

#### Which structure is present and what are we looking for? crossed product quantum groupoid groupoid algebras algebras spaces $N \stackrel{\alpha}{\Rightarrow} A$ $X \stackrel{r}{\Leftarrow} G$ $N \hookrightarrow N \rtimes \Gamma$ dual coaction comultiplication multiplication $A \xrightarrow{\Delta} A_{\beta} *_{\alpha} A$ $N \rtimes \Gamma \to N \rtimes \Gamma \otimes \mathbb{C}\Gamma$ $G \leftarrow G_s \times_r G$ ▶ cond. expectation ► Haar weights Haar systems $A \stackrel{\phi}{\Rightarrow} N$ $N \rtimes \Gamma \to N$ antipode inversion $G \leftarrow G$ $A \supseteq A_0 \rightarrow A$ Pontrjagin dual naa

Introduction

Learning from the algebraists

Passing to operator algebras

## Reverse-engineering the requirements on $\Gamma \bigcirc N$

Assume 
$$\Gamma \bigcirc N$$
. Given  $N \xrightarrow{\alpha: x \mapsto xe}_{\beta: y \mapsto \sum_{\gamma} y_{\gamma} \gamma} A = N \rtimes \Gamma$ , observe

- **1.**  $[\alpha(x), \beta(y)] = 0$  if and only if  $xy_{\gamma} = y_{\gamma}\gamma(x)$  for all  $\gamma$
- 2.  $\beta(y'y) = \beta(y)\beta(y') = \sum_{\gamma,\gamma'} y_{\gamma}\gamma(y'_{\gamma'})\gamma\gamma' = \sum_{\gamma,\gamma'} y'_{\gamma'}\gamma\gamma\gamma'$  if and only if  $\tilde{\beta}: N \to N \otimes \mathbb{C}\Gamma, y \mapsto \sum_{\gamma} y_{\gamma} \otimes \gamma^{-1}$  is a homomorphism
- **3.**  $\Delta: N \rtimes \Gamma \xrightarrow{x\gamma \mapsto x\gamma \otimes \gamma} N \rtimes \Gamma \otimes \mathbb{C}\Gamma \to (N \rtimes \Gamma)_{\beta} *_{\alpha}(N \rtimes \Gamma)$  satisfies •  $\alpha(x) \mapsto \alpha(x) \otimes 1$  always •  $\beta(y) \mapsto 1 \otimes \beta(y)$  if and only if  $\tilde{\beta}$  is a coaction.

**Summary:**  $N \rtimes \Gamma$  becomes a bialgebroid with respect to  $\alpha, \beta, \Delta$  if and only if N is a braided-commutative  $\Gamma$ -Yetter-Drinfeld algebra

590

## Quantum transformation groupoids in the algebraic setting

**Theorem** (Lu; Brzezinski-Militaru) Let H be a Hopf algebra acting on an algebra N. Then  $N \rtimes H$  becomes a Hopf algebroid if and only if N is a braided-commutative H-Yetter-Drinfeld algebra.

### Examples

- **1.** Commutative super-algebras:  $N = N_0 \oplus N_1$  and  $H = \mathbb{CZ}_2$ , where  $ab = (-1)^{\deg(a) \cdot \deg(b)} ba$  for all  $a, b \in N$
- 2. The quantum plane:  $N = \mathbb{C}_q[x, y]$  and  $H = \mathcal{O}(GL_q(2))$ , where  $\mathbb{C}_q[x, y] = \langle x, y : yx = qxy \rangle$ ,  $\mathcal{O}(GL_q(2)) = \langle a, b, c, d : ba=qab, ca=qac, db=qbd, dc=qcd \rangle$ ,  $N \to N \otimes H$  s.t.  $(x, y) \mapsto (x, y) \boxtimes \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ,  $H \otimes N \to N$  s.t.  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \boxtimes x \mapsto \begin{pmatrix} x & 0 \\ 0 & q^{-1}x \end{pmatrix}$  and  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \boxtimes y \mapsto \begin{pmatrix} qy & 0 \\ 0 & y \end{pmatrix}$

Introduction

Learning from the algebraists

Passing to operator algebras 6

# Yetter-Drinfeld algebras in the setting of operator algebras

Let  $(M, \Delta)$  be a locally compact quantum group with dual  $(\hat{M}, \hat{\Delta})$ 

**Definition** (Nest-Voigt) A Yetter-Drinfeld algebra over  $(M, \Delta)$  is a von-Neumann algebra N with coactions  $\alpha$  of M and  $\lambda$  of  $\hat{M}$  s.t.

(a) 
$$N \xrightarrow{(\iota \otimes \lambda) \circ \alpha} M \otimes \hat{M} \otimes N$$
  
 $\parallel \qquad \bigcirc \qquad \qquad \downarrow (\sigma \otimes \iota) \circ (\operatorname{ad}_{W} \otimes \iota)$   
 $N \xrightarrow{(\iota \otimes \alpha) \circ \lambda} \hat{M} \otimes M \otimes N$ 

where  $W \in M \otimes \hat{M}$  is the multiplicative unitary and  $\sigma$  the flip or, equivalently

**(b)**  $(\iota \otimes \lambda) \circ \alpha$  is a coaction of the quantum double  $D(M) = M \otimes \hat{M}$ 

**Example** left coideals  $N \subseteq D(M)$  with regular coaction, e.g.  $M = \mathcal{O}(SU_q(2))''$  and  $N = \mathcal{O}(S_q^2)'' = \mathcal{O}(SU_q(2)/T)'' \subseteq M$ 

#### The setup

**Setup** Fix  $(N, \alpha, \lambda)$  with some weight  $\nu$  and GNS-rep.  $N \bigcirc H_{\nu}$ .

We shall need the unitary implementations (Vaes)

- $X \in M \otimes \mathcal{L}(H_{\nu})$  satisfying  $\alpha(x) = X(1 \otimes x)X^*$
- $Y \in \hat{M} \otimes \mathcal{L}(H_{\nu})$  satisfying  $\lambda(x) = Y(1 \otimes x)Y^*$

for example

- if  $\nu \alpha$ -invariant, bounded, then  $X(\xi \otimes \Lambda_{\nu}(x)) = \alpha(x)(\xi \otimes \Lambda_{\nu}(1))$
- if  $(N, \alpha) = (M, \Delta)$  and  $\nu$  is the left Haar weight, then  $X = W^*$

**Assumption** The following equivalent conditions hold:

- **1.**  $Y_{23}X_{13} \in M \otimes \hat{M} \otimes \mathcal{L}(H_{\nu})$  is a corepresentation of D(M)
- **2.**  $Y_{23}X_{13} = W_{12}^*X_{13}Y_{23}W_{12}$

**Examples** The assumption holds if

- **1.**  $(\iota \otimes \lambda) \circ \alpha$  is a dual action of D(M) or
- **2.**  $\nu$  is suitably invariant

Introduction

Learning from the algebraists

Passing to operator algebras

590

## The crossed product $M \ltimes N$ as a von Neumann bimodule

Let H be the  $L^2$ -space of  $(M, \Delta)$  and  $(\hat{M}, \hat{\Delta})$  and consider

- the crossed product  $M \ltimes_{\alpha} N = ((\hat{M} \otimes 1) \cup \alpha(N))'' \subseteq \mathcal{L}(H \otimes K)$
- the inclusion  $\alpha: N \to M \ltimes_{\alpha} N$ ,  $x \mapsto \operatorname{ad}_X(1 \otimes x)$
- the anti-rep.  $\beta: N \to \mathcal{L}(H \otimes H_{\nu}), x \mapsto \operatorname{ad}_{X(J \otimes J_{\nu})Y}(1 \otimes x^*)$

**Lemma** 
$$[\alpha(N), \beta(N)] = \operatorname{ad}_X([1 \otimes N, \operatorname{ad}_{(J \otimes J_{\nu})}(\lambda(N))]) = 0$$

**Lemma** The following conditions are equivalent: 1.  $\beta(N) \subseteq M \ltimes_{\alpha} N$ , 2.  $[\alpha'(N'), \lambda'(N')] = 0$ , 3.  $[\alpha^{op}(N'), \lambda^{op}(N')] = 0$ , where  $\alpha', \lambda'$  are the commutants and  $\alpha^{op}, \beta^{op}$  the opposites, obtained from  $\alpha, \lambda$  by conjugating with  $J \otimes J_{\nu}$  or  $\hat{J} \otimes J_{\nu}$ 

**Definition**  $(N, \alpha, \lambda)$  is braided-commutative if conditions 1.-3. hold

**Proof 2.**  $\Leftrightarrow$  **3.** because  $\operatorname{ad}_{(J \otimes J_{\nu})}$  and  $\operatorname{ad}_{(\hat{J} \otimes J_{\nu})}$  commute **1.**  $\Leftrightarrow$  **3.**  $\beta(N) = \operatorname{ad}_X(\lambda^{\operatorname{op}}(N')) \subseteq \operatorname{ad}_X(\hat{M} \otimes N')$  commutes with  $\operatorname{ad}_X(\alpha^{\operatorname{op}}(N')) \lor \operatorname{ad}_X(\hat{M}' \otimes 1) = \operatorname{ad}_{X(\hat{J} \otimes J_{\nu})}(M \ltimes_\alpha N) \stackrel{(\operatorname{Vaes})}{=} (M \ltimes_\alpha N)'$ 

Introduction

## The comultiplication, left-invariant weight and the dual

We obtained a von Neumann bimodule  $N \stackrel{\alpha}{\Rightarrow}_{\beta} M \ltimes_{\alpha} N \bigcirc L := H \otimes K$ . The unitary implementation X leads to a canonical unitary

$$Z: (H \otimes H_{\nu}) \otimes H \to (H \otimes H_{\nu})_{\beta} \bigotimes_{\nu} {}_{\alpha} (H \otimes H_{\nu}) =: L_{\beta} \bigotimes_{\nu} {}_{\alpha} L$$

#### Theorem

- **1.**  $A := M \ltimes_{\alpha} N$  is a Hopf-von Neumann bimodule w.r.t.  $\alpha, \beta$  and  $\Delta_A: A \xrightarrow{\text{dual coaction } \hat{\alpha}} \hat{M} \otimes A \subseteq \mathcal{L}(H \otimes L) \xrightarrow{\text{ad}_{Z\Sigma}} \mathcal{L}(L_\beta \bigotimes_{\nu} \alpha L)$ , i.e.,  $\bullet \Delta_A(\alpha(x)) = \alpha(x) \otimes 1$   $\bullet \Delta_A(\beta(x)) = 1_\beta \bigotimes_{\nu} \alpha \beta(x)$   $\bullet \Delta_A(A) \subseteq A_\beta *_{\nu} \alpha A = (A'_\beta \bigotimes_{\nu} \alpha A')' \quad \bullet (\Delta_A * \iota) \Delta_A = (\iota * \Delta_A) \Delta_A$ **2.**  $T_L = (\hat{\phi} \otimes \iota \otimes \iota) \circ \hat{\alpha}: A \to \alpha(N)$  is left-invariant w.r.t.  $\Delta_A$
- **3.** The associated left fundamental isometry (Lesieur) is  $\frac{7}{4}$

Learning from the algebraists

$$L_{\alpha} \underset{\nu}{\otimes}_{\beta'} L \xrightarrow{Z''} H \otimes H_{\nu} \otimes H \xrightarrow{W_{13}} H \otimes H_{\nu} \otimes H \xrightarrow{Z} L_{\beta} \underset{\nu}{\otimes}_{\alpha} L$$

**4.** The associated dual Hopf-v.N. bimodule is  $\operatorname{ad}_{XY^*}(\hat{M} \ltimes_{\lambda} N)$ .

#### 590

10

Passing to operator algebras

### The co-involution or unitary antipode

Using the work of Vaes on crossed products, we

- consider the dual weight  $A = M \ltimes_{\alpha} N \xrightarrow{T_L} \alpha(N) \cong N \xrightarrow{\nu} \mathbb{C}$
- identify  $L^2(A)$  with  $H \otimes H_{\nu}$  via  $(y \otimes 1)\alpha(x) \mapsto \hat{\Lambda}(y) \otimes \Lambda_{\nu}(x)$
- obtain by a polar decomposition of the involution on  $L^2(A)$ the modular operator  $\nabla_A$  and conjugation  $J_A = X(\hat{J} \otimes J_{\nu})$
- replace  $A = M \ltimes_{\alpha} N$  by  $\hat{A} = \operatorname{ad}_{XY^*}(\hat{M} \ltimes_{\lambda} N)$  and obtain  $\nabla_{\hat{A}}, J_{\hat{A}}$

**Proposition** Define  $R_A: A \to \mathcal{L}(H \otimes H_{\nu})$  by  $z \mapsto J_{\hat{A}} z^* J_{\hat{A}}$ . This map

- **1.** is a co-involution on the Hopf-v.N. bimodule  $A = M \ltimes_{\alpha} N$
- **2.** satisfies strong invariance w.r.t.  $T_L$
- **3.** yields a right-invariant  $T_R := R_A \circ T_L \circ R_A : A \to \beta(N)$



Summary: What we get and what is needed

**Theorem** (T.) Let  $(N, \alpha, \lambda)$  be a braided-commutative Yetter-Drinfeld algebra. Then we obtain

- a Hopf-von Neumann bimodule  $N \stackrel{\alpha}{\underset{\beta}{\Rightarrow}} M \ltimes_{\alpha} N = A \stackrel{\Delta_A}{\longrightarrow} A_{\beta} \underset{\nu}{\overset{*}{\underset{\alpha}{\rightarrow}}} A$ with a co-involution  $R_A$
- left-/right-invariant weights  $T_L = (\hat{\phi} \otimes \iota) \circ \hat{\alpha}, T_R = R_A \circ T_L \circ R_A$

**Problem** To obtain a measured quantum groupoid, we need a n.s.f. weight  $\nu$  on N such that the modular automorphism groups of  $\nu \circ \alpha^{-1} \circ T_L$  and  $\nu \circ \beta^{-1} \circ T_R$  on  $M \ltimes_{\alpha} N$  commute.