Free dynamical quantum groups and deformations of SU（2）

Thomas Timmermann

$$
23.05 .2013
$$

What is a quantum groupoid？

－a set G
－a map $G \times G \xrightarrow{m} G$
－conditions．．．
－sets X, G
－maps $\underset{X}{\times} G \xrightarrow{m} G \rightrightarrows X$
－conditions ．．．

 $\underset{\text { quantum }}{\underset{\text { group }}{\text { dynamical }}} \begin{array}{cc}\text { quantum }\end{array} \quad$ groupoid
－an algebra A
－a map $A \xrightarrow{\Delta} A \otimes A$
－conditions ．．． group
－algebras B, A
－maps $B \rightrightarrows A \xrightarrow{\Delta} A \times A$
－conditions ．．．

Examples of groupoids

1．dynamical system $\Gamma \bigcirc X \leadsto$ transformation groupoid：

$$
X \rtimes \Gamma=\{(x, \gamma, y): x=\gamma y\}
$$

2．topological space $X \Rightarrow$ fundamental groupoid：

$$
\Pi_{1}(X)=[[0,1], X]
$$

3．manifold $M \Rightarrow$ tangent groupoid：
blow－up of $\Delta(M)$ in $M \times M /$ deformation of $T M$ to $M \times M$

Examples of quantum groups

The following are compact matrix quantum groups of the form

$$
\left.A=\left\langle u_{i, j}\right| u=\left(u_{i j}\right)_{i, j} \text { is unitary }\right\rangle, \quad \Delta\left(u_{i j}\right)=\sum_{k} u_{i k} \otimes u_{k j}
$$

1．q－deformation of polynomial functions on $\mathrm{SU}_{q}(2)$ ：

$$
\left.\mathcal{O}\left(\mathrm{SU}_{q}(2)\right)=\langle a, c| u=\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right) \text { is unitary }\right\rangle
$$

2．quantum permutation group：

$$
\begin{array}{r}
A=\left\langle p_{i j}, 1 \leq i, j \leq n\right| \\
\quad \text { each row/column of }\left(p_{i j}\right)_{i, j} \text { consists of } \\
\text { pairw. orthog. projections with sum } 1\rangle
\end{array}
$$

3．free orthogonal quantum group for parameter $F \in \mathrm{GL}_{n}(\mathbb{C})$ ：

$$
A_{o}(F)=\left\langle u_{i j}, 1 \leq i, j \leq n \mid F \bar{u}=u F\right\rangle
$$

Dynamical quantum groups（Etingof－Varchenko）

Fix a commutative algebra B with an action by a group Γ
－A dynamical algebra is a $\Gamma \times \Gamma$－graded algebra \mathcal{A} with $B \otimes B \rightarrow \mathcal{A}_{e, e}$ s．t．$a\left(b \otimes b^{\prime}\right)=\left(\gamma(b) \otimes \gamma^{\prime}\left(b^{\prime}\right)\right)$ a for $a \in \mathcal{A}_{\gamma, \gamma^{\prime}}$
－The tensor product of \mathcal{A}, \mathcal{C} is $\mathcal{A} \tilde{\otimes} \mathcal{C}=\underset{\gamma, \gamma^{\prime}, \gamma^{\prime \prime}}{\bigoplus}\left(\mathcal{A}_{\gamma, \gamma^{\prime}}{ }_{B}^{\otimes} \mathcal{C}_{\gamma^{\prime}, \gamma^{\prime \prime}}\right)$
－A dynamical quantum group is a dynamical algebra \mathcal{A} with
－a comultiplication $\Delta: \mathcal{A} \rightarrow \mathcal{A} \tilde{\otimes} \mathcal{A}$ such that $(\Delta \tilde{\otimes} \iota) \Delta=(\iota \tilde{\otimes} \Delta) \Delta$
－a counit $\epsilon: \mathcal{A} \rightarrow B \rtimes \Gamma$ such that $(\epsilon \tilde{\otimes} \iota) \Delta=\iota=(\iota \tilde{\otimes} \epsilon) \Delta$
－an antipode $S: \mathcal{A} \rightarrow \mathcal{A} \ldots$
Example The crossed product $B \rtimes \Gamma=\langle B, \Gamma: \gamma \cdot b=\gamma(b) \cdot \gamma\rangle$ ：
－$B \rtimes \Gamma=\underset{\gamma}{\oplus} B \gamma$ and $B \otimes B \rightarrow B \rightarrow B \rtimes \Gamma$ is the multiplication
－$\Delta(b \gamma)=b \gamma \tilde{\otimes} \gamma=\gamma \tilde{\otimes} b \gamma, \quad \epsilon(b \gamma)=b \gamma, \quad S(b \gamma)=\gamma^{-1} b$

A＂semi－classical＂example

Start with
－a Lie group G with algebra $\mathcal{O}(G)$（matrix coeff．of f．d．reps）
－a toral subgroup $T \subseteq G$ with Lie algebra \mathfrak{t}
Obtain a dynamical quantum group，where
－$B=U \mathfrak{t} \cong \mathcal{O}\left(\mathfrak{t}^{*}\right)$ and $\Gamma=\left\{\begin{array}{c}\text { weights of } \\ \text { f．d．reps．of } G\end{array}\right\} \subseteq \mathfrak{t}^{*}$ acting by shifts
－ $\mathcal{A} \subseteq \operatorname{End}(\mathcal{O}(G))$ is the algebra generated by
－ $\mathcal{O}(G)$ acting by multiplication
－$B \otimes B=U \mathfrak{t} \otimes U \mathfrak{t}$ acting by left or right invariant diff．ops
－comultiplication Δ and counit ϵ
－on $B \otimes B:$ map $b \otimes b^{\prime}$ to $(b \otimes 1) \tilde{\otimes}\left(1 \otimes b^{\prime}\right)$ or $b b^{\prime}$
－on $\mathcal{O}(G)$ ：are transposes of $G \underset{T}{\times} G \xrightarrow{m} G$ and $\mathfrak{t} \xrightarrow{\text { exp }} G$
$\mathcal{O}\left(\operatorname{SU}_{q}^{\text {dyn }}(2)\right)$ is a deformation of the last example for $G=\operatorname{SU}(2)$ ：
－$B=\mathfrak{M}(\mathbb{C})$（meromorphic functions）$\Gamma=\mathbb{Z}$ acting by shifts
－ $\mathcal{O}\left(\operatorname{SU}_{q}^{\text {dyn }}(2)\right)=$ universal dynamical algebra with
－generators a, a^{*}, c, c^{*} of degree（1，1），（－1，－1），（1，－1），（－1，1）
－relations involving special functions $f, g \in B$ and $h \in B \otimes B$ ：

$$
\begin{gathered}
a c=q(f \otimes 1) c a, \quad a c^{*}=q c^{*}(1 \otimes f) a, \\
c^{*} a^{*}=q(f \otimes 1) a^{*} c^{*}, \quad c a^{*}=q a^{*}(1 \otimes f) c, \\
a a^{*}-a^{*} a=h c c^{*}, \quad(1 \otimes g) a a^{*}-(g \otimes 1) a^{*} a=-q h c^{*} c,
\end{gathered}
$$

$$
\text { where } \quad f(\lambda)=\frac{q^{2(\lambda+1)}-q^{-2}}{q^{2(\lambda+1)}-1}, \quad g(\lambda)=\frac{\left(q^{2(\lambda+1)}-q^{2}\right)\left(q^{2(\lambda+1)}-q^{-2}\right)}{\left(q^{2(\lambda+1)}-1\right)^{2}} \text {, }
$$

$$
h\left(\lambda, \lambda^{\prime}\right)=\frac{\left(q-q^{-1}\right)\left(q^{2\left(\lambda+\lambda^{\prime}+2\right)}-1\right)}{\left(q^{2(\lambda+1)}-1\right)\left(q^{2\left(\lambda^{\prime}+1\right)}-1\right)}
$$

－$\Delta\left(u_{i j}\right)=\sum_{k} u_{i k} \tilde{\otimes} u_{k j}$ for $u=\left(\begin{array}{cc}a & -q c^{*} \\ c & a^{*}\end{array}\right)$

Corepresentations of dynamical quantum groups

Each group G has a tensor category of matrix representations：
－objects：finite set I and $u \in G L_{I}(C(G))$ s．t．$u_{i j}(x y)=\sum_{k} u_{i k}(x) u_{k j}(y)$
－ $\operatorname{Hom}((J, v),(I, u))=\left\{T \in M_{J \times I}(\mathbb{C}): T v=u T\right\}$
－$(I, u) \otimes(J, v)=(I \times J, w)$ ，where $w_{(i, k),(j, I)}=u_{i j} v_{k l}$
Each dynamical qtm．group $B \otimes B \rightarrow \mathcal{A} \xrightarrow{\Delta} \mathcal{A} \tilde{\otimes} \mathcal{A}$ has an analogue：
－objects：finite set I and $u \in G L_{l}(A)$ such that $\Delta\left(u_{i j}\right)=\sum_{k} u_{i k} \tilde{\otimes} u_{k j}$ and $u_{i j} \in \mathcal{A}_{\gamma_{i}, \gamma_{j}}$ for some $\gamma \in \Gamma^{\prime}$（the degree of u ）
－ $\operatorname{Hom}((J, v),(I, u))=\left\{T \in M_{J \times I}(B): \hat{T} v=u \bar{T}, T_{i j}=0\right.$ if $\left.\gamma_{i}^{u} \neq \gamma_{j}^{v}\right\}$ ， where $\hat{T}=\left(\gamma_{i}^{\mu}\left(T_{i j}\right) \otimes 1\right)_{i, j}$ and $\check{T}=\left(1 \otimes T_{i j}\right)_{i, j}$
（Idea：replace vector spaces by dynamical vector spaces：

$$
\left.\Gamma \text {-graded } B \text {-bimodules } \mathcal{V} \text { s.t. } v b=\gamma(b) v \text { if } v \in \mathcal{V}_{\gamma}\right)
$$

Proposition（T．）Let $\nabla \in \Gamma^{n}, F \in \mathrm{GL}_{n}(B)$ s．t．$F_{i j}=0$ if $\nabla_{i} \neq \nabla_{j}^{-1}$ ． Let also $G \in G L_{n}(B)$ s．t．$G_{i j}=0$ if $\nabla_{i} \neq \nabla_{j}^{-1}$ and $G F^{*}=F G^{*}$ ．
Then there exists universal $*$－dynamical qtm．group $\mathcal{A}_{\circ}(\nabla, F, G)$ with a corepresentation u of degree ∇ s．t．$F \in \operatorname{Hom}\left(u^{-\top}, u\right)$ and $G \in \operatorname{Hom}(\bar{u}, u)$ ．
Proof $\mathcal{A}:=\left\langle B \otimes B, u_{i j}:\left(\nabla_{i}(b) \otimes \nabla_{j}\left(b^{\prime}\right)\right) u_{i j}=u_{i j}\left(b \otimes b^{\prime}\right), \hat{F} u^{-\top}=u \check{F}\right\rangle$ admits $\Delta: \mathcal{A} \rightarrow \mathcal{A} \tilde{\otimes} \mathcal{A}, \quad \epsilon: \mathcal{A} \rightarrow B \rtimes \Gamma, \quad S: \mathcal{A} \rightarrow \mathcal{A}^{\mathrm{op}, c o}$ such that

$$
\Delta\left(u_{i j}\right)=\sum_{k} u_{i k} \tilde{\otimes} u_{k j}, \quad \epsilon\left(u_{i j}\right)=\delta_{i j} \nabla_{i}, \quad S\left(u_{i j}\right)=\left(u^{-1}\right)_{i, j} .
$$

Example $\mathcal{A}_{o}^{B}(\nabla, F, G)=\mathcal{O}\left(S U_{q}^{\text {dyn }}(2)\right)$ if we take

$$
B=\mathfrak{M}(\mathbb{C}), \quad \Gamma=\mathbb{Z}, \quad \nabla=(1,-1), \quad F=\left(\begin{array}{cc}
0 & -1 \\
f_{-1}^{-1} & 0
\end{array}\right), \quad G=\left(\begin{array}{cc}
0 & -1 \\
q^{-1} & 0
\end{array}\right)
$$

Glueing in $\mathcal{O}\left(\mathrm{SU}_{q}(2)\right)$ as a limit case of $\mathcal{O}\left(\mathrm{SU}_{q}^{\mathrm{dyn}}(2)\right)$

Observations Let $B=\mathfrak{M}(\mathbb{C}), \Gamma=\mathbb{Z}$ and $T=\left(\begin{array}{cc}f_{0}^{-1} & 0 \\ 0 & 1\end{array}\right) \in \operatorname{GL}_{2}(B)$ ．
－ $\mathcal{O}\left(\operatorname{SU}_{q}^{\text {dyn }}(2)\right)$ is the universal $*$－dynamical quantum group with a corepresentation $u=\left(\begin{array}{cc}a & -q c^{*} \\ c & a^{*}\end{array}\right)$ such that $T \in \operatorname{Hom}\left(u^{-*}, u\right)$
－For $\lambda \rightarrow-\infty$ ，have $f(\lambda)=\frac{q^{2(\lambda+1)}-q^{-2}}{q^{2(\lambda+1)}-1} \rightarrow 1$ and get $\mathcal{O}\left(\mathrm{SU}_{q}(2)\right)$
－The relations involve only $\left\langle\left(\lambda \mapsto \frac{q^{\lambda+k}-q^{-\lambda-k}}{q^{\lambda+1}-q^{-\lambda-1}}\right): k, I \in \mathbb{Z}\right\rangle \subseteq B$

Definition $\mathcal{O}\left(S U_{q}^{\text {full }}(2)\right):=\mathcal{A}_{o}(\nabla, F, G)$ ，where
－$B=\left\langle\left.\frac{q^{k} X-q^{-k} Y}{q^{I} X-q^{-1} Y} \right\rvert\, k, I \in \mathbb{Z}\right\rangle \subseteq \mathbb{C}(X, Y)$
－$\Gamma=\mathbb{Z}$ acting by $X \xrightarrow{k} q^{k} X, Y \xrightarrow{k} q^{-k} Y$
－$\nabla=(1,-1)$ and F, G are appropriately chosen

Glueing in $\mathcal{O}\left(\mathrm{SU}_{q}(2)\right)$ as a limit case of $\mathcal{O}\left(\mathrm{SU}_{q}^{\mathrm{dyn}}(2)\right)$

Definition $\mathcal{O}\left(S U_{q}^{\text {full }}(2)\right):=\mathcal{A}_{o}(\nabla, F, G)$ ，where
－$B=\left\langle\left.\frac{q^{k} X-q^{-k} Y}{q^{\prime} X-q^{-1} Y} \right\rvert\, k, I \in \mathbb{Z}\right\rangle \subseteq \mathbb{C}(X, Y)$
－$\Gamma=\mathbb{Z}$ acting by $X \xrightarrow{k} q^{k} X, Y \xrightarrow{k} q^{-k} Y$
$\mathcal{O}\left(\operatorname{SU}_{q}^{\text {full }}(2)\right)$＂contains＂ $\mathcal{O}\left(\operatorname{SU}_{q}^{\text {dyn }}(2)\right)$ for all q and limit cases：
Base change Given a Γ－equivariant homomorphism $B \xrightarrow{\phi} C$ ，get $\left\{\begin{array}{c}\text { dynamical quantum } \\ \text { groups over } \Gamma \subset B\end{array}\right\} \xrightarrow{\phi_{*}}\left\{\begin{array}{c}\text { dynamical quantum } \\ \text { groups over } \Gamma \subset C\end{array}\right\}, \mathcal{A} \mapsto \mathcal{A}_{B \otimes B}^{\otimes}(C \otimes C)$
Examples 1．$\phi_{*} \mathcal{O}\left(\mathrm{SU}_{q}^{\text {full }}(2)\right) \cong \mathcal{O}\left(\mathrm{SU}_{q}(2)\right)$ if $\phi: B \rightarrow \mathbb{C},\left\{\begin{array}{l}X \mapsto 1 \\ Y \mapsto 0\end{array}\right.$
2．$\phi_{*} \mathcal{O}\left(\mathrm{SU}_{q}^{\text {full }}(2)\right) \cong \mathcal{O}\left(\mathrm{SU}_{q}^{\text {dyn }}(2)\right)$ if $\phi: B \rightarrow \mathfrak{M}(\mathbb{C}),\left\{\begin{array}{l}X \mapsto\left(\lambda \mapsto q^{\lambda}\right) \\ Y \mapsto\left(\lambda \mapsto q^{-\lambda}\right)\end{array}\right.$
3．（treat q as variable）$\phi: B \rightarrow \mathbb{C}(\lambda), q \mapsto 1, \frac{q^{k} X-q^{-k} Y}{q^{I} X-q^{-1} Y} \mapsto \frac{\lambda-k}{\lambda-1}$

The passage to operator algebras

Aim construct operator－algebraic dynamical quantum groups

Assume \mathcal{A} is a dynamical quantum group over $\Gamma \bigcirc B$ and

- $\mu: B \rightarrow \mathbb{C}$ is positive, Г-quasi-invariant with bounded GNS-rep.
- $h: \mathcal{A} \rightarrow B \otimes B$ is a cond. expectation and $\Delta(\operatorname{ker} h) \subseteq \operatorname{ker} h \tilde{\otimes} \operatorname{ker} h$
- $\nu: \mathcal{A} \xrightarrow{h} B \otimes B \xrightarrow{\mu \otimes \mu} \mathbb{C}$ is faithful and positive

Theorem (T.) 1. ν has a bounded GNS-rep. $\pi_{\nu}: \mathcal{A} \rightarrow \mathcal{L}\left(H_{\nu}\right)$
2. $\phi:=(\iota \otimes \mu) \circ h$ is left-invariant: $(\iota \otimes \phi)(\Delta(a))=\phi(a) \otimes 1$ $\psi:=(\mu \otimes \iota) \circ h$ is right-invariant: $(\psi \otimes \iota)(\Delta(a))=1 \otimes \psi(a)$
3. $\operatorname{get} \pi_{\nu}(\mathcal{A})^{\prime \prime} \xrightarrow{\bar{\phi}, \bar{\psi}} \pi_{\mu}(B)^{\prime \prime}$ and $\pi_{\nu}(\mathcal{A})^{\prime \prime} \xrightarrow{\bar{\Delta}} \pi_{\nu}(\mathcal{A})^{\prime \prime} * \pi_{\nu}(\mathcal{A})^{\prime \prime}$
4. $\pi_{\nu}(\mathcal{A})^{\prime \prime}$ is a measured quantum groupoid [Enock, Lesieur]

Proof Use a unitary $V: \underset{\nu}{H_{\mu}} \underset{\nu}{\otimes} H_{\nu} \rightarrow H_{\nu}^{\otimes} H_{\nu}, x \otimes y \mapsto \Delta(x)(1 \otimes y)$
Plan Apply this construction to $\mathcal{O}\left(\mathrm{SU}_{q}^{\text {full }}(2)\right)$

