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Tannaka-Krein duality

Classical Tannaka-Krein duality

For a compact group G, its category Rep, ¢4(G)

(i) is semi-simple (every object is a direct sum of irreducibles)

(ii) carries a tensor product which is symmetric (7 @ 7’ = 7’ @ )
(iii) has a faithful tensor functor, briefly fiber functor, F into Hilb
)

(iv) has a certain duality (contragredient representations)

Theorem (Tannaka-Krein) Every category C satisfying (i)—(iv) is
equivalent to Rep, ¢4(G) for some compact group G
Idea The group G consists of all families € [y B(FX) such that
FX -~ Fy
nxl o lny , each nx is unitary, nNxgy = nNx @ Ny
FX s Fy
Every X € C yields a unitary representation G — B(FX), n — nx
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Tannaka-Krein duality

Duality in a tensor category, and Rep, (SU(2))

Definition Objects X and X in a strict tensor category are dual if
there are morphisms R: 1 — X ® X and RT: X ® X — 1 such that

X B89 v o X @ X 99RY ¥ and X 48R, X o x @ X R84, ¥

are the identity.
Example For G = SU(2), the category Rep, t4(SU(2)) has

» the fundamental irrducible representation u on C? and
irreducibles vy = Sym¥u labelled by integers k € IN

> tensor product ux ® up = up_y &+ D Upyy

» duality morphisms R: 1 > u®uand R*: u®u—1,ie. U= u,
which generate all morphisms in Rep,, t4(SU(2))

> a purely combinatorial description of each Hom(u®*, u®')
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Tannaka-Krein duality

The proof of Tannaka-Krein makes crucial use of algebras

Given C 25 Hilb, define G C [1x B(FX) and mx: n — nx as above.
Each object X € C and functional w € B(FX), yield a function

fX=womx: G—C, n— w(nx).

Then the set 7(G) C C(G) of such functions
> is a subspace (X +f) = ﬂfgﬁy) an algebra (X - ) = fv)giy),
and a x-algebra, as can be seen using dual objects
» separates the points of G and therefore is dense in C(G)

» consists of all matrix elements of f.d. representations (Peter-Weyl)

Hence, C — Rep, (G), X — mx, is essentially surjective on objects.
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Compact quantum groups

The compact quantum groups of Woronowicz

By Gelfand-Naimark duality, every compact group G is determined by
its function algebra and the transpose of the multiplication

A:C(G)— C(GxG)=C(G)®» C(G)
Definition (Woronowicz) A compact quantum group is a unital
C*-algebra A with a x-homomorphism A: A — A ® A satisfying
(i) coassociativity: (A ®id)o A = (id®A)o A, and
(ii) cancellation: A(A)(1® A) and A(A)(A® 1) are dense in AR A

Example A is commutative iff A= C(G) for some compact space G

» A corresponds to an associative multiplication G x G — G

» cancellation holds iff two maps G x G — G x G are injective:
(x,y) = (xy,y) and (x,y) — (x, xy)
» a compact semigroup with cancellation is a group
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Compact quantum groups

Examples of compact quantum groups
The following are compact matrix quantum groups of the form
A = (ujj | u = (ujj);ij is unitary), A(uij) = 4 Uik @ ug;
» g-deformation of polynomial functions on SU(2)

O(SU(2)) = <a, C ’ u= (i Z*C*> is unitary>

» The quantum permutation group

A= <p,-j, 1<i,j<n ‘ each row/column of (pj;);; consists of

pairw. orthog. projections with sum 1 >

» The free orthogonal quantum group for parameter F € GL,(C)
As(F) = (uj,1<i,j<n|Fi=uF)
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Compact quantum groups

Tannaka-Krein-Woronowicz duality

Every compact quantum group G = (A, A) has a category Repgy(G)
of representations on f.d. Hilbert spaces, where

» a representation of G on a f.d. Hilbert space H is an invertible
XEAR® B(H) satisfying (A X Id)(X) = X13X23

» a morphism of representations X, Y on Hilbert spaces H, K is a
T € B(H,K) satisfying (1@ T)X=Y(1® T)

» the tensor product of X and Y is X15Y13 € AR B(H ® K)
> the dual of X is j(X) € A® B(H), where j(a® b) = a*® b

Theorem (Woronowicz) Every semi-simple tensor C*-category C with
duality and a fiber functor to Hilb is equivalent to Rep, t4(G) for some
compact quantum group G.

ldea Ag := D xei(c) BIFX)« is a Hopf x-algebra and A = C*(Ao)

7/12

Partial compact quantum groups

Passing from (quantum) groups to (quantum) groupoids

» aset G » sets X and G .
»amapGxGDHG > maps Gsx,G = G = X
» conditions . .. » conditions . .. °
group~— - -~ - T T T T T T~ > groupoid
| |
| I
I I
Y Y
quantum _ _ _ _ _ _ _ _ _ _ . quantum
group groupoid

> an algebra A » algebras B and A

« A
>amapAA>A®A > maps B 3 A — AgX,A

- - B
» conditions ... » conditions ...
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Partial compact quantum groups

Passing to quantum groupoids=replacing the target category

We now consider tensor functors into ;Hilb;, where [ is a set and
> objects are families of Hilbert spaces H = (kHj)k el
» morphisms are families of linear operators

» the tensor product of H and K is H® K = (@ kHi & /Km)k
/ / m

Examples

» The canonical fiber functor of a tensor C*-category (Hayashi)
Given such a category C, write Irr(C) = (ux)kes and define

F:C — Hilb;, X — (Hom(ux, X ® uy)),
Get Hom(k, X ® I) @ Hom(/, Y ® m) — Hom(k, X ® Y ® m) and
FX®@FY - F(X®Y).
I

» Monoidal equivalence of CQGs (Bichon-De Rijdt—Vaes)
Given Repy t4(G1) ~ Repy t4(G2), write | = {1,2} and obtain
Repu’fd(Gl) — Hilb x Hilb — /Hi|b/
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Partial compact quantum groups

“Partial” Tannaka-Krein-Woronowizc duality

Theorem (De Commer—T.) There exists a correspondence, bijective up
to equivalence, between connected partial compact quantum groups G
and semi-simple tensor C*-categories with duality and fiber functor to
tHilb;, given by G — Repy 14(G).

. . . k / .
ldeas A connected partial CQG G is given by spaces [ A, with
» multiplications K Al x ! AP — k AP and involutions K Al — ! Ak

n-'m
that turn P(G) = @ X Al into a *-algebra with units in K Ak
k,/,m,n

m’°'m

> comultiplications Ap,: & Al — ﬁAé ® A7, counits and antipodes

that turn P(G) into a weak multiplier Hopf x-algebra
» a Haar weight ¢: P(G) — C that is positive, faithful, invariant

From F: C — (Hilby, get G via KAl = @ B(m(FX)n, k(FX)))s.
Xelrr(C)
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Partial compact quantum groups

Partial quantum groups on the level of operator algebras

Given a partial compact quantum group G, we construct the following
completions of the polynomial algebra P(G):

» a universal C*-algebra CY(G) = C*(P(G)) with comultiplication
» a reduced C*-algebra C"(G) and von Neumann algebra L*°(G),
generated by the regular representation 7,: P(G) — B(L%(G)),
with lifts of the comultiplication and of the Haar weight
» define L?(G) as a completion of P(G) using the Haar weight,
need to prove boundedness of 7,(a): b+ ab on L?(G)
> use a partial isometry V: a® b+ A(a)(1® b) on L3(G) ® L?(G),
then each 7,(a) arises as (w ® id)(V) for some w € B(L3(G)).
and the comultiplication lifts by the formula x — V(1 ® x)V*
» for the Haar weight, use that P(G) C L?(G) is a Hilbert algebra

Theorem L*°(G) is a measured quantum groupoid (Enock, Lesieur).
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Partial compact quantum groups

Application to the dynamical SU,(2)

Note that $% = SU(2)/T is a homogeneous space for SU(2).
Podles discovered quantum homogeneous spaces Sz for SU4(2).

Theorem (De Commer—Yamashita) For every compact quantum group
G, there exists a bijective correspondence between

(i) quantum homogeneous spaces for G

(i) connected, semi-simple C*-module categories D over Rep, ¢4(G)

(iii) connected fiber functors from Rep, ¢4(G) to ;Hilb; for some /

Thus S, corresponds to some F: Rep, ta(SUq(2)) — ;Hilb; and
to a partial compact quantum group G «, which turns out to be a
variant of the dynamical SU4(2) (Koelink—Rosengren)

Theorem For g # 1, this partial compact quantum group G, x is not
coamenable in the sense that CY(Gg4 x) — C'(Gq,«) is not injective
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