co,op
��

Ab̃A
Sb̃S // Aco,opb̃Aco,op pAb̃Aqco,op.

σA,Aoo

A multiplier pB,Γq-Hopf �-algebroid is a multiplier pB,Γq-�-bialgebroid with counit and
antipode.

1.3.6. Examples. i) The tensor productBbB is a multiplier pB,Γq-Hopf �-algebroid,
where ∆pbbb1q � pbb1qb̃p1bb1q, εpbbb1q � bb1, Spbbb1q � b1bb for all b, b1 P B.

ii) The crossed product B�Γ is a multiplier pB,Γq-Hopf �-algebroid, where ∆pbγq �
bγb̃γ � γb̃bγ, ε � id and Spγbq � bγ�1 for all b P B, γ P Γ.

Given an antipode S on a multiplier pB,Γq-�-bialgebroid pA,∆q and an element a P A,
we shall henceforth always regard Spaq as an element of A and not of Aco,op.

1.3.7. Remarks. Let pA,∆, ε, Sq be a multiplier pB,Γq-Hopf �-algebroid.
i) In Sweedler notation, commutativity of the diagrams in Definition 1.3.5 amount

to¸
Spxp1qqxp2qy � spε5pxqqy,

¸
xyp1qSpyp2qq � xrpε7pyqq for all x, y P A,(6) ¸

Spxp1qqb̃Spxp2qq �
¸
Spxqp2qb̃Spxqp1q for all x P A.(7)

ii) If S1 is an antipode as well, then S1 � S because for all x, y, z P A,

xSpyqz � SpyS�1pxqqz �
¸
Spspε7pyp2qqqyp1qS

�1pxqqz

�
¸
Spyp2qS

�1pxqqrpε7pyp2qqqz

�
¸
Spyp1qS

�1pxqqyp2qS
1pS1�1pzqyp3qq � xS1pyqz.

For every multiplier pB,Γq-Hopf �-algebroid, the maps T1, . . . , T4 defined above are
bijections.

1.3.8. Proposition. Let pA,∆q be a multiplier pB,Γq-�-bialgebroid. If pA,∆q has a
counit ε and an antipode S, then the maps T1, . . . , T4 are bijective and for all x, y P A,

T�1
1 pxb

B
yq �

¸
xp1q b

B
SpS�1pyqxp2qq, T�1

2 pxb
B
yq �

¸
Spyp1qS

�1pxqq b
B
yp2q,

T�1
3 pxb

B
yq �

¸
xp1q b

B
S�1pxp2qSpyqq, T�1

4 pxb
B
yq �

¸
S�1pSpxqyp1qq b

B
yp2q.
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Proof. We only prove the assertion concerning T1. One first checks that the formula
given for T�1

1 yields a well-defined map T 1
1 : sA b

B
rA Ñ As b

B
sA, and then that for all

x, y P A and u, v P Ae,e,

pub vq � pT1 � T
1
1qpxb

B
yq �

¸
uxp1q b

B
vxp2qSpS

�1pyqxp3qq

�
¸
uxp1q b

B
vxp2qSpxp3qqy

�
¸
uxp1q b

B
vrpε7pxp2qqqy

�
¸
uspε7pxp2qqqxp1q b

B
vy � uxb

B
vy,

pub vq � pT 1
1 � T1qpxb

B
yq �

¸
uxp1q b

B
vSpS�1pxp3qyqxp2qq

�
¸
uxp1q b

B
vSpxp2qqxp3qy

�
¸
uxp1q b

B
vspε5pxp2qqqy

�
¸
uxp1qspε

5pxp2qqq b
B
vy � uxb

B
vy. �

1.4. Bi-measured multiplier pB,Γq-�-bialgebroids. We now introduce the main ob-
jects of this article — multiplier pB,Γq-Hopf �-algebroids equipped with certain integrals.
In §2, we shall construct completions of such objects in the form of measured quantum
groupoids.

As on a groupoid, integration on a multiplier pB,Γq-�-bialgebroid pA,∆q proceeds
in stages. First, one needs partial integrals φ, ψ : A Ñ B with suitable left or right
invariance properties, and second a suitable weight µ : B Ñ C that is compatible with
the action of Γ. The results in [10] suggest that dynamical quantum groups that are
compact in a suitable sense even possess a bi-invariant integral h : AÑ B bB that can
be obtained from a Peter-Weyl decomposition of A.

We first focus on the weight µ and the bi-integral h, and discuss left and right integrals
in the next subsection.

Let us briefly recall some terminology. Let C be a �-algebra with local units. A linear
map µ : C Ñ C is faithful if µpCcq � 0 implies c � 0, and positive if µpc�cq ¥ 0 for all
c P C. Assume that µ is positive. Then µ is �-linear, because positivity of φppb�cq�pb�cqq
and φppb � icq�pb � icqq implies µpb�cq � φpc�bq for all b, c P C, and faithful as soon as
µpc�cq � 0 whenever c � 0.

1.4.1. Definition. A weight for pB,Γq is a faithful, positive linear map µ : B Ñ C that
is quasi-invariant with respect to Γ in the sense that for each γ P Γ, there exists some
Dγ PMpBq such that µpγpbDγqq � µpbq for all b P B.

1.4.2. Remark. Let µ be a weight for pB,Γq. Then
i) each Dγ is uniquely determined and self-adjoint,
ii) Dγγ1 � γ1�1pDγqDγ1 and 1 � γ�1pDγ�1qDγ for all γ, γ1 P Γ,
iii) µpγ�1pbqcq � µpbγpcqD�1

γ�1qqq � µpbγpcDγqq for all b, c P B, γ P Γ.
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Indeed, i) and ii) follow easily from the fact that µ is faithful and the relations µpγpbD�
γqq �

µpγpDγb�qq � µpb�q � µpbq and µpγpγ1pbDγγ1qqq � µpbq � µpγ1pbDγ1qq � µpγpγ1pbDγ1qDγqq.
We henceforth call the family pDγqγPΓ the Radon-Nikodym cocycle of µ.

The following definition is inspired by the notion of a Haar functional introduced in
[10].

1.4.3. Definition. A bi-integral on pA,∆q is a morphism of pB,Γqev-modules h : A Ñ
B b B satisfying ∆pkerhqp1b̃Ae,eq � kerhb̃A and ∆pkerhqpAe,eb̃1q � Ab̃ kerh. If
pA,∆q is proper and hprpbqspb1qq � b b b1 for all b, b1 P B, we call such a bi-integral
normalized.

1.4.4. Lemma. Let pA,∆q be proper and let h be a normalized bi-integral on pA,∆q.
i) pid b̃mB � hq � ∆ � h � pmB � hb̃ idq � ∆, where mB : B b B Ñ B denotes the

multiplication.
ii) If h1 is a normalized bi-integral on pA,∆q, then h1 � h.
iii) If pA,∆, ε, Sq is a proper multiplier pB,Γq-Hopf �-algebroid, then h �S � σB � h,

where σB : B bB Ñ B bB denotes the flip bb c ÞÑ cb b.

Proof. i) We only prove the first equation. Let ω : pA, rq Ñ B be a morphism of pB,Γq-
modules sending I :� kerh to 0. Then

pid b̃ωqp∆pIqqAe,e � pidb
B
ωqp∆pIqpAe,eb̃1qq � pidb

B
ωqpAb

B
Iq � 0

and hence pid b̃ωqp∆pIqq � 0. Moreover, if b, b1, b2 P B and u P Ae,e, then

pid b̃ωqp∆prpbqspb1qqqspb2qu � pidb
B
ωqprpbqspb2qub

B
spb1qq � rpbqspωpspb1qrpb2qqqu.

For ω � mB � h, these calculations imply for all a P I and b, b1 P B

pid b̃mB � hqp∆paqq � 0 � hpaq, pid b̃mB � hqp∆prpbqspb
1qqq � rpbqspb1q � hprpbqspb1qq.

Since A � I � rpBqspBq, we can conclude pid b̃mB � hq �∆ � h.
ii) Let x P kerh and choose u, u1 P BbB such that up1bmBpu

1qqh1pxq � h1pxq. Then

h1pxq � hpuh1pxqspmBpu
1qqq �

¸
hpuxp1qspmBph

1pxp2qu
1qqqq � 0

because
°
uxp1q b xp2qu

1 P upkerhq b
B
A. Thus, kerh � kerh1. Since h and h1 are

normalized and kerh�B bB � A, we can conclude h � h1.
iii) One easily verifies that σB �h�S is a normalized bi-integral. By ii), it equals h. �

1.4.5. Definition. A proper multiplier pB,Γq-�-bialgebroid pA,∆q is bi-measured if it is
equipped with a normalized bi-integral h : A Ñ B b B and a weight µ for pB,Γq such
that ν :� pµb µq � h is faithful and positive.

1.4.6.Remark. Given a bi-measured proper multiplier pB,Γq-Hopf �-algebroid as above,
h is evidently faithful, and also �-linear. To see this, note that pµ b µqphpa�qpb b cqq �

νpa�rpbqspcqq � νpspc�qrpb�qaq � pµb µqppbb cq�hpaqq � pµ b µqphpaq�pb b cqq for all
a P A, b, c P B.
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1.5. Left and right integrals. For large parts of this article, the multiplier pB,Γq-Hopf
�-algebroids under consideration need not be equipped with a bi-integral, but only with
left and right integrals φ, ψ. The definition of these integrals involves slice maps of the
following form.

Let pA,∆q be a multiplier pB,Γq-�-bialgebroid and let φ : pA, rq Ñ B be a morphism
of pB,Γq-modules. Then there exists a unique linear map id b̃φ : M̃pAb̃Aq Ñ MpAq
such that

ppid b̃φqpT qqa � pidb
B
φqpT pab 1qq, appid b̃φqpT qq � pidb

B
φqppab 1qT q

for all T P M̃pAb̃Aq and a P A, where we regard T pa b 1q and pa b 1qT as elements of
sAb

B
rA and As b

B
Ar, respectively. In the case T � ∆pxq for some x P A,

pid b̃φqp∆pxqqa �
¸
spφpxp2qqqxp1qa, apid b̃φqp∆pxqq �

¸
axp1qspφpxp2qqq.(8)

Likewise, every morphism ψ : pA, sq Ñ B yields a slice map ψb̃ id : M̃pAb̃Aq ÑMpAq.

1.5.1. Definition. A left integral on pA,∆q is a morphism φ : pA, rq Ñ B satisfying
pid b̃φq � ∆ � r � φ. A right integral on pA,∆q is a morphism ψ : pA, sq Ñ B satisfying
pψb̃ idq �∆ � s � ψ.

1.5.2. Remarks. i) In Sweedler notation, the invariance conditions on φ and ψ
become¸
spφpxp2qqqxp1qa � rpφpxqqa,

¸
axp2qrpψpxp1qqq � aspψpxqq for all a, x P A.

ii) If pA,∆, ε, Sq is a pB,Γq-Hopf �-algebroid, then the map φ ÞÑ φ � S gives a
bijection between left and right integrals on pA,∆q. This follows easily from (7).

iii) If φ is a left integral, then also φp�spbqq is left integral for each b P B. Likewise,
if ψ is a right integral, then also ψp�rpbqq is a right integral for each b P B.

We shall frequently use the following strong invariance relations:

1.5.3. Proposition. Assume that pA,∆, ε, Sq is a pB,Γq-Hopf �-algebroid. Then

i) pidb
B
φqpp1b̃zq∆pxqq � Sppidb

B
φqp∆pzqp1b̃xqqq for every left integral φ and all

x, z P A;
ii) pψ b

B
idqp∆pxqpzb̃1qq � Sppψ b

B
idqppxb̃1q∆pzqq for every right integral ψ and all

x, z P A.

Proof. Using Sweedler notation, we calculate¸
xp1qspφpzxp2qqq �

¸
xp1qspφpzp2qrpε

5pzp1qqqxp2qqq

�
¸
spε5pzp1qqqxp1qspφpzp2qxp2qqq

�
¸
Spzp1qqzp2qxp1qspφpzp3qxp2qqq �

¸
Spzp1qqrpφpzp2qxqq
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and ¸
rpψpxp1qzqxp2q �

¸
rpψpxp1qspε

7pzp2qqqzp1qqqxp2q

�
¸
rpψpxp1qzp1qqqxp2qrpε

7pzp2qqq

�
¸
rpψpxp1qzp1qqxp2qzp2qSpzp3qq � spψpxzp1qqqSpzp2qq. �

Normalized bi-integrals yield left and right integrals as follows:

1.5.4. Lemma. Assume that pA,∆q is proper, h is a normalized bi-integral on pA,∆q,
and µ : B Ñ C is linear. Then φ :� pidbµq � h and ψ :� pµ b idq � h are a left and a
right integral, respectively, and φ � S�1 � ψ.

Proof. Repeating the proof of Lemma 1.4.4 i) with ω :� φ � pidbµq � h, we find

pid b̃φqp∆paqq � 0 � rpφpaqq, pid b̃φqp∆prpbqspb1qqq � rpbµpb1qq � φprpbqspb1qq

for all a P kerh and b, b1 P B. Since A � pkerhq�rpBqspBq, we can conclude pid b̃φq�∆ �
r � φ. The assertion on ψ follows similarly, and the last equation follows from Lemma
1.4.4 iii). �

1.6. Measured multiplier pB,Γq-�-bialgebroids. Much of the ensuing material ap-
plies not only to bi-measured proper multiplier pB,Γq-Hopf �-algebroids but also to the
following class of objects.

1.6.1.Definition. A a multiplier pB,Γq-�-bialgebroid pA,∆q is measured if it is equipped
with a left integral φ, a right integral ψ, and a weight µ for pB,Γq such that ν :� µ � φ
and ν�1 :� µ � ψ are faithful, positive, and coincide, and ψpAq � B � φpAq.

1.6.2. Remarks. i) Given a measured multiplier pB,Γq-Hopf �-algebroid as above,
the maps φ and ψ are �-linear. This can be seen from a similar argument as in
Remark 1.4.6.

ii) If pA,∆, ε, S, h, µq is a bi-measured proper multiplier pB,Γq-Hopf �-algebroid and
φ � pµ b idq � h and ψ � pidbµq � h, then pA,∆, ε, S, φ, ψ, µq is a measured
multiplier pB,Γq-Hopf �-algebroid by Lemma 1.5.4. In that case, φ � S�1 � ψ
and ν � S � ν by Lemma 1.4.4 iii).

Till the end of this subsection, let pA,∆, ε, S, φ, ψ, µq be a measured multiplier pB,Γq-
Hopf �-algebroid and let pDγqγ be the Radon-Nikodym cocycle for µ. Define D, D̄ : AÑ
A by

Dpaq � rpDB�1
a
qa � arpD�1

Ba
q, D̄paq � spDB̄�1

a
qa � aspD�1

B̄a
q(9)

for all homogeneous a P A.

1.6.3. Lemma. D and D̄ both are algebra and pB,Γqev-module automorphisms of A, and
satisfy

pDb̃ idq �∆ � ∆ �D, pid b̃D̄q �∆ � ∆ � D̄, pD̄b̃ idq �∆ � pid b̃Dq �∆,

D � D̄ � D̄ �D, S �D � D̄�1 � S, S � D̄ � D�1 � S,

� �D � D�1 � �, � � D̄ � D̄�1 � �.
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Proof. The maps D and D̄ are bijective because Dγ is invertible for each γ P Γ. The
remaining assertions follow from straightforward calculations, for example,

Dpxyq � rpDB�1
xy
qxy � rpDB�1

x
BxpDB�1

y
qqxy � rpDB�1

x
qxrpDB�1

y
qy � DpxqDpyq,

SpDpxqq � SprpD�1
Bx
qxq � SpxqspDB̄Spxq

q � D̄�1pSpxqq,

Dpxq� � x�rpD�
B�1
x
q � x�rpDBx�

q � D�1px�q for all x, y P A. �

1.6.4. Lemma. Let ω P tφ, ψ, νu.

i) ωpAγ,γ1q � 0 whenever pγ, γ1q � pe, eq.
ii) ωprpbqspb1qaq � ωparpbqspb1qq for all a P A, b, b1 P B.
iii) ωpDpaqa1q � ωpaD�1pa1qq and ωpD̄paqa1q � ωpaD̄�1pa1qq for all a, a1 P A.

Proof. i) For ω � ν, the assertion follows from the relation kerφ � kerψ � ker ν. To
obtain the assertion for ω � φ, ψ, use the fact that µ is faithful.

ii) Let a P A and b, b1 P B. Then νprpbqaq � µpbφpaqq � µpφpaqbq � νparpbqq and
similarly νpspb1qaq � νpaspb1qq. To obtain the assertion for ω � φ, ψ, use the fact that µ
is faithful again.

iii) This follows immediately equation (9) and i). �

We shall now show that ν � µ � φ has a modular automorphism and thus satisfies an
algebraic variant of the KMS-condition. Let us briefly recall this concept.

Let C be a �-algebra with local units and a faithful, positive, linear map ω : C Ñ C.
A modular automorphism for ω is a bijection θω : C Ñ C satisfying ωpcc1q � ωpc1θωpcqq
for all c, c1 P C. If it exists, a modular automorphism θω for ω is uniquely determined,
an algebra automorphism, and satisfies ω � θω � ω and θω � � � θω � � � idC . This follows
easily from the relations

ωpzθωpxyqq � ωpxyzq � ωpyzθωpxqq � ωpzθωpxqθωpyqq,

ωpyxq � ωpx�y�q � ωpy�θωpx�qq � ωpθωpx
�q�yq � ωpyθωpθωpx

�q�qq,

where x, y, z P C.
As before, let pA,∆, ε, S, φ, ψ, µq be a measured multiplier pB,Γq-Hopf �-algebroid.

1.6.5. Theorem. Let pA,∆, ε, S, φ, ψ, µq be a measured multiplier pB,Γq-Hopf �-algebroid
and let ν � µ � φ � µ � ψ.

i) There exists a modular automorphism θ for ν.
ii) θ is a pB,Γqev-module automorphism of A.
iii) If ν � S � ν, then θ � S � S � θ�1.

Proof. i) The proof repeatedly uses strong invariance of φ and ψ, and closely follows [31],
where the corresponding result was obtained for multiplier Hopf algebras. We proceed
in three steps.
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Step 1. Repeatedly using Remark 1.4.2 iii), we find that for all homogeneous
x, x1, y, y1 P A,

B̄x1 � B̄�1
y1 ñ ν�1pyspψpxx1qqy1q � µpψpyy1qB̄�1

y1 pψpxx
1qqq

� µpψpxx1qB̄y1pψpyy
1qDB̄y1

qq � ν�1pxspψpyy1qqD̄px1qq,(10)

B̄x � By1 ñ νpyrpψpxx1qqy1q � µpφpyy1qB�1
y1 pψpxx

1qqq

� µpBy1pφpyy
1qDBy1qψpxx

1qq � ν�1pxspφpDpyqy1qqx1q,(11)

Bx � B�1
y ñ νpyrpφpxx1qqy1q � µpBypφpxx

1qqφpyy1qq

� µpB�1
y pφpyy1qDB�1

y
qφpxx1qq � νpxrpφpDpyqy1qqx1q.(12)

Step 2. Let c, d P A be homogeneous and let

a �
¸
D̄pspψpdSpcp2qqqqcp1qq P A, a1 �

¸
dp2qrpφpDpSpdp1qqqD̄pcqqq P A.(13)

Then the equations above and Proposition 1.5.3 imply

νpzaq �
¸
νpzD̄pspψpdSpcp2qqqqcp1qqq

�
¸
νpdspψpzcp1qqqSpcp2qqq (Equation (10))

�
¸
νpdrpψpzp1qcqqzp2qq (Proposition 1.5.3)

�
¸
νpzp1qspφpDpdqzp2qqqcq (Equation (11))

�
¸
νpSpDpdp1qqqrpφpdp2qzqqcq (Proposition 1.5.3)

�
¸
νpSpdp1qqrpφpdp2qzqqD̄pcqq (use S �D � D̄�1 � S and 1.6.4 iii))

�
¸
νpdp2qrpφpDpSpdp1qqqD̄pcqqqzq � νpa1zq. (Equation 12)

Step 3. Using bijectivity of the maps D̄, S, T1 and the relation xspψpAqqAy � A, one
finds that all elements of the form like a in (13) span A. A similar argument shows that
the same is true for elements of the form like a1. Hence, there exists a bijection θ : AÑ A
such that νpazq � νpzθpaqq for all a P A, and uniqueness of such a bijection follows from
faithfulness of ν.

ii) We first show that θ respects the grading. Let c, d P A be homogeneous. Then the
element a in (13) is homogeneous as well, with grading given by Ba � Bc and B̄a � B̄d
because ψpdSpcp2qqq � 0 unless B̄d � Bcp2q � B̄cp1q , and similarly a1 in (13) is homo-
geneous with the same degree like a. To see that θ is B b B-linear, use the relation
νpyθprpbqspb1qxqq � νprpbqspb1qxyq � νpxyrpbqspb1qq � νpyrpbqspb1qθpxqq, where x, y P A
and b, b1 P B, and faithfulness of ν.

iii) If ν � S � ν, then νpyθpSpxqqq � νpSpxqyq � νpS�1pyqxq � νpθ�1pxqS�1pyqq �
νpySpθ�1pxqqq for all x, y P A. �

Define θD, θD̄, θD,D̄ : AÑ A by

θD :� θ �D�1 � D�1 � θ, θD̄ :� θ � D̄�1 � D̄�1 � θ, θD,D̄ :� θ �D�1 � D̄�1.

1.6.6. Proposition. Let x, y P A be homogeneous. Then
i) φ � θ � φ and φpxyq � BxpφpyθDpxqqq;
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ii) ψ � θ � ψ and ψpxyq � B̄xpψpyθD̄pxqqq;
iii) h � θ � h and hpxyq � pBx b B̄xqphpyθD,D̄pxqqq if h is a bi-invariant integral and

ν � pµb µq � h.

Proof. Assertion i) follows from the fact that µ is faithful and that for all homogeneous
x, y P A and all b P B,

µpbφpθpxqqq � νprpbqθpxqq � νpθprpbqxqq � νprpbqxq � µpbφpxqq,

µpbφpyθpxqqq � νprpbqyθpxqq � νpxrpbqyq

� νprpBxpbDBxqqxrpD
�1
Bx
qyq

� µpBxpbDBxqφpDpxqyqq � µpbB�1
x pφpDpxqyqqq.

Assertions ii) and iii) follow similarly. �

Recall that a B-module N is called flat if the functor N b
B
� on the category of

B-modules is exact or, equivalently, preserves injectivity of morphisms.

1.6.7. Proposition. Assume that As is a flat B-module. Then ∆ � θD � pS2b̃θDq �∆.

Proof. Let x, y P A be homogeneous. Using Sweedler notation, we calculate¸
θDpxqp1qspφpyθDpxqp2qqq �

¸
Spspφpyp2qθDpxqqqyp1qq (Proposition 1.5.3)q

�
¸
SpspB�1

x pφpxyp2qqqqyp1qq (Proposition 1.6.6)

�
¸
Spyp1qspφpxyp2qqqq

�
¸
S2pspφpxp2qyqqxp1qq (Proposition 1.5.3)

�
¸
S2pspBxp2qpφpyθDpxp2qqqqqxp1qq (Proposition (1.6.6))

�
¸
S2pxp1qqspφpyθDpxp2qqqq.

Since As is a flatB-module and maps of the form a ÞÑ φpyaq, where y P A is homogeneous,
separate the points of A, we can conclude

°
θDpxqp1qb̃θDpxqp2q �

°
S2pxp1qqb̃θDpxp2qq.

�

1.7. The dual �-algebra. Let pA,∆, ε, S, φ, ψ, µq be a measured multiplier pB,Γq-Hopf
�-algebroid. Denote by MpAq1 the dual vector space of MpAq and let

Â :� tνpx�q : x P Au �MpAq1

Then Â � tνp�xq : x P Au by Theorem 1.6.5 and for each ω P Â, there exist unique
B-module maps rω : rMpAq Ñ B, ωr : MpAqr Ñ B, sω : sMpAq Ñ B, ωs : MpAqs Ñ B
whose compositions with µ are equal to ω, because ν � µ � φ � µ � ψ and µ is faithful.
Using either of these B-module maps, one can equip Â with the structure of a �-algebra.
We shall choose an approach that fits well with the duality on the operator-algebraic
level in the next section.

First, we define an abstract Fourier transform

AÑ Â, x ÞÑ x̂ :� νpSpxq�q,
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which is a linear bijection because ν is faithful. Evidently, x̂s � ψpSpxq�q and x̂r �
φpSpxq�q, and by Proposition 1.6.6, sx̂ � ψp�θpSpxqqq and rx̂ � φp�θpSpxqqq. For all
x, a P A, we define a right convolution

a � x̂ :�
¸
ap2qrpx̂spap1qqq �

¸
ap2qrpψpSpxqap1qqq P A.(14)

1.7.1. Remark. One could also work with the transform A Ñ Â, x ÞÑ x̌ :� νp�Spxqq,
and the left convolution defined by

x̌ � a :�
¸
sprx̌pap2qqqap1q �

¸
spφpap2qSpxqqqap1q P A for all x, a P A.(15)

If φ � S � ψ, for example, if we are in the bi-measured case (see Remark 1.6.2 ii)), then
~Spxq � Spaq �¸

spφpSpaqp2qS
2pxqqqSpaqp1q

� Spap2qrpψpSpxqap1qqqq � Spa � x̂q for all a, x P A.

We collect a few useful formulas. First, for all a, x P A,

a � x̂ �
¸
rpψpap1qθD̄pxqqqap2q, pProp. 1.6.6q(16)

a � x̂ �
¸
S�1prpψpSpxqp1qaqqSpxqp2qq �

¸
xp1qspψpSpxp2qqaqq pProp. 1.5.3q(17)

Next, for all a, x, y P A, b P B, γ, γ1, δ, δ1 P Γ,

rpbqa � x̂ � a � zspbqx, arpbq � x̂ � a � zxspbq,
spbqa � x̂ � spbqpa � x̂q, aspbq � x̂ � pa � x̂qspbq,

(18)

pa � x̂q � ŷ �
¸
ap3qrpψpSpyqap2qrpψpSpxqap1qqqq

�
¸
ap2qrpψpSpyqxp1qspψpSpxp2qqap1qqqqq

�
¸
ap2qrpψpSpxp2qrpψpSpyqxp1qqqqaqq � a � {px � ˆqy ,

(19)

Aγ,γ1 �zAδ,δ1 �¸
γ2

spψpAδ1�1,δ�1Aγ,γ2qqAγ2,γ1 � δγ,δ1Aδ,γ1 ,(20)

where we used Lemma 1.6.4 in the last line. Finally, note that surjectivity of T2 (Propo-
sition 1.3.8 and of ψ imply

xA � Ây � pψ b
B

idqpT2pAr b
B
rAqq � xArpψpAqqy � xArpBqy � A.(21)

The pB,Γqev-algebra structure on A induces the following structure on Â:

1.7.2. Proposition. i) Â carries the structure of a non-degenerate �-algebra, where
ŷx̂ � zx � ŷ and x̂� � {Spxq� for all x, y P A.

ii) There exist non-degenerate �-homomorphisms r̂, ŝ : B ÑMpÂq such that

r̂pbqx̂ � zxrpbq, x̂r̂pbq � zxspbq, ŝpbqx̂ � zrpbqx, x̂ŝpbq � zspbqx
for all x P A, b P B. The images of r̂ and ŝ commute.

iii) Let Âγ,γ1 � {pAγ,γ1q for all γ, γ1 P Γ. Then Â �
À

γ,γ1PΓ Â
γ,γ1 as a vector space

and

Âγ,γ
1
Âδ,δ

1
� δγ1,δÂ

γ,δ1 , pÂγ,γ
1
q� � Âγ

1,γ , r̂pBqŝpBqÂγ,γ
1
� Âγ,γ

1
for all γ, γ1, δ, δ1 P Γ.
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Furthermore, for all γ, γ1, δ, δ1 P Γ, â P Âγ,γ1 , b, b1 P B,

r̂pbqŝpb1qâ � r̂pγ�1pb1qqŝpγpbqqâ and âr̂pbqŝpb1q � âr̂pγ1�1pb1qqŝpγ1pbqq.

Proof. i) The multiplication is associative and turns Â into a non-degenerate algebra
by (19) and (21). The �-operation is involutive because � � S is involutive, and anti-
multiplicative because

Spy � x̂q� �
¸
Spyp2qrpψpSpxqyp1qqq

�

�
¸
Spyp2qq

�spψpy�p1qSpxq
�qq

�
¸
Spyq�p1qspψpSpSpyq

�
p2qqSpxq

�qq � Spxq� �{Spyq�.
ii) For each b P B, the formulas above define multipliers r̂pbq, ŝpbq PMpÂq because

ŷpr̂pbqx̂q � pxrpbq � ŷqp � px � zyspbqqp � pŷr̂pbqqx̂

and similarly ŷpŝpbqx̂q � pŷŝpbqqx̂ for all x, y P A by (18). The maps r̂, ŝ : B Ñ MpÂq
are non-degenerate homomorphisms because r, s : B ÑMpAq have the same properties,
their images evidently commute, and they are involutive because

px̂r̂pbqq� � pzxspbqq� � pSpxspbqq�qp � pSpxq�rpb�qqp � r̂pb�qx̂�

and similarly px̂ŝpbqq� � ŝpb�qx̂� for all x P A, b P B.
iii) All of these assertions follow easily from the definitions and relation (20), for

example, r̂pbqx̂ � zxrpbq � prpγpbqqxqp � ŝpγpbqqpx for all γ, γ1 P Γ, x P Aγ,γ1 , b P B. �

2. Construction of associated measured quantum groupoids

In this section, we fix a measured multiplier pB,Γq-Hopf �-algebroid pA,∆, ε, S, µ, φ, ψq
and construct operator-algebraic completions of this algebraic object in the form of a Hopf
C�-bimodule, Hopf-von Neumann bimodule and a measured quantum groupoid. Along
the way, we shall impose further assumptions on B,Γ, µ,A which were mentioned already
in the introduction, most notably properness.

The basic idea is to use the GNS-representations for the weight µ on the basis B and
the functional ν on the total algebra A, respectively. Naturally, some restrictions have
to be made on B,Γ, µ. To show that ν admits a bounded GNS-representation and to lift
the comultiplication to the level of operator algebras, we use a fundamental unitary. To
take full advantage of this unitary, we describe its domain and range as relative tensor
products, and show that it is a pseudo-multiplicative unitary in the sense of [24] and
[27]. The necessary modules are introduced in §2.2, and the unitary itself is constructed
in §2.3. This part uses Connes’ spatial theory [20], and the relative tensor product of
Hilbert spaces over C�-algebras which was introduced in [22]. The fundamental unitary
then gives rise to completions of A and Â in the form of Hopf C�-bimodules and two
Hopf-von Neumann bimodules; see §2.4–§2.6.To obtain the full structure of a measured
quantum groupoid, we finally extend the integrals φ, ψ to the level of von Neumann
algebras and show that these extensions are left or right invariant again in §2.7.

Before we turn to details, let us briefly sketch the construction of the fundamental
unitary, which we denote by W . Its domain and range can be described as separated
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completions of the relative tensor products sA b
B
rA and rA b

B
Ar with respect to the

sesquilinear forms given by
xxb

B
y|x1 b

B
y1ypsAb

B
rAq � νpx�spBypφpy

�y1qqqx1q,

xxb
B
yq|x1 b

B
y1yprAb

B
Arq � νpx�rpφpy�y1qqx1q

(22)

for all x, y P A, where y is assumed to be homogeneous in the upper line. Note that
positivity of these forms is not evident because φ is not assumed to be completely positive
in any sense. Given that positivity, the map

T4 : rAb
B
Ar Ñ sAb

B
rA, xb

B
y ÞÑ ∆pyqpxb

B
1q �

¸
yp1qxb

B
yp2q,

extends to a unitary on the respective completions because it is surjective by Proposition
1.3.8 and isometric as shown by the calculation

¸
xyp1qxb

B
yp2q|y

1
p1qx

1 b
B
y1p2qypsAb

B
rAq �

¸
νpx�y�p1qspByp2qpφpy

�
p2qy

1
p2qqqqy

1
p1qx

1q

�
¸
νpx�spφpy�p2qy

1
p2qqqy

�
p1qy

1
p1qx

1q

� νpx�rpφpy�y1qqx1q � xxb
B
y|x1 b

B
y1yprAb

B
Arq,

(23)

where yp2q is assumed to be homogeneous without loss of generality. The adjoint of this
extension is the fundamental unitary W .

Similarly, one can construct and employ another unitary V which is an extension of
the map T1 : As b

B
sA Ñ sA b

B
rA, x b

B
y ÞÑ ∆pxqp1 b

B
yq. We shall focus on W because

this unitary is given preference in the theory of locally compact quantum groups and
measured quantum groupoids.

2.1. Preparations concerning the base. Denote by Λµ : B Ñ LpBq the GNS-map
for µ as before. From now on, we assume:
(A1) The weight µ admits a GNS-representation via bounded operators in the sense

that the following equivalent conditions hold:
i) for each b P B, there is a λ ¡ 0 such that µpc�b�bcq ¤ λµpc�cq for all c P B;
ii) the formula πµpbqΛµpcq � Λµpbcq defines a �-homomorphism πµ : B Ñ LpKq.

2.1.1. Remarks. i) Assumption (A1) holds if B is a pre-C�-algebra since then
µpc�b�bcq ¤ µpc�}b�b}cq � }b�b}µpc�cq for all b, c P B. Conversely, if (A1) holds,
then B can be regarded as a pre-C�-algebra with respect to the norm given by
b ÞÑ }πµpbq}.

ii) To apply the constructions below, it may be useful to first perform a base change,
similarly as described in [21, §2], to replace B by a pre-C�-algebra of the form
CcpΩq, where Ω is a locally compact space with an action of Γ. For example,
one can take Ω to be the set of all �-homomorphisms χ : B Ñ C, equipped with
the weakest topology that makes the function Ω Ñ C, χ ÞÑ χpbq, continuous for
each b P B, and perform a base change along the canonical map B ÑMpCcpΩqq.
Note, however, that such a base change can not simply be applied to left and
right integrals, but only to bi-integrals.
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Recall that a Hilbert algebra is a �-algebra with an inner product such that left multi-
plication by each element is bounded, the resulting �-representation is non-degenerate,
and the involution is pre-closed with respect to the norm induced by the inner product.
Since B is commutative, the map ΛµpBq Ñ ΛµpBq given by Λµpbq ÞÑ Λµpb

�q extends to
an anti-unitary operator Jµ on K, and hence ΛµpBq � K together with the �-algebra
structure inherited from B is a Hilbert algebra. We thus obtain

 a von Neumann algebra N :� πµpBq
2 � LpKq,

 a n.s.f. weight µ̃ on N such that µ̃pπµpb�bqq � xΛµpbq|Λµpbqy � µpb�bq for all
b P B,

 a left ideal Nµ̃ :� tx P N : µ̃px�xq   8u � N of square-integrable elements,
 a closed map Λµ̃ : Nµ̃ Ñ K such that pK,Λµ̃, idN q is a GNS-representation for µ̃;
this is the closure of the map πµpBq Ñ K given by πµpbq Ñ Λµpbq.

2.2. Various module structures. We define an inner product onA by xa|a1y :� νpa�a1q
for all a, a1 P A and denote by H the Hilbert space obtained by completion. We call the
canonical inclusion of A into H the GNS-map for ν and denote it by Λν .

2.2.1. Lemma. There exist maps Λφ,Λψ,Λ
:
φ,Λ

:
ψ : AÑ LpK,Hq such that for all x, y P A,

b P B,

ΛφpxqΛµpbq � Λνpxrpbqq, Λφpxq
�Λνpyq � Λµpφpx

�yqq, Λφpxq
�Λφpyq � πµpφpx

�yqq,

ΛψpxqΛµpbq � Λνpxspbqq, Λψpxq
�Λνpyq � Λµpψpx

�yqq, Λψpxq
�Λψpyq � πµpψpx

�yqq,

Λ:
φpxqΛµpbq � Λνprpbqxq, Λ:

φpxq
�Λνpyq � Λµpφpyθpx

�qqq, Λ:
φpxq

�Λ:
φpyq � πµpφpyθpx

�qqq,

Λ:
ψpxqΛµpbq � Λνpspbqxq, Λ:

ψpxq
�Λνpyq � Λµpψpyθpx

�qqq, Λ:
ψpxq

�Λ:
ψpyq � πµpψpyθpx

�qqq.

Proof. We only prove the assertions concerning Λφ and Λ:
φ. They follow from the relations

}Λνpxrpbqq}
2 � νprpbq�x�xrpbqq � µpb�φpx�xqbq ¤ }πµpφpx

�xqq}}Λµpbq}
2,

xΛνpyq|Λνpxrpbqqy � νpy�xrpbqq � µpφpy�xqbq � xΛµpφpx
�yqq|Λµpbqy

and

}Λνprpbqxq}
2 � νpx�rpb�bqxq � νpθ�1pxqx�rpb�bqq

� µpφpθ�1pxqx�qb�bq ¤ }Λµpbq}
2}πµpθ

�1pxqx�q},

xΛνpyq|Λνprpbqxqy � νpy�rpbqxq � νpθ�1pxqy�rpbqq

� µpφpθ�1pxqy�qbq � xΛµpφpyθpx
�qqq|Λµpbqy,

which hold for all x, y P A and b P B. �

The maps introduced above yield various module structures on H as follows. Let

Eφ :� rΛφpAqs, Eψ :� rΛψpAqs, E:
φ :� rΛ:

φpAqs, E:
ψ :� rΛ:

ψpAqs.(24)

We shall use the following concepts introduced in [22, 24]. A C�-b-module, where
b � pK, rπµpBqs, rπµpBqsq, consists of a Hilbert space L and a closed subset E � LpK,Lq
such that rEKs � L, rEπµpBqs � E, rE�Es � rπµpBqs. Each such C�-b-module gives
rise to a normal, faithful, non-degenerate representation ρE : N � πµpBq

2 Ñ LpLq such
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that ρEpxqξ � ξx for all x P N , ξ P E. A C�-pb, bq-module is a triple pL,E, F q such that
pL,Eq and pL,F q are C�-b-modules and rρEpπµpBqqF s � F and rρF pπµpBqqEs � rEs.

2.2.2. Lemma. The Hilbert space H is a C�-pb, bq-module with respect to either two of
the spaces Eφ, Eψ, E

:
φ, E

:
ψ. The representations α :� ρ

E:
φ
, β :� ρ

E:
ψ
, pα :� ρEψ , pβ :� ρEφ

of N on H are given by

αpπµpbqqΛνpaq � Λνprpbqaq, βpπµpbqqΛνpaq � Λνpspbqaq,

pβpπµpbqqΛνpaq � Λνparpbqq, pαpπµpbqqΛνpaq � Λνpaspbqq
(25)

for all b P B, a P A.

Proof. Let E,F be any two of the spaces listed above. Then rEHs � H and rEπµpBqs �
E because xrpBqspBqArpBqspBqy � A, and rE�Es � rπµpBqs because φpAq � B � ψpAq.
Thus, pH,Eq is a C�-b-module. The formulas for the associated representations are easily
verified. Using these formulas and the relation xrpBqspBqArpBqspBqy � A, one easily
checks that rρEpπµpBqqF s � F and rρF pπµpBqqEs � E. �

Recall that a vector ζ in a Hilbert space L is bounded with respect to a normal,
non-degenerate representation ρ : N Ñ L and the weight µ̃ if the following equivalent
conditions hold:

i) there exists a K ¥ 0 such that }ρpxqζ} ¤ Kµ̃px�xq for all x P Nµ̃;
ii) there exists an operator Rρ,µ̃ζ P LpK,Lq such that Rρ,µ̃ζ Λµpxq � ρpxqζ for all

x P Nµ̃.
The set of all such bounded vectors is denoted by DpLρ, µ̃q. This spaces carries an N -
valued inner product x�|�yρ,µ̃, given by xζ|ζ 1yρ,µ̃ � pRρ,µ̃ζ q�Rρ,µ̃ζ1 for all ζ, ζ 1 P DpLρ, µ̃q,
and ρpNq1DpLρ, µ̃q � DpLρ, µ̃q and

Λµ̃pxζ|ζ
1yρ,µ̃q � pRρ,µ̃ζ q�ζ 1, Rρ,µ̃T ζ � TRρ,µ̃ζ for all T P ρpNq1, ζ, ζ 1 P DpLρ, µ̃q.(26)

2.2.3. Lemma. ΛνpAq � DpHα, µ̃qXDpHβ, µ̃qXDpHpα, µ̃qXDpHpβ
, µ̃q and for all x, y P A,

Rα,µ̃Λνpxq
� Λ:

φpxq, Rβ,µ̃Λνpxq
� Λ:

ψpxq, Rpα,µ̃
Λνpxq

� Λψpxq, R
pβ,µ̃
Λνpxq

� Λφpxq.

Proof. We shall only prove the assertion concerning α. Let a P A. Then Λ:
φpaqΛµ̃pπµpbqq �

Λνprpbqaq � αpπµpbqqΛνpaq for all b P B, and since πµpBq is a core for Λµ̃, we can conclude
Λ:
φpaqΛµ̃pxq � αpxqΛνpaq for all x P Nµ̃. �

The preceding result and Lemma 2.2.1 imply that for all x, y P A,

xΛνpxq|Λνpyqyα,µ̃ � πµpφpyθpx
�qqq, xΛνpxq|Λνpyqyβ,µ̃ � πµpψpyθpx

�qqq,

xΛνpxq|Λνpyqyα̂,µ̃ � πµpψpx
�yqq, xΛνpxq|Λνpyqyβ̂,µ̃ � πµpφpx

�yqq.
(27)

2.3. The fundamental unitary. To define the domain and the range of the fundamen-
tal unitary, we use Connes’ relative tensor product of Hilbert modules and the module
structures introduced above. Connes’ original manuscript on the construction remained
unpublished; we therefore refer to [20] and [23] for details.
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The relative tensor product Hβb
µ̃
αH is the separated completion of the algebraic tensor

product DpHβ, µ̃q bK bDpHα, µ̃q with respect to the sesquilinear form given by

xξ b ζ b η|ξ1 b ζ 1 b η1y � xζ|xξ|ξ1yβ,µ̃xη|η
1yα,µ̃ζ

1y.(28)

This Hilbert space can naturally be identified with the separated completions of the
algebraic tensor productsDpHβ, µ̃qbH andHbDpHα, µ̃q with respect to the sesquilinear
forms given by

xξ b η|ξ1 b η1y � xη|αpxξ|ξ1yβ,µ̃qη
1y and xξ b η|ξ1 b η1y � xξ|βpxη|η1yα,µ̃qξ

1y,(29)

respectively, via

ξ bRα,µ̃ξ ζ � ξ b ζ b η � Rβ,µ̃ξ ζ b η,(30)

and we shall use these identifications without further notice. Replacing the representa-
tions β, α by α, pβ or pα, β, respectively, one obtains the relative tensor products Hαb

µ̃
pβ
H

and H
pαb
µ̃
βH.

To proceed, we impose the following simplifying assumption:
(A2) The Radon-Nikodym cocycle pDγqγ of µ has a positive square root in MpBq in

the sense that there exists a family pD
1
2
γ qγPΓ in MpBq such that for all γ, γ1 P Γ,

c P B,

D
1
2
e � 1, pD

1
2
γ q

� � D
1
2
γ , pD

1
2
γ q

2 � Dγ , D
1
2
γγ1 � γ1�1pD

1
2
γ qD

1
2
γ1 , µpc�D

1
2
γ cq ¥ 0.

Clearly, this condition implies the existence of a unitary representation U : Γ Ñ LpKq
such that

UγΛµpcq � ΛµpγpcD
1
2
γ qq, UγπµpbqU

�
γ � πµpγpbqq for all b, c P B, γ P Γ.(31)

Similarly as in (9), we define linear maps D
1
2 , D̄

1
2 : AÑ A by

D
1
2 paq � rpD

1
2

B�1
a
qa � arpD

� 1
2

Ba
q, D̄

1
2 paq � spD

1
2

B̄�1
a
qa � aspD

� 1
2

B̄a
q

for all homogeneous a P A. These maps share all the properties of the maps D, D̄ listed
in Lemma 1.6.3. Short calculations show that for all homogeneous x, y P A,

ΛφpxqUB�1
x
� Λ:

φpD
1
2 pxqq, xΛνpD

1
2 pxqq|ΛνpD

1
2 pyqqyα,µ̃ � πµpBxpφpx

�yqqq,(32)

ΛψpxqUB̄�1
x
� Λ:

ψpD̄
1
2 pxqq, xΛνpD̄

1
2 pxqq|ΛνpD̄

1
2 pyqqyβ,µ̃ � πµpB̄xpψpx

�yqqq.(33)

Indeed, for all homogeneous x, y P A and b P B,

ΛφpxqUB�1
x

Λµpbq � ΛνpxrpB
�1
x pbD

1
2

B�1
x
qq � ΛνprpbD

1
2

B�1
x
xqq � Λ:

ψpD
1
2 pxqqΛµpbq,

Λ:
φpD

1
2 pxqq�Λ:

φpD
1
2 pyqq � U�

B�1
x

Λφpxq
�ΛφpyqUB�1

y

� UBxπµpφpx
�yqqUB�1

y
� πµpBxpφpx

�yqqq.
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2.3.1. Lemma. The sesquilinear forms on sA b
B
rA and rA b

B
Ar defined in (22) are

positive. Denote by sAb
B
rA and rAb

B
Ar the respective separated completions. Then

there exist isomorphisms

Λ: rAb
B
Ar Ñ Hαb

µ̃
pβ
H, xb

B
y ÞÑ Λνpxq b

µ̃
Λνpyq,

Λ1 : sAb
B
rAÑ Hβb

µ̃
αH, xb

B
y ÞÑ Λνpxq b

µ̃
ΛνpD

1
2 pyqq.

Proof. The maps Λ,Λ1 are surjective because ΛνpAq � H is dense, and they are well-
defined and isometric because (29), (27) and (32) imply for all homogeneous x, y P A

xΛpxb yq|Λpx1 b y1qy � νpx�spφpy�y1qqx1q,

xΛ1pxb yq|Λ1px1 b y1qy � νpx�rpBypφpy
�y1qqqx1q. �

2.3.2. Proposition. There exists a unitary W : Hβb
µ̃
αH Ñ Hαb

µ̃
pβ
H such that W ��Λ �

Λ1 � T4 as maps from rAb
B
Ar to Hβb

µ̃
αH, that is, for all homogeneous x, y P A,

W �pΛνpxq b
µ̃

Λνpyqq �
¸

ΛνpD̄
1
2 pyp1qqxq b

µ̃
Λνpyp2qq �

¸
Λνpyp1qxq b

µ̃
ΛνpD

1
2 pyp2qqq,

W pΛνpxq b
µ̃

Λνpyqq �
¸

ΛνpS
�1pD� 1

2 pyp1qqqxq b
µ̃

Λνpyp2qq

�
¸
pD̄

1
2 pS�1pyp1qqqxq b

µ̃
Λνpyp2qq.

Proof. The calculation (23) and Lemma 2.3.1 imply that the map Λνpxq b
µ̃

Λνpyq ÞÑ°
Λνpyp1qxq b

µ̃
ΛνpD

1
2 pyp2qqq extends to an isometry Hαb

µ̃
pβ
H Ñ Hβb

µ̃
αH. Bijectivity of

this isometry and the formula for W follow from Proposition 1.3.8 and Lemma 1.6.3. �

Similarly, the map T1 yields a second fundamental unitary:

2.3.3. Proposition. There exists a unitary V : H
pαb
µ̃
βH Ñ Hβb

µ̃
αH such that for all

homogeneous x, y P A,

V pΛνpxq b
µ̃

Λνpyqq �
¸

ΛνpD̄
1
2 pxp1qqq b

µ̃
Λνpxp2qyq �

¸
Λνpxp1qq b

µ̃
ΛνpD

1
2 pxp2qqyq,

V �pΛνpxq b
µ̃

Λνpyqq �
¸

Λνpxp1qq b
µ̃

ΛνpSpD̄
� 1

2 pxp2qqqyq
¸

Λνpxp1qq b
µ̃

ΛνpD
1
2 pSpxp2qqqyq.

Proof. The formula above defines an isometry V . Indeed, (29), (27) and (33) imply¸
xΛνpD̄

1
2 pxp1qqq b

µ̃
Λνpxp2qyq|ΛνpD̄

1
2 px1p1qqq b

µ̃
Λνpx

1
p2qy

1qypHβb
µ̃
αHq

�
¸
νpy�x�p2qrpB̄xp1qpψpx

�
p1qx

1
p1qqqx

1
p2qy

1q

�
¸
νpy�x�p2qx

1
p2qrpψpx

�
p1qx

1
p1qqqy

1q,

xΛνpxq b
µ̃

Λνpyq|Λνpx
1q b

µ̃
Λνpy

1qypH
pαb
µ̃
βHq � νpy�spψpx�x1qqy1q



204 THOMAS TIMMERMANN

for all homogeneous x, x1, y, y1 P A, where xp1q is assumed to be homogeneous without loss
of generality, and by right-invariance of ψ (see Remark 1.5.2 i)), the expressions above
coincide. Bijectivity of V and the inversion formula follow from Proposition 1.3.8. �

2.4. Boundedness of the canonical representations. The first application of the
fundamental unitary W is to show that left multiplication on A and right convolution
by Â extend to representations on the Hilbert space H.

The proof of Theorem 2.4.2 involves operators and slice maps of the following form.
For each ξ P DpHβ, µ̃q and η P DpHα, µ̃q, there exist bounded linear operators

λβ,αξ : H Ñ Hβb
µ̃
αH, η

1 ÞÑ ξ b
µ̃
η1, ρβ,αη : H Ñ Hβb

µ̃
αH, ξ

1 ÞÑ ξ1 b
µ̃
η,(34)

whose adjoints are given by

pλβ,αξ q�pξ1 b η1q � αpxξ|ξ1yβ,µ̃qη
1, pρβ,αη q�pξ1 b η1q � βpxη|η1yα,µ̃qξ

1;(35)

see also [4]. Likewise, there exist operators λα,
pβ

ξ , ρα,
pβ

η : H Ñ Hαb
µ̃
pβ
H for all ξ P DpHα, µ̃q

and η P DpH
pβ
, µ̃q which are defined similarly. Using these operators, one defines slice

maps

ωξ,ξ1 � id : LpHαb
µ̃
pβ
H,Hβb

µ̃
αHq Ñ LpHq, T ÞÑ pλβ,αξ q�Tλα,

pβ
ξ1 ,

id �ωη,η1 : LpHαb
µ̃
pβ
H,Hβb

µ̃
αHq Ñ LpHq, T ÞÑ pρβ,αη q�Tρα,

pβ
η1

for all ξ P DpHβ, µ̃q, ξ1 P DpHα, µ̃q, η P DpHα, µ̃q, η1 P DpHpβ
, µ̃q; see [3].

2.4.1. Lemma. Let x, x1, y, y1 P A. Then

pid �ωΛνpyq,Λνpy1qqpW
�qΛνpxq � Λνpaxq, where a �

¸
D̄� 1

2 py1p1qspφpy
�y1p2qqqq,

pωΛνpxq,Λνpx1q � idqpW �qΛνpyq � Λνpy � ĉq, where c � S�1pD̄
1
2 pθ�1px1qx�qq.

Proof. Without loss of generality, we may assume y to be homogeneous. Then

pρβ,αΛνpyq
q�W �ρα,

pβ
Λνpy1q

Λνpxq �
¸
pρβ,αΛνpyq

q�pΛνpy
1
p1qxq b

µ̃
ΛνpD

1
2 py1p2qqqq

�
¸
βpxΛνpyq|ΛνpD

1
2 py1p2qqqqyα,µ̃Λνpy

1
p1qxq pEquation (35)q

�
¸

ΛνpspBypφpD
� 1

2 pyq�y1p2qqqqy
1
p1qxq pEquation (32)q

�
¸

Λνpy
1
p1qspφpy

�D� 1
2 py1p2qqqqxq pLemma 1.6.3q

�
¸

ΛνpD̄
� 1

2 py1p1qspφpy
�y1p2qqqqxq, pLemma 1.6.3q,
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pλβ,αΛνpxq
q�W �λα,

pβ
Λνpx1q

Λνpyq �
¸
pλβ,αΛνpxq

q�pΛνpD̄
1
2 pyp1qqx

1q b
µ̃

Λνpyp2qqq

�
¸
αpxΛνpxq|ΛνpD̄

1
2 pyp1qqx

1qyβ,µ̃qΛνpyp2qq pEquation (35)q

�
¸

ΛνprpψpD̄
1
2 pyp1qqx

1θpx�qqqyp2qq pEquation (27)q

�
¸

Λνprpψpyp1qD̄
� 1

2 px1θpx�qqqqyp2qq pLemma 1.6.3q

�
¸

Λνpyp2qrpψpD̄
1
2 pθ�1px1qx�qyp1qqqq. pEquation (16)q

�

2.4.2. Theorem. Let pA,∆, ε, S, µ, φ, ψq be a measured multiplier pB,Γq-Hopf �-algebroid
such that µ admits a GNS-representation via bounded operators pK,Λµ, πµq and its Radon-
Nikodym cocycle has a positive square root in MpBq. Denote by Λν : A Ñ LpHq the
GNS-map for ν � µ � φ � µ � ψ. Then there exist non-degenerate �-homomorphisms
πν : AÑ LpHq and ρ : ÂÑ LpHq such that

πνpxqΛνpyq � Λνpxyq and ρpωqΛνpyq � Λνpy � ωq for all x, y P A,ω P Â.(36)

Proof of Theorem 2.4.2. For elements a and c of the form in Lemma 2.4.1, the maps
Λνpyq ÞÑ Λνpayq and Λνpxq ÞÑ Λνpx� ĉq coincide with compositions of bounded operators
and therefore are bounded. Since elements of this form span A, we obtain maps πν : AÑ
LpHq and ρ : Â Ñ LpHq as in (36). Evidently, πν is a �-homomorphism. The map ρ
is multiplicative by (19) and Proposition 1.7.2, and it is involutive because by (17) and
Proposition 1.7.2,

xρpx̂q�Λνpzq|Λνpyqy � xρp{Spxq�qΛνpzq|Λνpyqy
�

¸
xΛνpSpxq

�
p1qspψpSpSpxq

�
p2qqzqqq|Λνpyqy

� νpspψpz�xp1qqSpxp2qqyq

� νpz�xp1qspψpSpxp2qqyqqq � xΛνpzq|ρpx̂qΛνpyqy.

Finally, πν and ρ are non-degenerate because xAAy � A and xA � Ây � A (see (21)). �

2.4.3. Remark. Lemma 2.4.1, Theorem 2.4.2 and self-adjointness of πνpAq and ρpÂq
imply

πνpAq � spantpid �ωΛνpyq,Λνpy1qqpW
�q|y, y1 P Au � spantpid �ωΛνpyq,Λνpy1qqpW q|y, y1 P Au,

ρpÂq � spantpωΛνpxq,Λνpx1q � idqpW �q|x, x1 P Au � spantpωΛνpxq,Λνpx1q � idqpW q|x, x1 P Au.

For later use, we calculate the slices of V , which are defined similarly as those of W �.

2.4.4. Lemma. Let x, x1, y, y1 P A. Then

pωΛνpxq,Λνpx1q � idqpV qΛνpyq � Λνpayq, where a �
¸
D� 1

2 px1p2qrpψpx
�x1p1qqqq,

pid �ωΛνpyq,Λνpy1qqpV qΛνpxq � Λνpč � xq, where c � S�1pD� 1
2 py1θpy�qq.
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Proof. Without loss of generality, we assume x to be homogeneous. Proceeding as in the
proof of that Lemma 2.4.1, we then find

pλβ,αΛνpxq
q�V λpα,βΛνpx1q

Λνpyq �
¸
pλβ,αΛνpxq

q�pΛνpD̄
1
2 px1p1qqq b

µ̃
Λνpx

1
p2qyqq pDefinition of V q

�
¸
αpxΛνpxq|ΛνpD̄

1
2 px1p1qqqyβ,µ̃qΛνpx

1
p2qyq

�
¸

ΛνprpB̄xpψpD̄
� 1

2 pxq�x1p1qqqqx
1
p2qyq (Equation (33))

�
¸

ΛνpD
� 1

2 px1p2qrpψpx
�x1p1qqqqyq,

pρβ,αΛνpyq
q�V ρpα,βΛνpy1q

Λνpxq �
¸
pρβ,αΛνpyq

q�pΛνpxp1qq b
µ̃

ΛνpD
1
2 pxp2qqy

1qq pDefinition of V q

�
¸
βpxΛνpyq|ΛνpD

1
2 pxp2qqy

1qyα,µ̃qΛνpxp1qq

�
¸

ΛνpspφpD
1
2 pxp2qqy

1θpy�qqxp1qq (Equation (27))

�
¸

Λνpspφpxp2qD
� 1

2 py1θpy�qqqxp1qq.

�

2.5. The Hopf-von Neumann bimodules. We next show that the fundamental uni-
tary W is pseudo-multiplicative in the sense of [27] and therefore yields two Hopf-von
Neumann bimodules, which are completions of A and Â, respectively. First, we need
further preliminaries.

The relative tensor product is functorial so that there exist bounded linear operators
S b

µ̃
T P LpHβb

µ̃
αHq for all S P βpNq1, T P αpNq1, as well as S b

µ̃
T P LpHαb

µ̃
pβ
Hq for all

S P αpNq1, T P pβpNq1, both times given by ξ b
µ̃
η ÞÑ Sξ b

µ̃
Tη.

In particular, the commuting representations α, β, pα, pβ yield six representations αb
µ̃

id,

pα b
µ̃

id, pβ b
µ̃

id, idb
µ̃
β, idb

µ̃
pα, idb

µ̃

pβ of N on Hβb
µ̃
αH, and further six representations of

N on Hαb
µ̃
pβ
H.

2.5.1. Lemma. The following relations hold for all x P N :

W pidb
µ̃

pβpxqq � pβpxq b
µ̃

idqW, W pαpxq b
µ̃

idq � pidb
µ̃
αpxqqW,

W ppβpxq b
µ̃

idq � ppβpxq b
µ̃

idqW, W pidb
µ̃
βpxqq � pidb

µ̃
βpxqqW,

W ppαpxq b
µ̃

idq � ppαpxq b
µ̃

idqW, W pidb
µ̃
pαpxqq � pidb

µ̃
pαpxqqW.

Proof. This follows immediately from the fact that πµpBq � N is weakly dense, the
definition of W , and the formulas for α, β, pα, pβ given in Lemma 2.2.2. �



APPENDIX II.2 — MEASURED DYNAMICAL QUANTUM GROUPS 207

The relative tensor product is associative in a natural sense. The intertwining relations
for W obtained above imply that all operators in the diagram below are well-defined,

Hβb
µ̃
αHβb

µ̃
αH

W12 //

W23
��

Hαb
µ̃
pβ
Hβb

µ̃
αH

W23 // Hαb
µ̃
pβ
Hαb

µ̃
pβ
H,

Hβ b
µ̃
pidb

µ̃
αqpHαb

µ̃
pβ
Hq

W13 // pHβb
µ̃
αHqpαb

µ̃
idq b

µ̃
pβ
H

W12

OO
(37)

where W12 � W b
µ̃

id, W23 � idb
µ̃
W , and W13 acts on the first and third tensor factor;

see [27] for details.

2.5.2. Lemma. Diagram (37) commutes, that is, W23W12 �W12W13W23.

Proof. A short calculation shows that the adjoints of both compositions are given by

Λνpxq b
µ̃

Λνpyq b
µ̃

Λνpzq ÞÑ
¸

Λνpzp1qyp1qxq b
µ̃

ΛνpD
1
2 pzp2qyp2qqq b

µ̃
ΛνpD

1
2 pzp3qqq. �

2.5.3. Theorem. Let pA,∆, ε, S, µ, φ, ψq be a measured multiplier pB,Γq-Hopf �-algebroid
such that µ admits a GNS-representation via bounded operators pK,Λµ, πµq and its Radon-
Nikodym cocycle has a positive square root in MpBq. Let µ̃ be the weight on N �
πµpBq

2 associated to the Hilbert algebra ΛµpBq, let Λν : A Ñ LpHq be the GNS-map
for ν � µ � φ � µ � ψ, and define α, β, β̂ : N Ñ LpHq as in (25). Then the unitaries
W : Hβb

µ̃
αH Ñ Hαb

µ̃
pβ
H and V : H

pαb
µ̃
βH Ñ Hβb

µ̃
αH defined in Proposition 2.3.2 and

2.3.3 are pseudo-multiplicative in the sense of [27].

Proof. The assertion on W is just Lemma 2.5.1 and Lemma 2.5.2. For V , the proof is
similar. �

2.5.4. Definition. Let pA,∆, ε, S, µ, φ, ψq, W and V as in Theorem 2.5.3. Then we
call W and V the left and the right pseudo-multiplicative unitary of pA,∆, ε, S, µ, φ, ψq,
respectively.

Recall from [26] that a Hopf-von Neumann bimodule over pN, µ̃q is a von Neumann
algebraM acting on a Hilbert space L together with faithful, non-degenerate, commuting
normal representations γ, δ : N Ñ M and a non-degenerate, normal �-homomorphism
∆M : M ÑM δ�

µ̃
γM such that ∆M � γ � γ b

µ̃
id, ∆M � δ � idb

µ̃
δ and p∆M �

µ̃
idq �∆M �

pid �
µ̃

∆M q, where M δ�
µ̃
γM � pM 1 b

µ̃
M 1q1 � LpLδ b

µ̃
γLq, and ∆M �

µ̃
id and id �

µ̃
∆M are

suitably defined [16].

2.5.5. Lemma. The following relations hold:

αpNq Y βpNq � πνpAq
2 � pβpNq1 X pαpNq1,

β̂pNq Y αpNq � ρpÂq2 � βpNq1 X pαpNq1(38)
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and

πνpAq
1 � tS P βpNq1 X αpNq1 | pSαb

µ̃
pβ
1qW �W pSβb

µ̃
α1qu,

ρpÂq1 � tT P αpNq1 X β̂pNq1 | p1αb
µ̃
pβ
T qW �W p1βb

µ̃
αT qu.

(39)

Proof. The inclusions in (38) follow from Lemma 2.2.2, non-degeneracy of πνpAq and
ρpÂq and equation (18). The equations (39) follow from (38) and Remark 2.4.3. �

Using (38) and (39) and slightly abusing notation, we define faithful, normal, non-
degenerate �-homomorphisms

∆: πνpAq
2 Ñ LpHβb

µ̃
αHq, x ÞÑW �pidb

µ̃
xqW,

∆̂ : ρpÂq2 Ñ LpHαb
µ̃
pβ
Hq, y ÞÑ ΣW py b

µ̃
idqW �Σ.

(40)

2.5.6. Theorem. Let A � pA,∆, ε, S, µ, φ, ψq be a measured multiplier pB,Γq-Hopf �-
algebroid such that µ admits a GNS-representation via bounded operators pK,Λµ, πµq and
the Radon-Nikodym cocycle of µ has a positive square root in MpBq. Let µ̃ be the n.s.f.
weight on N � πµpBq

2 associated to the Hilbert algebra ΛµpBq and let Λν : AÑ LpHq be
the GNS-map for ν � µ � φ � µ � ψ. Define πν : A Ñ LpHq, ρ : Â Ñ LpHq as in (36),
α, β, β̂ : N Ñ LpHq as in (25) and ∆, ∆̂ as in (40), where W : Hβb

µ̃
αH Ñ Hαb

µ̃
pβ
H is

the left pseudo-multiplicative unitary of A. Then pπνpAq
2, α, β,∆q and pρpÂq2, pβ, α, ∆̂q

are Hopf-von Neumann bimodules over pN, µ̃q.

Proof. The tuples pπνpAq2, α, β,∆q and pρpÂq2, pβ, α, ∆̂q are the Hopf-von Neumann bi-
modules associated to the pseudo-multiplicative unitaryW . More precisely, the assertion
follows from Proposition 10.3.10 and Theorem 10.3.11 in [23] and equation (39). �

2.5.7. Definition. Let pA,∆, ε, S, µ, φ, ψq, pπνpAq2, α, β,∆q and pρpÂq2, pβ, α, ∆̂q be as
in Theorem 2.5.6. Then we call pπνpAq2, α, β,∆q the Hopf-von Neumann bimodule of
pA,∆, ε, S, µ, φ, ψq and pρpÂq2, pβ, α, ∆̂q the dual Hopf-von Neumann bimodule of pA,∆, ε,
S, µ, φ, ψq.

Theorem 2.5.6 above can also be deduced from the following explicit formulas for ∆
and ∆̂:

2.5.8. Lemma. For all a, c, x, y P A,

∆pπνpaqqpΛνpxq b
µ̃

Λνpyqq �
¸

Λνpap1qxq b
µ̃

ΛνpD
1
2 pap2qqyq,

∆̂pρpĉqqpΛνpxq b
µ̃

Λνpyqq �
¸

Λνpxp2qrpψpSpcqxp1qyp1qqqq b
µ̃

Λνpyp2qq,
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Proof. We calculate

∆pπνpaqq
¸

Λνpyp1qxq b
µ̃

ΛνpD
1
2 pyp2qqq �W �pidb

µ̃
πνpaqqWW �pΛνpxq b

µ̃
Λνpyqq

�W �pΛνpxq b
µ̃

Λνpayqq

�
¸

Λνpap1qyp1qxq b
µ̃

ΛνpD
1
2 pap2qyp2qqq,

W �∆̂pρpĉqqpΛνpxq b
µ̃

Λνpyqq � pρpĉq b
µ̃

idqW �pΛνpxq b
µ̃

Λνpyqq

�
¸
ρpĉqΛνpyp1qxq b

µ̃
ΛνpD

1
2 pyp2qqq

�
¸

Λνpyp2qxp2qrpψpSpcqyp1qxp1qqqq b
µ̃

ΛνpD
1
2 pyp3qqq

�W �
¸

Λνpxp2qrpψpSpcqyp1qxp1qqqq b
µ̃

Λνpyp2qq. �

2.5.9. Remark. Under the identification (30), for all homogeneous a, x, y P A and ζ P K

∆pπνpaqqpΛνpxq b ζ b Λνpyqq �
¸

Λνpap1qxq b UB̄ap1q
ζ b Λνpap2qyq,

where ap1q is assumed to be homogeneous without loss of generality.

2.6. The Hopf C�-bimodules. The fundamental unitaryW is regular C�-pseudo-mul-
tiplicative unitaries in the sense of [24], and therefore yields Hopf C�-bimodules which
are completions of A and Â. To prove this, we again need some preliminaries concerning
the relative tensor product in the setting of C�-algebras; for details, see [22] and [24].
The construction is parallel to the von Neumann-algebraic setting and differs mainly in
notation.

As before, let b � pK, rπµpBqs, rπµpBqsq. The relative tensor product H
E:
ψ
b
b E

:
φ
H

of the C�-b-modules pH,E:
ψq and pH,E:

φq is the separated completion of the algebraic
tensor product E:

ψ bK b E:
φ with respect to the sesquilinear form given by

xξ b ζ b η|ξ1 b ζ 1 b η1y � xζ|pξ�ξ1qpη�η1qζ 1y.(41)

It can be regarded as a twofold internal tensor product of Hilbert C�-modules and iden-
tified with certain separated completions E:

ψ =α H and Hβ < E:
φ of the algebraic tensor

products E:
ψ bH and H b E:

φ, respectively, such that

E:
ψ = αH � H

E:
ψ
b
b E

:
φ
H � Hβ < E:

φ, ξ = ηζ � ξ b ζ b η � ξζ < η.(42)

Comparing the sesquilinear forms (28) with (41) and using (27), one finds that there
exists an isomorphism

Hβb
µ̃
αH � H

E:
ψ
b
b E

:
φ
H, Λνpxq b ζ b Λνpyq � Λ:

ψpxq b ζ b Λ:
φpyq.(43)

For each ξ P E:
ψ and η P E:

φ, there exist bounded linear operators

|ξy1 : H Ñ H
E:
ψ
b
b E

:
φ
H, η1 ÞÑ ξ = η1, |ηy2 : H Ñ H

E:
ψ
b
b E

:
φ
H, ξ1 ÞÑ ξ1 < η.
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We denote their adjoints by xξ|1 and xη|2, respectively, and write |E:
ψy1 � t|ξy1 : ξ P

E:
ψu, |E

:
φy2 � t|ηy2 : η P E:

φu et cetera. Comparing with (34), we see that under the
identification (43), λpα,βΛνpxq

� |Λ:
ψpxqy1 and ρpα,βΛνpyq

� |Λ:
φpyqy2 for all x, y P A.

Replacing E:
ψ and E:

φ by E:
φ and Eφ, respectively, one similarly defines the relative

tensor product H
E:
φ
b
b
EφH with a canonical isomorphism H

E:
φ
b
b
EφH � Hαb

µ̃
pβ
H, and

operators |ξy1, |ηy2 : H Ñ H
E:
φ
b
b
EφH for all ξ P E:

φ and η P Eφ.

Thus, W can be regarded as a unitary H
E:
ψ
b
b E

:
φ
H Ñ H

E:
φ
b
b
EφH.

2.6.1. Lemma. For all x, x1, y, y1 P A and γ P tα, β, pβu, γ1 P tα, pα, βu,
Λνpxq b

µ̃
Λνpyq P DppHβb

µ̃
αHqidb

µ̃
γ , µ̃q,

R
idb
µ̃
γ,µ̃

Λνpxqb
µ̃

Λνpyq
� λβ,αΛνpxq

Rγ,µ̃Λνpyq
� |Λ:

ψpxqy1R
γ,µ̃
Λνpyq

,

Λνpx
1q b

µ̃
Λνpy

1q P DppHαb
µ̃
pβ
Hqγ1b

µ̃
id, µ̃q,

R
γ1b
µ̃

id,µ̃

Λνpx1qb
µ̃

Λνpy1q
� ρα,

pβ
Λνpy1q

Rγ
1,µ̃

Λνpx1q
� |Λφpy

1qy2R
γ1,µ̃
Λνpx1q

.

2.6.2. Proposition. The following equations for subspaces of LpH,H
E:
ψ
b
b E

:
φ
Hq hold:

W r|E:
ψy1Eφs � r|Eφy2E

:
ψs, W r|E:

φy2Eψs � r|Eφy2Eψs, W r|E:
φy2Eφs � r|Eφy2Eφs,

W r|E:
φy2E

:
φs � r|E:

φy1E
:
φs, W r|E:

ψy1E
:
ψs � r|E:

φy1E
:
ψs, W r|E:

ψy1Eψs � r|E:
φy1Eψs.

Proof. We only prove the first equation; the others follow similarly:

W r|E:
ψy1Eφs � rtWR

idb
µ̃

pβ,µ̃

ω : ω P ΛνpAq b
µ̃

ΛνpAqus (Lemma 2.6.1 and (2.2.3))

� rtR
βb
µ̃

id,µ̃

Wω : ω P ΛνpAq b
µ̃

ΛνpAqus (Lemma 2.5.1)

� rtR
βb
µ̃

id,µ̃

ω1 : ω1 P ΛνpAq b
µ̃

ΛνpAqus (Definition of W )

� r|Eφy2E
:
ψs. (Lemma 2.6.1 and 2.2.3) �

2.6.3. Theorem. Let A � pA,∆, ε, S, µ, φ, ψq be a measured multiplier pB,Γq-Hopf �-
algebroid such that µ admits a GNS-representation via bounded operators pK,Λµ, πµq
and the Radon-Nikodym cocycle of µ has a positive square root in MpBq. Let b �
pK, rπµpBqs, rπµpBqsq, let Λν : A Ñ LpHq be the GNS-map of ν � µ � φ � µ � ψ

and define Eφ, E
:
φ, Eψ, E

:
ψ � LpK,Hq as in (24). Then the left and the right pseudo-

multiplicative unitary W and V of A, regarded as operators H
E:
ψ
b
b E

:
φ
H Ñ H

E:
φ
b
b
EφH

and HEψb
b E

:
ψ
H Ñ H

E:
ψ
b
b E

:
φ
H as above, are C�-pseudo-multiplicative unitaries in the

sense of [24].
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Proof. The assertion on W is Proposition 2.6.2 and Lemma 2.5.2. For V , the proof is
similar. �
2.6.4.Proposition. W and V are regular in the sense that rxE:

φ|1W |E:
φy2s � rE:

φpE
:
φq

�s �

LpHq and rxE:
ψ|1V |E

:
ψy2s � rE:

ψpE
:
ψq

�s � LpHq.

Proof. Let x, x1, y P A. Then Λ:
φpyqΛ

:
φpxq

�Λνpy
1q � Λνprpφpy

1θpx�qqqyq by Lemma 2.2.1
and

xΛ:
φpyq|2W

�|Λ:
φpxqy1Λνpy

1q � pρβ,αΛνpyq
q�W �pΛνpxq b

µ̃
Λνpy

1qq

�
¸
βpxΛνpyq|ΛνpD

1
2 py1p2qqqyα,µ̃qΛνpy

1
p1qxq

�
¸

ΛνpspφpD
1
2 py1p2qqθpy

�qqqy1p1qxq pEq. (27)q

�
¸

Λνpspφpy
1
p2qzqqy

1
p1qxq pz :� D� 1

2 pθpy�qqq

�
¸

Λνprpφpy
1zp2qqqS

�1pzp1qqxq. pProp. 1.5.3q

Since the maps θ,D� 1
2 , S and T3 are bijections, we can conclude

rtΛ:
φpyqΛ

:
φpxq

� : x, y P Aus � rtxΛ:
φpxq|2W

�|Λ:
φpyqy1 : x, y P Aus.

The assertion on V follows from a similar calculation. �
Recall from [24] that aHopf C�-bimodule over b consists of a C�-pb, bq-module pL,E, F q,

a non-degenerate C�-algebra C � LpLq satisfying ρEpπµpBqq �MpCq and ρF pπµpBqq �
MpCq, and a non-degenerate �-homomorphism ∆C : C Ñ CF �

b
EC that is co-associative

and compatible with E and F in a suitable sense, where

CF �
b
EC � tT P LpLFb

b
ELq :T |F y1 � T �|F y1 � r|F y1Cs

and T |Ey2 � T �|Ey2 � r|Ey2Csu

is the fiber product of C with itself relative to F and E.

2.6.5. Theorem. Let A � pA,∆, ε, S, µ, φ, ψq be a measured multiplier pB,Γq-Hopf �-
algebroid such that µ admits a GNS-representation via bounded operators pK,Λµ, πµq
and its Radon-Nikodym cocycle has a positive square root in MpBq. Let b � pK, rπµpBqs,
rπµpBqsq, let Λν : AÑ LpHq be the GNS-map for ν � µ �φ � µ �ψ, let pπνpAq2, α, β,∆q
be the Hopf-von Neumann bimodule of A, let pρpÂq2, β̂, α, ∆̂q be the dual Hopf-von Neu-
mann bimodule of A, define Eφ, E:

φ, Eψ, E
:
ψ � LpK,Hq as in (24) and regard ∆ and

∆̂ as maps πνpAq2 Ñ LpH
E:
ψ
b
b E

:
φ
Hq and ρpÂq2 Ñ LpH

E:
φ
b
b
EφHq as above. Then

ppH,E:
φ, E

:
ψq, rπνpAqs,∆|rπνpAqsq and ppH,Eψ, E

:
φq, rρpÂqs, ∆̂|rρpÂqsq are Hopf C

�-bimodules
over b.

Proof. By Theorem 2.6.3 and Proposition 2.6.4, the left pseudo-multiplicative unitary
W of A, regarded as a unitary H

E:
ψ
b
b E

:
φ
H Ñ H

E:
φ
b
b
EφH, is a regular C�-pseudo-

multiplicative unitary. By [24], the latter gives rise to two Hopf C�-bimodules

ppH,E:
φ, E

:
ψq, rxEφ|2W |E:

φy2s,∆q and ppH,Eψ, E
:
ψq, rxE

:
φ|1W |E:

ψy1s, ∆̂q.
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Finally, by Lemma 2.4.1, rxE:
φ|1W |E:

ψy1s � rρpÂqs and rxEφ|2W |E:
φy2s � rλpÂqs. �

2.7. The measured quantum groupoid. To obtain a measured quantum groupoid, we
finally extend ν, φ, ψ to normal, semi-finite, faithful weights on the level of von Neumann
algebras. We impose the following simplifying assumptions:
(A3) the bimodule rAs is proper in the sense that rpBqspBq � A.
(A4) There exists a net puiqi in B that is truncating for µ in the sense that pπµpuiqqi is

a net of positive elements in the unit ball of πµpBq that converges in MprπµpBqsq
strictly to 1 and such that pπµpu2

i qqi is increasing.
Note that a net puiqi as in (A4) exists always if we drop the condition that pπµpu2

i qqi
should be increasing.

Let us also note that in the bi-measured case where φ, ψ and ν arise from a bi-integral
h on pA,∆q, the extensions of φ, ψ, ν and the invariance of these extensions can be proved
quite easily, see Remark 2.7.5 and 2.7.10.

For the extension of ν, we do not need the assumptions (A3) and (A4), but use the
modular automorphism θ for ν obtained in Theorem 1.6.5, the theory of Hilbert algebras
[20], and results of Kustermans and van Daele [11].

2.7.1. Lemma. ΛνpAq � H is a Hilbert algebra with respect to the �-algebra structure
inherited from A.

Proof. The multiplication Λνpyq ÞÑ Λνpxyq is bounded for each x P A by Theorem 2.4.2,
and the involution Λνpxq ÞÑ Λνpx

�q is pre-closed because

xΛνpxq|Λνpy
�qy � νpx�y�q � νpy�θpx�qq � xΛνpyq|Λνpθpx

�qqy for all x, y P A. �

The general theory of Hilbert algebras [20] now yields
 M � πνpAq

2 � LpHq as the associated von Neumann algebra,
 a n.s.f. weight ν̃ on M such that ν̃pπνpa�aqq � xΛνpaq|Λνpaqy � νpa�aq for all
a P A,

 a left ideal Nν̃ :� tx PM : ν̃px�xq   8u �M of square-integrable elements,
 a closed map Λν̃ : Nν̃ Ñ H such that pH,Λν̃ , idM q is a GNS-representation for ν̃;
this is the closure of the map πνpAq Ñ H given by πνpaq Ñ Λνpaq;

 the usual objects Jν̃ ,∆ν̃ , σ
ν̃ , Tν̃ , . . . of Tomita-Takesaki theory.

The modular automorphism θ is related to the modular automorphism group σν̃ as
follows:

2.7.2. Proposition. πνpAq � Tν̃ and σν̃nipπνpaqq � πνpθ
�npaqq for all a P A, n P Z.

Proof. Use the arguments in [12, §3], in particular from Lemma 3.16 till Proposition
3.22. �

Let Aθ :� ta P A : θpaq � au � A. Note that this space is a �-subalgebra and, by
(A3), contains rpBqspBq.

2.7.3. Lemma. i) σν̃ acts trivially on πνpAθq2, in particular on αpNq and βpNq.
ii) Jν̃αpxq�Jν̃ � pβpxq and Jν̃βpxq�Jν̃ � pαpxq for all x P N .
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Proof. i) The first assertion follows from the fact that σν̃t pxq � ∆it
ν̃ x∆�it

ν̃ and ∆�1
ν̃ x∆ν̃ �

x for each x P πν̃pA
θq by Proposition 2.7.2, and the second assertion follows from the

fact that σν̃t is normal for all t P R and acts trivially on πνprpBqspBqq.
ii) Combine i) and Lemma 2.2.2. �

2.7.4. Proposition. There exist unique n.s.f. weights TL from M to αpNq and TR from
M to βpNq such that µ̃ � α�1 � TL � ν̃ � µ̃ � β�1 � TR.

Proof. This follows from Lemma 2.7.3 i) and [18, 10.1] or [20, IX Theorem 4.18]. �

We thus obtain extensions φ̃ :� α�1 � TL and ψ̃ :� β�1 � TR of φ and ψ.

2.7.5. Remark. Assume that φ � pidbµq � h and ψ � pµb idq � h for a normalized bi-
integral h on pA,∆q. Then the map ΛµpBqbΛµpBq Ñ ΛνpAq given by ΛµpbqbΛµpb

1q ÞÑ
Λνprpbqspb

1qq extends to an isometry ι : K b K Ñ H, and a short calculation shows
that ι�πνpaqι � pπµbπµqphpaqq for all a P A. We therefore get a positive, normal, linear
extension h̃ : M Ñ N , x ÞÑ ι�xι, of h, and thereby the desired extensions φ̃ � pid b̄µ̃q� h̃,
ψ̃ � pµ̃b̄µ̃q � h̃ and ν̃ � pµ̃b̄µ̃q � h̃.

Recall that an element ξ P H is right-bounded with respect to the Hilbert algebra
ΛνpAq if there exists an operator Rξ P LpHq such that πνpaqξ � RξΛνpaq for all a P A.
Note that then Rξ PM 1.

2.7.6. Lemma. i) If x P Aθ, then Λνpxq P H is right-bounded, RΛνpxq � Jνπνpxq
�Jν

and }RΛνpxq} � }πνpxq}.
ii) If x P Aθ X rpBq1, then πνpaqΛφpxq � RΛνpxqΛφpaq for all a P A.
iii) If a P A and ξ P K is right-bounded with respect to ΛµpBq, then Λφpaqξ �pβpRξqΛνpaq.

Proof. i) For all x P Aθ, a P A, we have πνpaqΛνpxq � Λνpaxq � Jνπνpxq
�JνΛνpaq.

ii) For all x P Aθ X rpBq1, a P A, b P B,

πνpaqΛφpxqΛµpbq � Λνpaxrpbqq � Λνparpbqxq

� πνparpbqqΛνpxq � RΛνpxqΛνparpbqq � RΛνpxqΛφpaqΛµpbq.

iii) If a P A and ξ � Λµpbq for some b P B, then Rξ � πµpbq and Λφpaqξ � Λνparpbqq �pβpπµpbqqΛνpaq. Now, the assertion follows for all right-bounded ξ because ΛµpBq is a
core for Λµ̃ and the right-bounded elements coincide with Λµ̃pNµ̃q. �

To prove Theorem 2.7.9, we construct increasing approximations of the weights µ̃, ν̃, φ̃, ψ̃
by bounded positive maps, using an approximate unit puiqi in B with the properties as-
sumed in (A4). Let ui,j :� rpuiqspujq P A, and define for all i, j bounded, normal,
positive, linear maps

µi : N Ñ C, x ÞÑ xΛµpuiq|xΛµpuiqy, νi,j : M Ñ C, x ÞÑ xΛνpui,jq|xΛνpui,jqy,

φi,j : M Ñ N, x ÞÑ Λφpui,jq
�xΛφpui,jq, ψi,j : M Ñ N, x ÞÑ Λψpui,jq

�xΛψpui,jq.

Given a net pλκqκ of real numbers, we write pλκqκ Õ λ if it is increasing and converges to
λ. Likewise, given a von Neumann algebra C with a net pωκqκ in C�

� and a n.s.f. weight
ω, we write pωκqκ Õ ω if ωκpx�xq Õ ωpx�xq for all x P C.
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2.7.7. Proposition. i) pµiqi Õ µ̃ and pνi,jqi,j Õ ν̃;
ii) pυ � φi,jqi,j Õ υ � φ̃ and pυ � ψi,jqi,j Õ υ � ψ̃ for all υ P N�

� .

Proof. i) We only prove the assertion concerning ν̃.
Let ξi,j :� Λνpui,jq and Ri,j :� Rξi,j � Jνπνpui,jqJν for all i, j.
The net pνi,jqi,j in M�

� is increasing because pR�
i,jRi,jqi,j is increasing by assumption

on puiqi, νi,jpπνpa�aqq � }Ri,jΛνpaq}
2 for all a P A and πνpAq �M is weakly dense.

Call ξ P H right-contractive if ξ is right-bounded and }Rξ} ¤ 1. Let x PM . Then

ν̃px�xq � sup
 
}xξ}2

�� ξ P H is right-contractive
(
.

Each ξi,j is right-contractive by Lemma 2.7.6 and hence νi,jpx�xq � }xΛνpui,jq}
2 ¤

ν̃px�xq for all i, j. Conversely, for each right-contractive ξ P H,

}xξ}2 � lim
i,j

}xπνpui,jqξ}
2 � lim

i,j
}xRξΛνpui,jq}

2 ¤ lim
i,j

}xΛνpui,jq}
2 � lim

i,j
νi,jpx

�xq

because Rξ PM 1 and R�
ξRξ ¤ 1. Therefore, ν̃px�xq ¤ limi,j νi,jpx

�xq.
ii) We only prove the assertion concerning φ̃. A similar argument as above and Lemma

2.7.6 ii) show that for each υ P N�
� , the net pυ�φi,jqi,j is increasing. Taking pointwise lim-

its, we obtain a normal semi-finite weight ω fromM toN such that for each y PM , the el-
ement ωpy�yq in the extended positive part N̂� is defined by υpωpyqq � supi,j υpφi,jpy

�yqq

for all υ P N�
� . Then for all y PM ,

µ̃pωpy�yqq Ô
i,j,k

}yΛφpui,jqΛµpukq}
2 � }ypβpπµpukqqξi,j}2
kÑ8
ÝÝÝÑ }yξi,j}

2 � νi,jpy
�yq Õ

i,j
ν̃py�yq

and hence µ̃ � ω � ν̃. By [20, Theorem 4.18], ω � φ̃. �

2.7.8. Lemma. W �ρα,
pβ

Λνprpbqspb1qq
βpπµpb

2qq � ρβ,αΛνprpb2qspb1qq
αpπµpbqq for all b, b1, b2 P B.

Proof. Applying both sides to Λνpaq, where a P A is arbitrary, we obtainW �pΛνpspb
2qaqb

µ̃

Λνprpbqspb
1qqq and Λνprpbqaq b

µ̃
Λνprpb

2qspb1qq, respectively, which coincide. �

As usual, let NTL :� tx PM : TLpx
�xq P Nu and similarly define NTR .

2.7.9. Theorem. Let A � pA,∆, ε, S, µ, φ, ψq be a measured multiplier pB,Γq-Hopf �-
algebroid satisfying the following conditions:
(A1) µ admits a GNS-representation via bounded operators pK,Λµ, πµq,
(A2) the Radon-Nikodym cocycle of µ has a positive square root in MpBq,
(A3) the bimodule rAs is proper,
(A4) there exists a truncating net for µ.

Let µ̃ be the weight on N � πµpBq
2 associated to the Hilbert algebra ΛµpBq, let Λν : AÑ

LpHq be the GNS-map for ν � µ � φ � µ � ψ, let pπνpAq2, α, β,∆q be the Hopf-von
Neumann bimodule of A (Definition 2.5.7), let ν̃ be the weight on M � πνpAq

2 asso-
ciated to the Hilbert algebra ΛνpAq, and let TL and TR be the n.s.f. weights from M
to αpNq and βpNq given by µ̃ � α�1 � TL � ν̃ � µ̃ � β�1 � TR (see Proposition 2.7.4).
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Then pN, µ̃,M, α, β,∆, TL, TR, ν̃q is a measured quantum groupoid in the sense of [2]. In
particular, TL and TR are left- and right-invariant with respect to ∆ in the sense that

TLppλ
β,α
ξ q�∆px�xqλβ,αξ q � αppRβ,µ̃ξ q�TLpx

�xqRβ,µ̃ξ q for all x P NTL , ξ P DpHβ, µ̃q,

TRppρ
β,α
η q�∆px�xqρβ,αη q � βppRα,µ̃η q�TRpx

�xqRα,µ̃η q for all x P NTR , η P DpHα, µ̃q.

Proof. We use the same notation as before. To prove the assertion concerning φ̃ and TL,
we show that

xζ|φ̃ppλβ,αξ q�∆px�xqλβ,αξ qζy � }αpφ̃px�xqq
1
2Rβ,µ̃ξ ζ}2(44)

for all x P NTL , ξ P DpHβ, µ̃q and ζ P K. Given such x, ξ, ζ, let ξk :� αpπµpukqqξ and

ci,j,k :� xζ|φi,jppλ
β,α
ξk
q�∆px�xqλβ,αξk qζy for all i, j, k.

Then Rβ,µ̃ξk � αpπµpukqqR
β,µ̃
ξ , λβ,αξk � pαpπµpukqq b

µ̃
idqλβ,αξ , and by Proposition 2.7.7,

ci,j,k
kÑ8
ÝÝÝÑ xζ|φi,jppλ

β,α
ξ q�∆px�xqλβ,αξ qζy Õ

i,j
xζ|φ̃ppλβ,αξ q�∆px�xqλβ,αξ qζy.

On the other hand, using the relation Λφpui,jq � Λ:
φpui,jq, we find

ci,j,k � }p1b
µ
xqWλβ,αξk Λφpui,jqζ}

2 (Definition of ∆W and φi,j)

� }p1b
µ
xqWρβ,αΛνpui,jq

αpπµpukqqR
β,µ̃
ξ ζ}2 (Definition of Hβb

µ̃
αH)

� }p1b
µ
xqρpα,βΛνpuk,jq

βpπµpuiqqR
β,µ̃
η ζ}2 (Lemma 2.7.8)

� }pαpφk,jpx�xqq 12βpπµpuiqqRβ,µ̃ξ ζ}2

Õ
i,j,k

}pαpφ̃px�xqq 12Rβ,µ̃ξ ζ}2. (Proposition 2.7.7)

Thus, (44) follows. The assertion concerning ψ̃ and TR can be proven similarly, where
W has to be replaced by the unitary V . �
2.7.10. Remark. Assume that φ � pidbµq � h for a normalized bi-integral h on pA,∆q.
Then for each b P B, the map ΛµpBq Ñ ΛνpAq given by Λµpcq ÞÑ Λνpspbqrpcqq is
bounded with norm less than or equal to µpb�bq

1
2 , and therefore extends to an operator

Λφpspbqq P LpK,Hq. One can then approximate φ̃ monotonously by the maps φi : M Ñ
N , x ÞÑ Λφpspuiqq

�xΛφpspuiqq, and a similar calculation as in Lemma 2.7.8 shows that
each φi is right-invariant.

Associated to the measured quantum groupoid pN, µ̃,M, α, β,∆, TL, TR, ν̃q are two
fundamental unitaries U 1

H : H
pαb
µ̃
βH Ñ Hβb

µ̃
αH and UH : Hαb

µ̃
pβ
H Ñ Hβb

µ̃
αH, charac-

terized by

pλβ,αw q�UHpv b
µ̃

Λν̃paqq � Λν̃ppωw,v � idqp∆paqqq for v, w P DpHβ, µ̃q, a P Nν̃ XNTL ,

pρβ,αw1 q
�U 1

HpΛν̃pa
1q b

µ̃
v1q � Λν̃ppid �ωw1,v1qp∆pa

1qqq for v1, w1 P DpHα, µ̃q, a
1 P Nν̃ XNTR ;
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see [13, Proposition 3.17].

2.7.11. Proposition. W � � UH and V � U 1
H .

Proof. Let x, y, y1, z P A and choose vi, wi P A such that
°
D̄

1
2 pyp1qqx

1b
B
yp2q �

°
vib

B
wi

in sAb
B
rA. Then

pωΛνpxq,Λνpx1q � idqpW �qΛνpyq �
¸
i

pλβ,αΛνpxq
q�pΛνpviq b

µ̃
Λνpwiqq

�
¸
i

Λνprpψpviθpx
�qqqwiq,

pωΛνpxq,Λνpx1q � idqp∆pyqqΛνpzq �
¸
i

pλβ,αΛνpxq
q�pΛνpviq b

µ̃
Λνpwizqq

�
¸
i

πνprpψpviθpx
�qqqqΛνpwizq,

and hence pωΛνpxq,Λνpx1q � idqpW �qΛνpyq � Λν̃ppωΛνpxq,Λνpx1q � idqp∆pyqqq. Likewise, with
v1i, w

1
i P A such that

°
D̄

1
2 pxp1qq b

B
xp2qy

1 �
°
v1i b

B
w1
i P sAb

B
rA, we find

pid �ωΛνpyq,Λνpy1qqpV qΛνpxq �
¸
i

pρβ,αΛνpyq
q�pΛνpv

1
iq b

µ̃
Λνpw

1
iqq

�
¸
i

Λνpspφpw
1
iθpy

�qqqv1iq,

pid �ωΛνpy1q,Λνpyqqp∆pπνpxqqqΛνpzq �
¸
i

pρβ,αΛνpyq
q�pΛνpv

1
izq b

µ̃
Λνpw

1
iq

�
¸
i

πνpspw
1
iθpy

�qqqΛνpv
1
izq

and hence pid �ωΛνpyq,Λνpy1qqpV qΛνpxq � Λν̃
�
pid �ωΛνpy1q,Λνpyqqp∆pπνpxqqq

�
. �

The adapted measured quantum groupoid pN, µ̃,M, α, β,∆, TL, TR, ν̃q has an antipode
S̃ which is characterized by the following properties:

i) spantpid �ωv,w � idqpV q : w, v P Tν̃,TRu is a core for S̃,
ii) S̃ppωw,v � idqpV qq � pωw,v � idqpV �q for all w, v P Tν̃,TR ,

where Tν̃,TR is the set of all x P M that are analytic with respect to σν̃ and satisfy
σν̃z P Nν̃ XN�

ν̃ XNTR XN�
TR

for all z P C. Likewise, one defines Tν̃,TL .
2.7.12. Lemma. πνpAq � Tν̃,TR X Tν̃,TL.
Proof. Recall that πνpAq � Tν̃ by Proposition 2.7.2. Using Lemma 2.7.3 i), we find

σν̃z pπνpAqq � σν̃z pπνpAspBqqq � σν̃z pπνpAqqβpπµpBqq � Nν̃βpNµ̃q � NTR

for all z P C. Consequently, πνpAq � Tν̃,TR . A similar argument shows that πνpAq �
Tν̃,TL . �

2.7.13. Proposition. πνpAq � DompS̃q and S̃pπνpaqq � πνpD
1
2SD

1
2 paqq for all a P A.
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Proof. Let x, x1 P A and a �
°
D� 1

2 px1p2qrpψpx
�x1p1qqqq. Then

pωΛνpxq,Λνpx1q � idqpV q � πνpaq, (Lemma 2.4.4)

pωΛνpxq,Λνpx1q � idqpV �q �
�
pλβ,αΛνpx1q

q�V λpα,βΛνpxq

	�
�

¸
πνpD

� 1
2 pxp2qrpψpx

1�xp1qqqqq
� (Lemma 2.4.4)

�
¸
πνpD

1
2 prpψpx�p1qx

1qqx�p2qqq

�
¸
πνpD

1
2 pSpx1p2qrpψpx

�x1p1qqqqqq (Proposition 1.5.3)

� πνpD
1
2SD

1
2 paqq. �
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