Quantum Transformation Groupoids in the Setting of Operator Algebras

(work in progress)

Thomas Timmermann

Westflische Wilhelms-Universität Münster

22th of September 2011
Operator Algebras and Quantum Groups, Warsaw
on the occasion of the 70th birthday of S. L. Woronowicz

Question: Are there "Quantum" Transformation Groupoids?

Recall:

- ▶ action $X \circlearrowleft \Gamma \rightsquigarrow \text{transformation groupoid } X \rtimes \Gamma$
- ▶ action $C_0(X) \circlearrowleft \Gamma \rightsquigarrow C_0(X) \rtimes \Gamma = C^*(X \rtimes \Gamma)$

Question:

- ▶ Given an action $B \circlearrowleft \Gamma$, is $B \rtimes \Gamma$ still a quantum groupoid
 - if B is a noncommutative C^* -algebra or W^* -algebra?
 - \triangleright if Γ is a locally compact quantum group?
 - ▶ if $B \circlearrowleft \Gamma$ is a deformation of a classical action?

Plan of the Talk and some Relation to the Audience

What we shall do...

... and some buzzwords related to conference participants:

- 1. Warming up in the algebraic setting
 - Quantum transformation groupoid (Brzeziński)
 - ► Multiplier Hopf *-algebroids (Van Daele)
- 2. Passage to the setting of operator algebras
 - ► Measured quantum groupoids (Enock-Vallin)
 - ► Yetter-Drinfeld algebras (Nest-Voigt)
 - ► Crossed product (Vaes)
 - Example: $SU_q(2) \ltimes S_q^2$ (Woronowizc)

Tentative Constituents of a Quantum Transformation Groupoid

Which structure should be there? What do we have for $B \circlearrowleft \Gamma$?

- ▶ a base algebra B and a total algebra A $A = B \rtimes \Gamma$
- ▶ commuting range and source maps $r: B \to A$ and $s: B^{op} \to A$ $r: b \mapsto b \times 1$; $s: b^{op} \mapsto b \times 1$ not possible unless B commutes
- ▶ a comultiplication Δ from A to a fiber product A_s*_rA should correspond to the dual coaction on $A = B \rtimes \Gamma$
- ▶ an antipode $S: (A, \Delta) \rightarrow (A^{op}, \Delta^{co})$ expect $S(b \bowtie 1) = S(r(b)) = s(b^{op})$ and $S(1 \bowtie f) = 1 \bowtie S_{\Gamma}(f)$
- ▶ weight μ on B should be (quasi-)invariant with respect to $B \circlearrowleft \Gamma$
- ► Haar weights $\Phi: A \to r(B) \equiv B$ and $\Psi: A \to s(B^{op}) \equiv B^{op}$ expect $\Phi(b \times f) = b\phi_{\Gamma}(f)$; for Ψ need to s or S

"Quantum" necessitates a Dual Pair of Transformations

Assume $B \circlearrowleft \Gamma$, where B is an algebra an Γ a (quantum) group

Thought experiment:

- ▶ If $B \rtimes \Gamma$ is a quantum groupoid, it should have a dual $\widehat{B \rtimes \Gamma}$
- ▶ In the special case where $B = C_0(X)$ and Γ is a group,

$$\widehat{C_0(X)} \times \Gamma = \widehat{C^*(X \times \Gamma)}$$

= $C_0(X \times \Gamma) = C_0(X) \otimes C_0(\Gamma)$

► Expect $\widehat{B \rtimes \Gamma} = B \rtimes \widehat{\Gamma}$ for a suitable action $B \circlearrowleft \widehat{\Gamma}$

Conclusion:

► Assume a second action $B \circlearrowleft \hat{\Gamma}$, compatible with $B \circlearrowleft \Gamma$

Compatibility Assumptions on the Pair of Transformations

Assume $B \circlearrowleft \Gamma$ and $B \circlearrowleft \hat{\Gamma}$

Thought experiment:

- ▶ Assume Γ is a discrete group
- ▶ Then for all $b, c \in B$,

$$[r(b), s(c^{op})] = [b \times 1, \sum_{\gamma} c_{\gamma} \times \gamma]$$
$$= \sum_{\gamma} bc_{\gamma} \times \gamma - \sum_{\gamma} c_{\gamma}(\gamma \triangleright b) \times \gamma$$

should be 0

▶ ...and $s(b^{op})s(c^{op}) = s((cb)^{op})$

Conclusion:

► Assume B is a braided-commutative Yetter-Drinfeld algebra

The Algebraic Version of Quantum Transformation Groupoids

Theorem (Lu '96; Brzeziński, Militaru '01)

Assume

- ► H is a Hopf algebra
- ▶ B is a braided-commutative Yetter-Drinfeld algebra over H.

Then the following ingredients form a Hopf algebroid:

- ightharpoonup A = B
 times H (the crossed product for the action)
- $ightharpoonup r: B o A, b \mapsto b imes 1_H$
- $s: B^{op} \to A$, $b^{op} \mapsto \sum b_{(0)} \rtimes b_{(1)}$ $(b \mapsto \sum b_{(0)} \otimes b_{(1)}$ the coaction)

Passage to Operator Algebras

Assumptions

- $lackbox(L^\infty\mathbb{G},\Delta)$ and $(L\mathbb{G},\hat{\Delta})$ are dual l.c. quantum groups with
 - lacktriangle right Haar weights $\phi, \hat{\phi}$ and GNS-space $\mathbb H$
 - ▶ multiplicative unitary $\mathbb{W} \in \mathcal{L}(\mathbb{H} \otimes \mathbb{H})$ of $(L^{\infty}\mathbb{G}, \Delta)$
- ▶ B is a W*-algebra with right coactions α, λ of $L^{\infty}\mathbb{G}, L\mathbb{G}$ s.t.
 - ► Yetter-Drinfeld condition, Nest-Voigt '09:

$$B \xrightarrow{(\operatorname{id} \bar{\otimes} \alpha) \circ \lambda} L^{\infty} \mathbb{G} \bar{\otimes} L \mathbb{G} \bar{\otimes} B$$

$$\downarrow Ad_{\Sigma W \bar{\otimes} \operatorname{id}}$$

$$B \xrightarrow{(\operatorname{id} \bar{\otimes} \lambda) \circ \alpha} L \mathbb{G} \bar{\otimes} L^{\infty} \mathbb{G} \bar{\otimes} B$$

- ▶ braided commutativity: $[\alpha(B), \operatorname{Ad}_{U\otimes 1}(\lambda(B))] = 0$ in $\mathcal{L}(\mathbb{H})\bar{\otimes}B$, where $U = J_{\phi}J_{\hat{\phi}}$
- \blacktriangleright μ is a weight on B which is invariant for α , λ (w.r.t. δ^{-1} , $\hat{\delta}^{-1}$)

The Hopf-von Neumann Bimodule

To obtain a Hopf-von Neumann bimodule, define

- $A := L\mathbb{G} \ltimes_{\alpha} B = ((L\mathbb{G} \otimes 1)\alpha(B))'' \subseteq \mathcal{L}(\mathbb{H})\bar{\otimes} B \hookrightarrow \mathcal{L}(\mathbb{H} \otimes H_{\mu})$
- ▶ the range map $r: B \to A$, $b \mapsto \alpha(b)$
- ▶ a source map $s: B^{op} \to \mathcal{L}(\mathbb{H} \otimes H_{\mu}), \ b^{op} \mapsto \mathrm{Ad}_{(J_{\phi} \otimes J_{\mu})}(\lambda(b)^*)$

Proposition

- **1.** $s(B^{op}) \subseteq A$
- **2.** \exists specific unitary $\Xi \colon \mathbb{H} \otimes H_{\mu} \otimes \mathbb{H} \to (\mathbb{H} \otimes H_{\mu})_{s} \underset{\mu}{\otimes}_{r} (\mathbb{H} \otimes H_{\mu})$
- **3.** $\Delta_A : A \xrightarrow{\hat{\alpha}} L\mathbb{G} \otimes A \hookrightarrow \mathcal{L}(\mathbb{H} \otimes \mathbb{H} \otimes H_{\mu}) \xrightarrow{\sigma_{(321)}} \mathcal{L}(\mathbb{H} \otimes H_{\mu} \otimes \mathbb{H}) \cdots \xrightarrow{\mathsf{Ad}_{\equiv}} \mathcal{L}((\mathbb{H} \otimes H_{\mu})_s \otimes_r (\mathbb{H} \otimes H_{\mu}))$ satisfies $\Delta_A(A) \subseteq A_s *_r A$ and $(\Delta_A *_i d) \circ \Delta_A = (id *_{\Delta_A}) \circ \Delta_A$ whence $(B, A, r, s, \mu, \Delta_A)$ is a Hopf W^* -bimodule (Vallin '96).

◆ロ > ◆昼 > ◆ 種 > ◆ 種 > ● り へ ○

Guessing the Unitary Antipode

The proof uses the *unitary implementations* of the coactions α, λ :

$$X,\hat{X}\in\mathcal{U}(\mathbb{H}\otimes H_{\mu})$$
 s.t. $lpha=\mathsf{Ad}_X(1\otimes -)$ and $\lambda=\mathsf{Ad}_{\hat{X}}(1\otimes -)$

How to proceed?

- ▶ a left Haar weight on A is easy to guess, but not a right one
- ▶ try to guess an anti-unitary I_A on $\mathbb{H} \otimes H_\mu$ such that $I_A r(b)^* I_A = s(b^{op}), \ \ I_A (f^* \otimes 1) I_A = \hat{R}(f) \otimes 1 \ \text{for} \ f \in L\mathbb{G}$ (*)

Proposition

- **1.** $I_A := \operatorname{Ad}_X(\hat{X}^*(J_\phi \otimes J_\mu))$ satisfies (*), whence $I_A A I_A = A$.
- **2.** $R_A: A \to A, a \mapsto I_A a^* I_A$, satisfies $R_A(r(b)) = R_A(s(b^{op}))$ for all $b \in B$ and $\Delta_A \circ R_A = (R_A * R_A) \circ \operatorname{Ad}_{\Sigma} \circ \Delta_A$

The Haar Weights and the Measured Quantum Groupoid

There exists an expectation $\Phi_A \colon A \xrightarrow{\hat{\alpha}} L\mathbb{G} \otimes A \xrightarrow{\hat{\phi} \otimes \operatorname{id} \otimes \operatorname{id}} \alpha(B) \equiv B;$ if $\hat{\phi}$ is bounded, $\Phi_A((f \otimes 1)\alpha(b)) = \hat{\phi}(f)\alpha(b)$ for $f \in L\mathbb{G}, b \in B.$

Claims

1. Φ_A is left-invariant with respect to Δ_A

(checked if $\hat{\phi}$ bounded)

- **2.** $\Psi_A := R_A \circ \Phi_A \circ R_A$ is right-invariant with respect to Δ_A (immediate from 1.)
- **3.** $(B, A, r, s, \Delta_A, \mu, \Phi_A, \Psi_A)$ is a measured quantum groupoid (immediate from 1. and 2.)

Application to $SU_q(2) \ltimes S_q^2$

Example

Let $\mathbb{G}=\mathrm{SU}_q(2)$ (Woronowicz) and let S_q^2 be the Podleś sphere. Then:

- ▶ $C(S_q^2)$ is a braided-commutative \mathbb{G} -Yetter-Drinfeld C^* -algebra (for the natural coaction of $C(\mathbb{G})$ and the adjoint coaction of $C^*(\mathbb{G})$)
- ▶ $L(SU_q(2)) \ltimes L^{\infty}(S_q^2)$ is a measured quantum groupoid and $C^*(SU_q(2)) \ltimes_r C(S_q^2)$ is a "reduced C^* -quantum groupoid"

Recall: G compact, $K, N \triangleleft G \Rightarrow (K \backslash G) \rtimes N \sim_M K \ltimes (G/N)$.

Question: Is $L(\mathbb{G}) \ltimes L^{\infty}(\mathbb{G}/\mathbb{T}) \sim_{M} L^{\infty}(\mathbb{G}/\mathbb{G}) \rtimes L(\mathbb{T}) = L(\mathbb{T})$?

