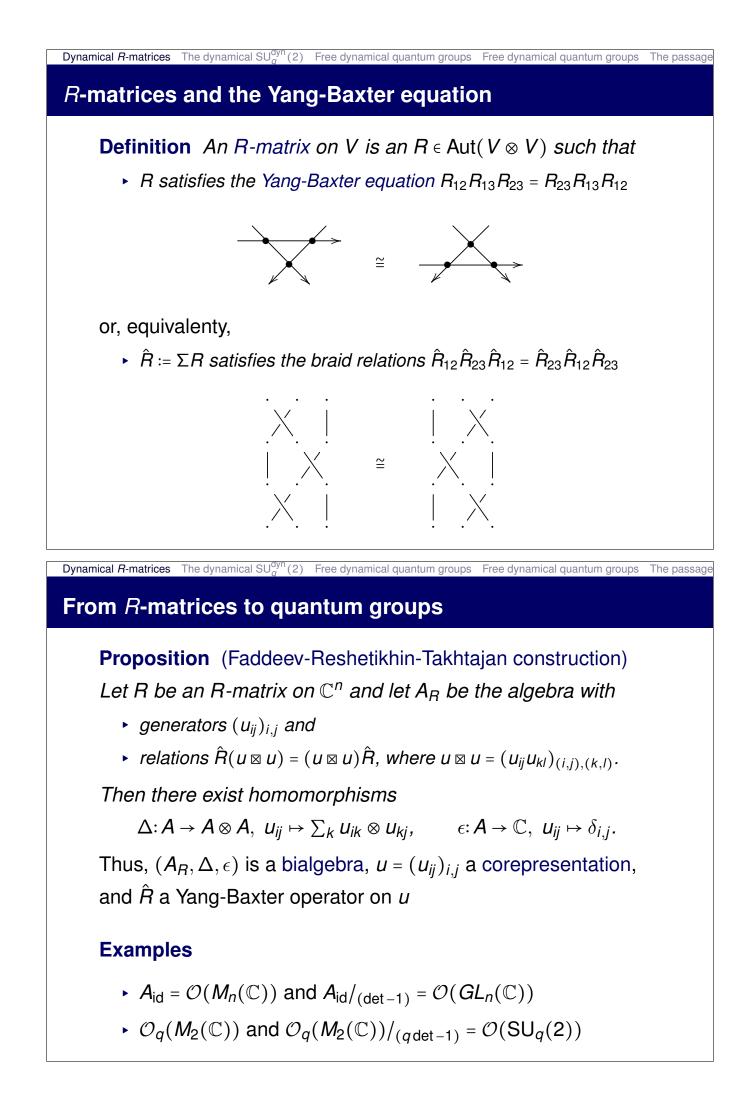


- **1.** Dynamical quantum groups and dynamical *R*-matrices
- **2.** Example: a dynamical analogue $SU_q(2)$
- 3. Example: the free orthogonal and free unitary ones
- 4. The passage to operator algebras



Dynamical *R*-matrices The dynamical $SU_q^{dyn}(2)$ Free dynamical quantum groups Free dynamical quantum groups The passage

Dynamical *R*-matrices

Definition Fix a group Γ acting on a commutative algebra *B*.

- A dynamical vector space is a Γ-graded B-bimodule V,
 where vb = γ(b)v if v has degree γ
- The tensor product of \mathcal{V}, \mathcal{W} is $\mathcal{V} \otimes \mathcal{W} = \bigoplus_{\alpha, \beta} (\mathcal{V}_{\alpha} \otimes_{\mathcal{B}} \mathcal{W}_{\beta})$

 \rightarrow get notion of dynamical *R*-matrix $R \in Aut(\mathcal{V} \otimes \mathcal{V})$

Setup considered by Etingof-Varchenko:

- $\mathcal{V} = \mathbf{V} \otimes \mathbf{B}$ for some Γ -graded vector space \mathbf{V}
- one has an abelian Lie algebra \mathfrak{h} and a \mathfrak{h} -module V
 - $\Gamma \subseteq \mathfrak{h}^*$ is the lattice generated by the weights of *V*
 - B is the field of meromorphic functions on h*

Dynamical *R*-matrices The dynamical $SU_a^{dyn}(2)$ Free dynamical quantum groups Free dynamical quantum groups The passage

Dynamical quantum groups

Definition (following Etingof-Varchenko)

- A dynamical algebra is a $\Gamma \times \Gamma$ -graded algebra \mathcal{A} with $B \otimes B \rightarrow \mathcal{A}_{e,e}$ s.t. $a(b \otimes b') = (\gamma(b) \otimes \gamma'(b'))a$ if $a \in \mathcal{A}_{\gamma,\gamma'}$
- The tensor product of \mathcal{A}, \mathcal{C} is $\mathcal{A} \otimes \mathcal{C} = \bigoplus_{\alpha, \beta, \gamma} (\mathcal{A}_{\alpha, \beta} \otimes_{\mathcal{B}} \mathcal{C}_{\beta, \gamma})$
- ► A dynamical bialgebroid is a dynamical algebra A with
 - a comultiplication $\Delta: \mathcal{A} \to \mathcal{A} \tilde{\otimes} \mathcal{A}$ such that $(\Delta \tilde{\otimes} \iota) \Delta = (\iota \tilde{\otimes} \Delta) \Delta$
 - a counit $\epsilon: \mathcal{A} \to \mathcal{B} \rtimes \Gamma$ such that $(\epsilon \tilde{\otimes} \iota) \Delta = \iota = (\iota \tilde{\otimes} \epsilon) \Delta$
- A dynamical quantum group is (A, Δ, ϵ) with an antipode S

Example: The crossed product $B \rtimes \Gamma = \langle B, \Gamma : \gamma \cdot b = \gamma(b) \cdot \gamma \rangle$:

- $B \rtimes \Gamma = \bigoplus_{\gamma} B \gamma$ and $B \otimes B \to B \hookrightarrow B \rtimes \Gamma$ is the multiplication

A semi-classical example

Start with

- a Lie group G with algebra $\mathcal{O}(G)$ (matrix coeff. of f.d. reps)
- a maximal torus $T \subseteq G$ with Lie algebra t

Obtain a dynamical quantum group

- $\mathcal{A} \subseteq \text{End}(\mathcal{O}(G))$ generated by
 - $\mathcal{O}(G)$ acting via multiplication
 - $B \otimes B = Ut \otimes Ut$ acting via left or right invariant diff-ops
- $\Gamma = \left\{ \begin{array}{c} \text{weights of} \\ \text{f.d. reps. of } G \end{array} \right\} \subseteq \mathfrak{t}^* \text{ acting on } B = U\mathfrak{t} \cong \mathcal{O}(\mathfrak{t}^*) \text{ by shifts}$
- Δ, ϵ on $B \otimes B$ map $b \otimes b'$ to $(b \otimes 1) \tilde{\otimes} (1 \otimes b')$ or bb'
- Δ, ϵ on $\mathcal{O}(G)$ are transposes of $G \underset{\tau}{\times} G \xrightarrow{\text{mult}} G$ and $\mathfrak{t} \xrightarrow{\text{exp}} G$

Dynamical R-matrices The dynamical SU $_{q}^{dyn}(2)$ Free dynamical quantum groups Free dynamical quantum groups The passage

The dynamical quantum group $SU_q^{dyn}(2)$ (Koelink-Rosengren)

The dynamical FRT-construction applied to some specific *R* yields a dynamical quantum group $\mathcal{O}(SU_q^{dyn}(2))$, where

- $\Gamma = \mathbb{Z}$ acting on $B = \mathfrak{M}(\mathbb{C})$ meromorphic functions by shifts
- $\mathcal{O}(SU_q^{dyn}(2))$ = universal dynamical algebra with generators $\alpha, \alpha^*, \gamma, \gamma^*$ of degree (1,1), (-1,-1), (1,-1), (-1,1) satisfying
 - **1.** $\alpha \gamma = q(F \otimes 1)\gamma \alpha$ and $\alpha \gamma^* = q(1 \otimes F_{-1})\gamma^* \alpha$, $\gamma^* \alpha^* = q(F \otimes 1)\alpha^* \gamma^*$ and $\gamma \alpha^* = q(1 \otimes F_{-1})\alpha^* \gamma$, where $F(\lambda) = \frac{q^{2(\lambda+1)}-q^{-2}}{q^{2(\lambda+1)}-1}$ and $F_{-1}(\lambda) = F(\lambda - 1)$

2.
$$\alpha \alpha^* - \alpha^* \alpha = H \gamma \gamma^*$$
 and $(1 \otimes G) \alpha \alpha^* - (G \otimes 1) \alpha^* \alpha = -q H \gamma^* \gamma$,
where $H(\lambda, \lambda') = \frac{(q - q^{-1})(q^{2(\lambda + \lambda' + 2)} - 1)}{(q^{2(\lambda + 1)} - 1)(q^{2(\lambda' + 1)} - 1)}$
and $G(\lambda) = \frac{(q^{2(\lambda + 1)} - q^2)(q^{2(\lambda + 1)} - q^{-2})}{(q^{2(\lambda + 1)} - 1)^2}$

Free orthogonal dynamical quantum groups

Fix $\Gamma \bigcirc B$, $\gamma_1, \ldots, \gamma_n \in \Gamma$, $f \in GL_n(B)$ s.t. $f_{ij} = 0$ if $\gamma_i \neq \gamma_j^{-1}$ Define the free orthogonal dynamical quantum group $\mathcal{A}_o(f)$ as the universal dynamical algebra with generators $(v_{ij})_{i,j}$ s.t. 1. $v_{ij}(b \otimes b') = (\gamma_i(b) \otimes \gamma_j(b'))v_{ij}$ for all b, b' 2. $f_{(r)}v^{-\top} = vf_{(s)}$, where $f_{(s)} = (1 \otimes f_{ij})_{i,j}$ and $f_{(r)} = (\gamma_i(f_{ij}) \otimes 1)_{i,j}$ Theorem (T.) $\mathcal{A}_o(f)$ is a dynamical quantum group w.r.t. $\Delta: v_{ij} \mapsto \sum_k v_{ik} \tilde{\otimes} v_{kj}, \quad \epsilon: v_{ij} \mapsto \delta_{i,j}\gamma_i, \quad S: v_{ij} \mapsto (v^{-1})_{ij}$ Thus, $v, v^{-\top}$ are matrix corepresentations with an intertwiner fExample Obtain $\mathcal{O}(SU_q^{dyn}(2)) = \mathcal{A}_o(f)$ if $\Gamma = \mathbb{Z}, B = \mathfrak{M}(\mathbb{C}), (\gamma_1, \gamma_2) = (1, -1), f = \begin{pmatrix} 0 & -1 \\ F_{-1}^{-1} & 0 \end{pmatrix}, v = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$

Dynamical *R*-matrices The dynamical SU^{dyn}_a(2) Free dynamical quantum groups Free dynamical quantum groups The passage

Free unitary dynamical quantum groups

Fix $\Gamma \bigcirc B$, $\gamma_1, \ldots, \gamma_n \in \Gamma$, $f \in GL_n(B)$ s.t. $f_{ij} = 0$ if $\gamma_i \neq \gamma_j$, where *B* is a *-algebra

Define the free unitary dynamical quantum group $A_u(f)$ as the universal dynamical *-algebra with generators $(v_{ij})_{i,j}$ s.t.

1. $v_{ij}(b \otimes b') = (\gamma_i(b) \otimes \gamma_j(b'))v_{ij}$ for all b, b'

2.
$$f_{(r)}\bar{v}^{-\top} = vf_{(s)}$$
, where $f_{(s)} = (1 \otimes f_{ij})_{i,j}$ and $f_{(r)} = (\gamma_i(f_{ij}) \otimes 1)_{i,j}$

Theorem (T.) $A_u(f)$ is a dynamical quantum group w.r.t.

 $\Delta: v_{ij} \mapsto \sum_{k} v_{ik} \tilde{\otimes} v_{kj}, \quad \epsilon: v_{ij} \mapsto \delta_{i,j} \gamma_i, \quad S: v_{ij} \mapsto (v^{-1})_{ij}$ Thus, $v, \bar{v}^{-\top}$ are matrix corepresentations with an intertwiner *f*

The full dynamical quantum group $SU_q^{dyn}(2)$

Idea $\mathcal{O}(SU_q^{dyn}(2))$ is defined over $\left(\left(\lambda \mapsto \frac{q^{\lambda+k}-q^{-\lambda-k}}{a^{\lambda+l}-a^{-\lambda-l}}\right):k,l\in\mathbb{Z}\right)$ **Definition** $\mathcal{O}(SU_O^{dyn}(2)) \coloneqq \mathcal{A}_o(f)$, where $\bullet \ B = \left(\frac{(1-Q^2)}{Q^n(1-Q^{2m})} \cdot \frac{(Q^k X - Q^{-k} Y)}{(Q^l X - Q^{-l} Y)} \, \middle| \, m, n \in \mathbb{N}, k, l \in \mathbb{Z} \right) \subseteq \mathbb{C}(Q, X, Y)$ • $\Gamma = \mathbb{Z}$ acting by $X \xrightarrow{k} Q^k X$, $Y \xrightarrow{k} Q^{-k} Y$ and $(\gamma_1, \gamma_2) = (1, -1)$ $\mathcal{O}(SU_{Q}^{dyn}(2))$ "contains" $\mathcal{O}(SU_{q}^{dyn}(2))$ for all q and limit cases: **Base change** Given a Γ -equivariant homomorphism $B \xrightarrow{\phi} C$, get $\left\{ \begin{array}{c} \text{dynamical quantum} \\ \text{groups over } \Gamma \bigcirc B \end{array} \right\} \xrightarrow{\phi_*} \left\{ \begin{array}{c} \text{dynamical quantum} \\ \text{groups over } \Gamma \bigcirc C \end{array} \right\}, \ \mathcal{A} \mapsto \mathcal{A} \underset{B \otimes B}{\otimes} (C \otimes C)$ **Examples 1.** $\phi: B \to \mathfrak{M}(C)$ s.t. $Q \mapsto q, X \mapsto (\lambda \mapsto q^{\lambda}),$ $Y \mapsto (\lambda \mapsto q^{-\lambda})$ gives $\phi_* \mathcal{O}(\mathsf{SU}_O^{\mathsf{dyn}}(2)) \cong \mathcal{O}(\mathsf{SU}_q^{\mathsf{dyn}}(2))$ **2.** $\phi: B \to \mathbb{C}$ s.t. $Q \mapsto q$ and $(X, Y) \mapsto (0, 1)$ or $(X, Y) \mapsto (1, 0)$ gives $\phi_* \mathcal{O}(SU_O^{dyn}(2)) \cong \mathcal{O}(SU_q(2))$ (limit case $\lambda \to \pm \infty$)

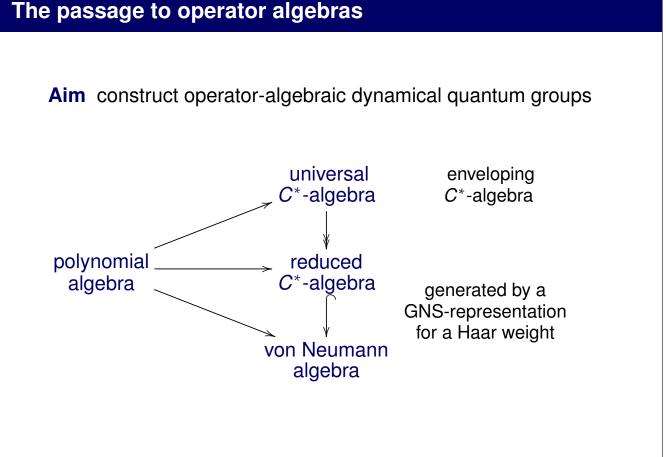
Free dynamical quantum groups

Free dynamical quantum groups

The passage

The passage to operator algebras

Dynamical *R*-matrices The dynamical $SU_{\alpha}^{dyn}(2)$



Completions in the form of measured quantum groupoids

Assume A is a dynamical quantum group over $\Gamma \bigcirc B$ and

- $\mu: B \to \mathbb{C}$ is positive, Γ -quasi-invariant with bounded GNS-rep.
- $h: \mathcal{A} \to B \otimes B$ is a cond. expectation and $\Delta(\ker h) \subseteq \ker h \widetilde{\otimes} \ker h$
- $\nu: \mathcal{A} \xrightarrow{h} B \otimes B \xrightarrow{\mu \otimes \mu} \mathbb{C}$ is faithful and positive

Theorem (T.) **1.** ν has a bounded GNS-rep. $\pi_{\nu}: \mathcal{A} \to \mathcal{L}(\mathcal{H}_{\nu})$

2.
$$\phi := (\iota \otimes \mu) \circ h$$
 is left-invariant: $(\iota \otimes \phi)(\Delta(a)) = \phi(a) \otimes 1$
 $\psi := (\mu \otimes \iota) \circ h$ is right-invariant: $(\psi \otimes \iota)(\Delta(a)) = 1 \otimes \psi(a)$

3. get
$$\pi_{\nu}(\mathcal{A})'' \xrightarrow{\bar{\phi}, \bar{\psi}} \pi_{\mu}(\mathcal{B})''$$
 and $\pi_{\nu}(\mathcal{A})'' \xrightarrow{\bar{\Delta}} \pi_{\nu}(\mathcal{A})'' * \pi_{\nu}(\mathcal{A})''$

4. $\pi_{\nu}(\mathcal{A})''$ is a measured quantum groupoid [Enock, Lesieur]

Proof Use a unitary $V: H_{\nu \otimes \mu} H_{\nu} \to H_{\nu \otimes \mu} H_{\nu}, x \otimes y \mapsto \Delta(x)(1 \otimes y)$ **Plan** Apply this construction to $\mathcal{O}(SU_Q^{dyn}(2))$