Quantum Transformation Groupoids

in the Setting of Operator Algebras

Thomas Timmermann
24.01.2013

Westrälische
Wilhelms-Universität
Münster

When are crossed products quantum transformation groupoids?

> (exposé abrégé)
dynamical system \qquad groupoid

$$
\left\ulcorner\subset C(X) \longmapsto C(X) \rtimes \Gamma=C^{*}(X \rtimes \Gamma)\right.
$$

$$
\hat{\Gamma} \subset C(X) \longmapsto C(X) \otimes C(\Gamma)=C(X \rtimes \Gamma)
$$

braided-commuative quantum dynamical system quantum groupoids

$$
\hat{\Gamma}, \Gamma \bigcirc N
$$

$$
N \rtimes \Gamma, N \rtimes \hat{\Gamma}
$$

Which structure is present and what are we looking for？

crossed product

－algebras
$N \rightarrow N \rtimes \Gamma$
－dual coaction
$N \rtimes \Gamma \rightarrow N \rtimes \Gamma \otimes \mathbb{C} \Gamma$
－cond．expectation
$N \rtimes \Gamma \rightarrow N$

quantum groupoid

－algebras
$N \underset{\beta}{\underset{\beta}{\rightrightarrows}} A$
－comultiplication
$A \xrightarrow{\Delta} A_{\beta}{ }_{\alpha} A$
－Haar weights
$A \underset{\psi}{\stackrel{\phi}{\rightrightarrows}} N$
－antipode
$A \supseteq A_{0} \rightarrow A$
－Pontrjagin dual

groupoid

－spaces
$X \underset{s}{\underset{\xi}{E}} G$
－multiplication
$G \leftarrow G_{s} \times{ }_{r} G$
－Haar systems
－inversion
$G \leftarrow G$

Reverse－engineering the requirements on $\Gamma \bigcirc N$

Assume $\Gamma \bigcirc N$ ．Given $N \underset{\beta: y \mapsto \sum_{\gamma} y_{\gamma} \gamma}{\underset{\alpha: x \mapsto x e}{\longrightarrow}} A=N \rtimes \Gamma$ ，observe
1．$[\alpha(x), \beta(y)]=0$ if and only if $x y_{\gamma}=y_{\gamma} \gamma(x)$ for all γ
2．$\beta\left(y^{\prime} y\right)=\beta(y) \beta\left(y^{\prime}\right)=\sum_{\gamma, \gamma^{\prime}} y_{\gamma} \gamma\left(y_{\gamma^{\prime}}^{\prime}\right) \gamma \gamma^{\prime}=\sum_{\gamma, \gamma^{\prime}} y_{\gamma^{\prime}}^{\prime} y_{\gamma} \gamma \gamma^{\prime}$ if and only if $\tilde{\beta}: N \rightarrow N \otimes \mathbb{C} \Gamma, y \mapsto \sum_{\gamma} y_{\gamma} \otimes \gamma^{-1}$ is a homomorphism

3．$\Delta: N \rtimes \Gamma \xrightarrow{x \gamma \mapsto x \gamma \otimes \gamma} N \rtimes \Gamma \otimes \mathbb{C} \Gamma \rightarrow(N \rtimes \Gamma)_{\beta^{*} \alpha}(N \rtimes \Gamma)$ satisfies －$\alpha(x) \mapsto \alpha(x) \otimes 1$ always
－$\beta(y) \mapsto 1 \otimes \beta(y)$ if and only if $\tilde{\beta}$ is a coaction．

Summary：$N \rtimes \Gamma$ becomes a bialgebroid with respect to α, β, Δ if and only if N is a braided－commutative Γ－Yetter－Drinfeld algebra

Quantum transformation groupoids in the algebraic setting

Theorem（Lu；Brzezinski－Militaru）Let H be a Hopf algebra acting on an algebra N ．Then $N \rtimes H$ becomes a Hopf algebroid if and only if N is a braided－commutative H －Yetter－Drinfeld algebra．

Examples

1．Commutative super－algebras：$N=N_{0} \oplus N_{1}$ and $H=\mathbb{C}_{2}$ ， where $a b=(-1)^{\operatorname{deg}(a) \cdot \operatorname{deg}(b)} b a$ for all $a, b \in N$

2．The quantum plane：$N=\mathbb{C}_{q}[x, y]$ and $H=\mathcal{O}\left(\mathrm{GL}_{q}(2)\right)$ ，where $\mathbb{C}_{q}[x, y]=\langle x, y: y x=q x y\rangle$,

$N \rightarrow N \otimes H$ s．t．$(x, y) \mapsto(x, y) \boxtimes\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$,
$H \otimes N \rightarrow N$ s．t．$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \boxtimes x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & q^{-1} x\end{array}\right)$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \boxtimes y \mapsto\left(\begin{array}{cc}a y & 0 \\ 0 & y\end{array}\right)$

Yetter－Drinfeld algebras in the setting of operator algebras

Let (M, Δ) be a locally compact quantum group with dual $(\hat{M}, \hat{\Delta})$ Definition（Nest－Voigt）A Yetter－Drinfeld algebra over (M, Δ) is a von－Neumann algebra N with coactions α of M and λ of \hat{M} s．t．
（a）

where $W \in M \otimes \hat{M}$ is the multiplicative unitary and σ the flip or，equivalently
（b）$(\iota \otimes \lambda) \circ \alpha$ is a coaction of the quantum double $D(M)=M \otimes \hat{M}$
Example left coideals $N \subseteq D(M)$ with regular coaction，e．g． $M=\mathcal{O}\left(\mathrm{SU}_{q}(2)\right)^{\prime \prime}$ and $N=\mathcal{O}\left(S_{q}^{2}\right)^{\prime \prime}=\mathcal{O}\left(\mathrm{SU}_{q}(2) / T\right)^{\prime \prime} \subseteq M$

The setup

Setup Fix (N, α, λ) with some weight ν and GNS-rep. $N \subset H_{\nu}$. We shall need the unitary implementations (Vaes)

- $X \in M \otimes \mathcal{L}\left(H_{\nu}\right)$ satisfying $\alpha(x)=X(1 \otimes x) X^{*}$
- $Y \in \hat{M} \otimes \mathcal{L}\left(H_{\nu}\right)$ satisfying $\lambda(x)=Y(1 \otimes x) Y^{*}$ for example
- if $\nu \alpha$-invariant, bounded, then $X\left(\xi \otimes \Lambda_{\nu}(x)\right)=\alpha(x)\left(\xi \otimes \Lambda_{\nu}(1)\right)$
- if $(N, \alpha)=(M, \Delta)$ and ν is the left Haar weight, then $X=W^{*}$

Assumption The following equivalent conditions hold:

1. $Y_{23} X_{13} \in M \otimes \hat{M} \otimes \mathcal{L}\left(H_{\nu}\right)$ is a corepresentation of $D(M)$
2. $Y_{23} X_{13}=W_{12}^{*} X_{13} Y_{23} W_{12}$

Examples The assumption holds if

1. $(\iota \otimes \lambda) \circ \alpha$ is a dual action of $D(M)$ or
2. ν is suitably invariant

The crossed product $M \ltimes N$ as a von Neumann bimodule

Let H be the L^{2}-space of (M, Δ) and $(\hat{M}, \hat{\Delta})$ and consider

- the crossed product $M \ltimes_{\alpha} N=((\hat{M} \otimes 1) \cup \alpha(N))^{\prime \prime} \subseteq \mathcal{L}(H \otimes K)$
- the inclusion $\alpha: N \rightarrow M \ltimes_{\alpha} N, x \mapsto \operatorname{ad}_{x}(1 \otimes x)$
- the anti-rep. $\beta: N \rightarrow \mathcal{L}\left(H \otimes H_{\nu}\right), x \mapsto \operatorname{ad}_{X\left(J \otimes J_{\nu}\right) Y}\left(1 \otimes x^{*}\right)$

Lemma $[\alpha(N), \beta(N)]=\operatorname{ad}_{X}\left(\left[1 \otimes N, \operatorname{ad}_{\left(J \otimes J_{\nu}\right)}(\lambda(N))\right]\right)=0$
Lemma The following conditions are equivalent:

1. $\beta(N) \subseteq M \ltimes_{\alpha} N, \quad$ 2. $\left[\alpha^{\prime}\left(N^{\prime}\right), \lambda^{\prime}\left(N^{\prime}\right)\right]=0$, 3. $\left[\alpha^{\text {op }}\left(N^{\prime}\right), \lambda^{\text {op }}\left(N^{\prime}\right)\right]=0$, where $\alpha^{\prime}, \lambda^{\prime}$ are the commutants and $\alpha^{\mathrm{op}}, \beta^{\mathrm{op}}$ the opposites, obtained from α, λ by conjugating with $J \otimes J_{\nu}$ or $\hat{\jmath} \otimes J_{\nu}$

Definition (N, α, λ) is braided-commutative if conditions 1.-3. hold
Proof 2. \Leftrightarrow 3. because ad $_{(~}^{\left(\otimes J_{\nu}\right)}$ and $^{\text {ad }}{ }_{\left(\hat{\jmath}_{\left.\otimes J_{\nu}\right)} \text { commute }\right.}$ 1. \Leftrightarrow 3. $\beta(N)=\operatorname{ad}_{X}\left(\lambda^{\text {op }}\left(N^{\prime}\right)\right) \subseteq \operatorname{ad}_{X}\left(\hat{M} \otimes N^{\prime}\right)$ commutes with $\operatorname{ad}_{X}\left(\alpha^{\mathrm{op}}\left(N^{\prime}\right)\right) \vee \operatorname{ad}_{x}\left(\hat{M}^{\prime} \otimes 1\right)=\operatorname{ad}_{X\left(\hat{\jmath}_{\left.\otimes J_{\nu}\right)}\right.}\left(M \ltimes_{\alpha} N\right) \stackrel{(\text { Vaes })}{=}\left(M \ltimes_{\alpha} N\right)^{\prime}$

The comultiplication，left－invariant weight and the dual

We obtained a von Neumann bimodule $N \underset{\beta}{\underset{\rightrightarrows}{\rightrightarrows}} M \ltimes_{\alpha} N \bigcirc L:=H \otimes K$ ． The unitary implementation X leads to a canonical unitary

$$
Z:\left(H \otimes H_{\nu}\right) \otimes H \rightarrow\left(H \otimes H_{\nu}\right)_{\beta}{\underset{\nu}{\otimes}}_{\alpha}\left(H \otimes H_{\nu}\right)=: L_{\beta}{\underset{\nu}{*}}_{\alpha} L
$$

Theorem

1．$A:=M \ltimes{ }_{\alpha} N$ is a Hopf－von Neumann bimodule w．r．t．α, β and $\Delta_{A}: A \xrightarrow{\text { dual coaction } \hat{\alpha}} \hat{M} \otimes A \subseteq \mathcal{L}(H \otimes L) \xrightarrow{\operatorname{ad}_{Z \Sigma}} \mathcal{L}\left(L_{\beta}{\underset{\nu}{\nu}}_{\alpha} L\right)$ ，i．e．，
－$\Delta_{A}(\alpha(x))=\alpha(x) \otimes 1$
－$\Delta_{A}(\beta(x))=1_{\beta}{\underset{\nu}{\otimes}}_{\alpha} \beta(x)$
－$\Delta_{A}(A) \subseteq A_{\beta}{ }_{\nu}^{*}{ }_{\alpha} A=\left(A_{\beta}^{\prime}{ }_{\nu}^{\otimes}{ }_{\alpha} A^{\prime}\right)^{\prime}$
－$\left(\Delta_{A} * \iota\right) \Delta_{A}=\left(\iota * \Delta_{A}\right) \Delta_{A}$

2．$T_{L}=(\hat{\phi} \otimes \iota \otimes \iota) \circ \hat{\alpha}: A \rightarrow \alpha(N)$ is left－invariant w．r．t．Δ_{A}
3．The associated left fundamental isometry（Lesieur）is

$$
L_{\alpha} \otimes_{\nu} \beta^{\prime} L \xrightarrow{Z^{\prime *}} H \otimes H_{\nu} \otimes H \xrightarrow{\hat{W}_{13}} H \otimes H_{\nu} \otimes H \xrightarrow{Z} L_{\beta} \otimes_{\nu}{ }_{\alpha} L
$$

4．The associated dual Hopf－v．N．bimodule is $\operatorname{ad}_{X Y^{*}}\left(\hat{M} \ltimes_{\lambda} N\right)$ ．

The co－involution or unitary antipode

Using the work of Vaes on crossed products，we
－consider the dual weight $A=M \ltimes_{\alpha} N \xrightarrow{T_{L}} \alpha(N) \cong N \xrightarrow{\nu} \mathbb{C}$
－identify $L^{2}(A)$ with $H \otimes H_{\nu}$ via $(y \otimes 1) \alpha(x) \mapsto \hat{\Lambda}(y) \otimes \Lambda_{\nu}(x)$
－obtain by a polar decomposition of the involution on $L^{2}(A)$ the modular operator ∇_{A} and conjugation $J_{A}=X\left(\hat{\jmath} \otimes J_{\nu}\right)$
－replace $A=M \ltimes_{\alpha} N$ by $\hat{A}=\operatorname{ad}_{X Y *}\left(\hat{M} \ltimes_{\lambda} N\right)$ and obtain $\nabla_{\hat{A}}, J_{\hat{A}}$

Proposition Define $R_{A}: A \rightarrow \mathcal{L}\left(H \otimes H_{\nu}\right)$ by $z \mapsto J_{\hat{A}} z^{*} J_{\hat{A}}$ ．This map
1．is a co－involution on the Hopf－v．N．bimodule $A=M \ltimes_{\alpha} N$
2．satisfies strong invariance w．r．t．T_{L}
3．yields a right－invariant $T_{R}:=R_{A} \circ T_{L} \circ R_{A}: A \rightarrow \beta(N)$

Summary: What we get and what is needed

Theorem (T.) Let (N, α, λ) be a braided-commutative Yetter-Drinfeld algebra. Then we obtain

- a Hopf-von Neumann bimodule $N \underset{\beta}{\underset{\beta}{\rightrightarrows}} M \ltimes_{\alpha} N=A \xrightarrow{\Delta_{A}} A_{\beta} \underset{\nu}{\alpha} A$ with a co-involution R_{A}
- left-/right-invariant weights $T_{L}=(\hat{\phi} \otimes \iota) \circ \hat{\alpha}, T_{R}=R_{A} \circ T_{L} \circ R_{A}$

Problem To obtain a measured quantum groupoid, we need a n.s.f. weight ν on N such that the modular automorphism groups of $\nu \circ \alpha^{-1} \circ T_{L}$ and $\nu \circ \beta^{-1} \circ T_{R}$ on $M \ltimes_{\alpha} N$ commute.

