Tannaka-Krein duality for partial compact quantum groups and the dynamical $SU_q(2)$ (joint work with Kenny De Commer)

> Thomas Timmermann University of Münster

18th of November 2014

Tannaka-Krein duality

Compact quantum groups

Partial compact quantum groups

Classical Tannaka-Krein duality

For a compact group G, its category $\operatorname{Rep}_{u, \mathrm{fd}}(G)$

- (i) is semi-simple (every object is a direct sum of irreducibles)
- (ii) carries a tensor product which is symmetric $(\pi \otimes \pi' \cong \pi' \otimes \pi)$
- (iii) has a faithful tensor functor, briefly fiber functor, F into Hilb
- (iv) has a certain duality (contragredient representations)

Theorem (Tannaka-Krein) Every category C satisfying (i)–(iv) is equivalent to $\operatorname{Rep}_{u,fd}(G)$ for some compact group G

Idea The group G consists of all families $\eta \in \prod_X \mathcal{B}(FX)$ such that

$$\begin{array}{ccc} FX & \xrightarrow{Ff} & FY \\ \eta_{\mathbf{X}} & & & & \\ \eta_{\mathbf{X}} & & & \\ & & & \\ FX & \xrightarrow{Ff} & FY \end{array} \text{ each } \eta_{\mathbf{X}} \text{ is unitary, } & \eta_{\mathbf{X} \otimes \mathbf{Y}} = \eta_{\mathbf{X}} \otimes \eta_{\mathbf{Y}} \end{array}$$

Every $X \in \mathcal{C}$ yields a unitary representation $G \rightarrow \mathcal{B}(FX)$, $\eta \mapsto \eta_X$

Duality in a tensor category, and $\mathsf{Rep}_{u,\mathsf{fd}}(\mathsf{SU}(2))$

Definition Objects X and \overline{X} in a strict tensor category are dual if there are morphisms $R: 1 \to X \otimes \overline{X}$ and $R^{\dagger}: \overline{X} \otimes X \to 1$ such that

$$X \xrightarrow{R \otimes \mathsf{id}} X \otimes \overline{X} \otimes X \xrightarrow{\mathsf{id} \otimes R^{\dagger}} X \text{ and } \overline{X} \xrightarrow{\mathsf{id} \otimes R} \overline{X} \otimes X \otimes \overline{X} \xrightarrow{R^{\dagger} \otimes \mathsf{id}} \overline{X}$$

are the identity.

Example For G = SU(2), the category $Rep_{u,fd}(SU(2))$ has

- the fundamental irrducible representation u on \mathbb{C}^2 and irreducibles $u_k = \operatorname{Sym}^k u$ labelled by integers $k \in \mathbb{N}$
- tensor product $u_k \otimes u_l \cong u_{|k-l|} \oplus \cdots \oplus u_{k+l}$
- duality morphisms $R: 1 \rightarrow u \otimes u$ and $R^*: u \otimes u \rightarrow 1$, i.e. $\overline{u} = u$, which generate all morphisms in $\text{Rep}_{u,\text{fd}}(\text{SU}(2))$
- a purely combinatorial description of each Hom $(u^{\otimes k}, u^{\otimes l})$

Tannaka-Krein duality

Compact quantum groups

Partial compact quantum groups

The proof of Tannaka-Krein makes crucial use of algebras

Given $\mathcal{C} \xrightarrow{F}$ Hilb, define $G \subseteq \prod_X \mathcal{B}(FX)$ and $\pi_X \colon \eta \mapsto \eta_X$ as above.

Each object $X \in C$ and functional $\omega \in \mathcal{B}(FX)_*$ yield a function

$$f^X_\omega = \omega \circ \pi_X \colon \mathcal{G} o \mathbb{C}, \quad \eta \mapsto \omega(\eta_X).$$

Then the set $\mathcal{T}(G) \subseteq C(G)$ of such functions

- ► is a subspace $(f_{\upsilon}^{X} + f_{\omega}^{Y} = f_{\upsilon \oplus \omega}^{X \oplus Y})$ an algebra $(f_{\upsilon}^{X} \cdot f_{\omega}^{Y} = f_{\upsilon \otimes \omega}^{X \otimes Y})$, and a *-algebra, as can be seen using dual objects
- separates the points of G and therefore is dense in C(G)
- consists of all matrix elements of f.d. representations (Peter-Weyl)

Hence, $\mathcal{C} \mapsto \operatorname{Rep}_{u, \operatorname{fd}}(\mathcal{G})$, $X \mapsto \pi_X$, is essentially surjective on objects.

The compact quantum groups of Woronowicz

By Gelfand-Naimark duality, every compact group G is determined by its function algebra and the transpose of the multiplication $\Delta: C(G) \rightarrow C(G \times G) \cong C(G) \otimes C(G)$

Definition (Woronowicz) A compact quantum group is a unital C^* -algebra A with a *-homomorphism $\Delta \colon A \to A \otimes A$ satisfying

- (i) coassociativity: $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$, and
- (ii) cancellation: $\Delta(A)(1\otimes A)$ and $\Delta(A)(A\otimes 1)$ are dense in $A\otimes A$

Example A is commutative iff $A \cong C(G)$ for some compact space G

- Δ corresponds to an associative multiplication G imes G o G
- ► cancellation holds iff two maps $G \times G \rightarrow G \times G$ are injective: (x, y) \mapsto (xy, y) and (x, y) \mapsto (x, xy)
- a compact semigroup with cancellation is a group

Tannaka-Krein duality

Compact quantum groups

Partial compact quantum groups

Examples of compact quantum groups

The following are compact matrix quantum groups of the form $A = \langle u_{ij} | u = (u_{ij})_{i,j}$ is unitary \rangle , $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$

q-deformation of polynomial functions on SU(2)

$$\mathcal{O}(\mathsf{SU}(2)) = \left\langle a, c \middle| u = \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix} \text{ is unitary} \right\rangle$$

- The quantum permutation group $A = \left\langle p_{ij}, 1 \le i, j \le n \right|$ each row/column of $(p_{ij})_{i,j}$ consists of pairw. orthog. projections with sum 1 $\right\rangle$
- The free orthogonal quantum group for parameter $F \in GL_n(\mathbb{C})$ $A_o(F) = \langle u_{ij}, 1 \le i, j \le n \mid F\bar{u} = uF \rangle$

Tannaka-Krein-Woronowicz duality

Every compact quantum group $\mathbb{G} = (A, \Delta)$ has a category $\operatorname{Rep}_{fd}(\mathbb{G})$ of representations on f.d. Hilbert spaces, where

- a representation of \mathbb{G} on a f.d. Hilbert space H is an invertible $X \in A \otimes \mathcal{B}(H)$ satisfying $(\Delta \otimes id)(X) = X_{13}X_{23}$
- a morphism of representations X, Y on Hilbert spaces H, K is a $T \in \mathcal{B}(H, K)$ satisfying $(1 \otimes T)X = Y(1 \otimes T)$
- the tensor product of X and Y is $X_{12}Y_{13} \in A \otimes \mathcal{B}(H \otimes K)$
- the dual of X is $j(X) \in A \otimes \mathcal{B}(\overline{H})$, where $j(a \otimes b) = a^* \otimes \overline{b}$

Theorem (Woronowicz) Every semi-simple tensor C^* -category C with duality and a fiber functor to Hilb is equivalent to $\operatorname{Rep}_{u,fd}(\mathbb{G})$ for some compact quantum group \mathbb{G} .

Idea
$$A_0 := \bigoplus_{X \in Irr(\mathcal{C})} \mathcal{B}(FX)_*$$
 is a Hopf *-algebra and $A = C^*(A_0)$

7/12

Tannaka-Krein duality

Compact quantum groups

Partial compact quantum groups

Passing from (quantum) groups to (quantum) groupoids

Passing to quantum groupoids=replacing the target category

We now consider tensor functors into $_{I}$ Hilb_I, where I is a set and

- ► objects are families of Hilbert spaces $\mathcal{H} = (_k H_l)_{k,l \in I}$
- morphisms are families of linear operators
- the tensor product of \mathcal{H} and \mathcal{K} is $\mathcal{H} \otimes \mathcal{K} = \left(\bigoplus_{l} {}_{k} H_{l} \otimes {}_{l} K_{m} \right)_{k,m}$

Examples

The canonical fiber functor of a tensor C*-category (Hayashi) Given such a category C, write Irr(C) = (u_k)_{k∈I} and define F: C → _IHilb_I, X ↦ (Hom(u_k, X ⊗ u_l))_{k,I}

Get Hom
$$(k, X \otimes I) \otimes$$
 Hom $(I, Y \otimes m) \rightarrow$ Hom $(k, X \otimes Y \otimes m)$ and
 $FX \otimes FY \rightarrow F(X \otimes Y).$

▶ Monoidal equivalence of CQGs (Bichon–De Rijdt–Vaes) Given $\operatorname{Rep}_{u,fd}(\mathbb{G}_1) \sim \operatorname{Rep}_{u,fd}(\mathbb{G}_2)$, write $I = \{1,2\}$ and obtain $\operatorname{Rep}_{u,fd}(\mathbb{G}_1) \rightarrow \operatorname{Hilb} \times \operatorname{Hilb} \hookrightarrow I \operatorname{Hilb}_I$

Tannaka-Krein duality

Compact quantum groups

Partial compact quantum groups

9/12

"Partial" Tannaka-Krein-Woronowizc duality

Theorem (De Commer–T.) There exists a correspondence, bijective up to equivalence, between connected partial compact quantum groups \mathbb{G} and semi-simple tensor C^* -categories with duality and fiber functor to $_I$ Hilb $_I$, given by $\mathbb{G} \mapsto \operatorname{Rep}_{u,fd}(\mathbb{G})$.

Ideas A connected partial CQG \mathbb{G} is given by spaces ${}^k_m A^l_n$ with

- multiplications ${}^{k}_{m}A^{l}_{n} \times {}^{l}_{n}A^{p}_{q} \to {}^{k}_{m}A^{p}_{q}$ and involutions ${}^{k}_{m}A^{l}_{n} \to {}^{l}_{n}A^{k}_{m}$ that turn $P(\mathbb{G}) = \bigoplus_{k,l,m,n} {}^{k}_{m}A^{l}_{n}$ into a *-algebra with units in ${}^{k}_{m}A^{k}_{m}$
- comultiplications $\Delta_{pq} : {}^k_m A_n^l \to {}^k_p A_q^l \otimes {}^p_m A_n^q$, counits and antipodes that turn $P(\mathbb{G})$ into a weak multiplier Hopf *-algebra
- ▶ a Haar weight $\phi \colon P(\mathbb{G}) \to \mathbb{C}$ that is positive, faithful, invariant

From $F: \mathcal{C} \to {}_{I}$ Hilb_I, get \mathbb{G} via ${}_{m}^{k}A_{n}^{l} = \bigoplus_{X \in Irr(\mathcal{C})} \mathcal{B}({}_{m}(FX)_{n}, {}_{k}(FX)_{l})_{*}.$

Partial quantum groups on the level of operator algebras

Given a partial compact quantum group \mathbb{G} , we construct the following completions of the polynomial algebra $P(\mathbb{G})$:

- ▶ a universal C*-algebra $C^u(\mathbb{G}) = C^*(P(\mathbb{G}))$ with comultiplication
- ▶ a reduced C*-algebra C^r(𝔅) and von Neumann algebra L[∞](𝔅), generated by the regular representation π_r: P(𝔅) → B(L²(𝔅)), with lifts of the comultiplication and of the Haar weight
 - define L²(G) as a completion of P(G) using the Haar weight, need to prove boundedness of π_r(a): b → ab on L²(G)
 - use a partial isometry V: a ⊗ b → Δ(a)(1 ⊗ b) on L²(G) ⊗ L²(G), then each π_r(a) arises as (ω ⊗ id)(V) for some ω ∈ B(L²(G))_{*} and the comultiplication lifts by the formula x → V(1 ⊗ x)V^{*}
 - ▶ for the Haar weight, use that $P(\mathbb{G}) \subseteq L^2(\mathbb{G})$ is a Hilbert algebra

Theorem $L^{\infty}(\mathbb{G})$ is a measured quantum groupoid (Enock, Lesieur).

11/12

Tannaka-Krein duality

Compact quantum groups

Partial compact quantum groups

Application to the dynamical $SU_q(2)$

Note that $S^2 \cong SU(2)/\mathbb{T}$ is a homogeneous space for SU(2). Podleś discovered quantum homogeneous spaces $S_{q,\times}^2$ for $SU_q(2)$.

Theorem (De Commer–Yamashita) For every compact quantum group \mathbb{G} , there exists a bijective correspondence between

- (i) quantum homogeneous spaces for $\ensuremath{\mathbb{G}}$
- (ii) connected, semi-simple C^* -module categories \mathcal{D} over $\operatorname{Rep}_{u,fd}(\mathbb{G})$
- (iii) connected fiber functors from $\operatorname{Rep}_{u,fd}(\mathbb{G})$ to $_{I}\operatorname{Hilb}_{I}$ for some I

Thus $S_{q,\times}^2$ corresponds to some $F : \operatorname{Rep}_{u,\mathrm{fd}}(\operatorname{SU}_q(2)) \to {}_I\operatorname{Hilb}_I$ and to a partial compact quantum group $\mathbb{G}_{q,\times}$, which turns out to be a variant of the dynamical $\operatorname{SU}_q(2)$ (Koelink–Rosengren)

Theorem For $q \neq 1$, this partial compact quantum group $\mathbb{G}_{q,x}$ is not coamenable in the sense that $C^u(\mathbb{G}_{q,x}) \to C^r(\mathbb{G}_{q,x})$ is not injective