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Aim and background

Aim An algebraic approach to quantum groupoids that

1. features a generalized Pontrjagin duality (done)

2. connects to the setting of operator algebras (open)

similar to Van Daele’s theory of multiplier Hopf algebras w. integrals

Related work in this direction includes

I the full theory in the finite-dimensional case
[Böhm-Nill-Szlachányi; Nikshych-Vainerman; Vallin; . . . ]

I integrals on and duality of Hopf algebroids [Böhm-Szlachányi]
(integration only partial; duality only in fiber-wise finite case)

I integrals on and duality of weak multiplier Hopf algebras
[Van Daele-Wang]

(not yet published; base needs to be separable Frobenius)
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Sources of quantum groupoids

Idea: A quantum groupoid consists of a total algebra A, a base algebra B,

target and source maps B,Bop → A and a comultiplication ∆: A→ A ∗
B

A

satisfying certain conditions which depend on the setting.

Examples of quantum groupoids include the following:
I linking quantum groupoids for monoidally equivalent quantum groups

[De Commer]

I quantum transformation groupoids G n B, where G is a quantum
group, B a braided-comm. G -YD-algebra [Lu, Brzezinski-Militaru]

I Tannaka-Krein duals of fiber functors into a category of B-bimodules
[Hayashi, Day, Street, Hai, Pfeiffer, . . . ]

I dynamical quantum groups associated to solutions of the dynamical
Yang-Baxter equation [Etingov-Varchenko, . . . ]

I two-sided crossed products Bop oG nB, where G is a quantum group
acting on an algebra B
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Plan

1. Regular multiplier Hopf algebroids
I definition of bialgebroids and regular multiplier Hopf algebroids
I examples: function and convolution algebra of an étale groupoid

2. Integration
I ingredients needed
I main results
I example: two-sided crossed products of quantum group actions

3. Duality
I the duality of measured regular multiplier Hopf algebroids
I example: crossed products of braided-commutative YD-algebras

4. (Passage to operator algebras)
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Background — the notion of a bialgebroid

Definition A bialgebroid consists of
I a unital algebra A and commuting unital subalgebras B,C ⊆ A

with anti-isomorphisms B
S
�
S

C

(we will write a, b, c , . . . ∈ A, x , x ′, . . . ∈ B, y , y ′, . . . ∈ C)
I a left and a right comultiplication

∆B : A→ BA⊗ S(B)A and ∆C : A→ AS(C) ⊗ AC
satisfying
I ∆B(a)(x ⊗ 1) = ∆B(a)(1⊗ S(x)) and multiplicativity
I ∆B(x) = (1⊗ x), ∆B(y) = (y ⊗ 1) and co-associativity
I similar conditions for ∆C

I joint co-associativity relating ∆B and ∆C

I a left counit Bε : A→ B and a right counit εC : A→ C

Note The inclusions B
id
⇒
S

A correspond to functors AMod→ BModB and

the maps ∆B , Bε correspond to compatible monoidal structures on AMod
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Regular multiplier Hopf algebroids

Definition A multiplier bialgebroid consists of
I an algebra A and commuting subalgebras B,C ⊆ M(A) with

anti-isomorphisms B
S
�
S

C , where we assume no units but

suitable regularity properties
I a left and a right comultiplication ∆B and ∆C which take values

in a left and a right multiplier algebra such that
1. ∆B(a)(1⊗ b) and ∆B(b)(a ⊗ 1) lie in BA⊗ S(B)A
2. (a ⊗ 1)∆C (b) and (1⊗ b)∆C (a) lie in AS(C) ⊗ AC

3. ∆B ,∆C are co-associative, multiplicative, jointly co-associative

Theorem [T.-Van Daele ’13] There exist left and right counits and
an antipode if and only if the maps that send a ⊗ b ∈ A⊗ A to the
products in 1. and 2. descend to bijections A⊗

B
A→ BA⊗ S(B)A, . . .

Definition We call (A,∆B ,∆C ) a regular multiplier Hopf algebroid if
both conditions hold.
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Examples coming from étale groupoids

Consider a groupoid X
s
⇔
t

G m←−− G s×tG that is étale in the sense

that s and t are local homeomorphisms (with discrete fibers).

Example The function algebra as a multiplier Hopf algebroid:
I A = Cc(G ), B = s∗(Cc(X )), C = t∗(Cc(X ))

(B and C consist of functions that are constant along fibers of s or t)

I the maps B
S
�
S

C are the transpose of the inversion, (Sf )(γ) = f (γ−1)

I ∆B and ∆C send Cc(G ) to Cb(G s×tG ) and are transposes of the
multiplication, (∆B,C f )(γ, γ′) = f (γγ′)

Example The convolution algebra as a multiplier Hopf algebroid:
I A = Cc(G ) with convolution and B = C = Cc(X ) ↪→ A

I ∆B and ∆C send Cc(G ) to Cc(G (s,t)×(s,t)G ) and push forward along
the diagonal map
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What do we need for integration?

Recall that a left integral on a multiplier Hopf algebra is a φ s.t.
(id⊗φ)((a ⊗ 1)∆(b)) = aφ(b) and (id⊗φ)(∆(b)(c ⊗ 1)) = φ(b)c

Ansatz For a regular multiplier Hopf algebroid A, we require
I a map CφC : A→ C that is left-invariant: ∀a, b, c ∈ A, y ∈ C ,

1. CφC (ay) = CφC (a)y and (id⊗
C

CφC )((a ⊗ 1)∆C (b)) = aCφC (b)

2. CφC (ya) = yCφC (a) and (id⊗
B

CφC )(∆B(b)(c ⊗ 1)) = CφC (b)c

I a map BψB : A→ B that is right-invariant

I functionals µB , µC on B,C that are relatively invariant in the
sense that the functionals

φ : A CφC−−→ C
µC−−→ C and ψ : A BψB−−−→ B

µB−−→ C

are related by invertible multipliers δ, δ′ via ψ = φ(δ−) = φ(−δ′)
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Adapted functionals and balanced slice maps

Fix a pair of faithful functionals µ = (µB , µC ) on B and C .

Definition A functional ω on A is µ-adapted if we can write
ω = µB ◦ Bω = µB ◦ ωB = µC ◦ Cω = µC ◦ ωC

with Bω ∈ Hom(BA, BB), ωB ∈ Hom(AB ,BB), . . .

Example ψ = µB ◦ BψB = µC ◦ CφC (δ−) = µC ◦ CφC (−δ′)

In the theory of multiplier Hopf algebras, one frequently uses
I slice maps of the form υ ⊗ id, id⊗ω : A⊗ A→ A and

I tensor products υ ⊗ ω : A⊗ A→ C

Key If υ, ω are µ-balanced, we can form balanced analogues υ � id,
id�ω, υ � ω on all kinds of balanced tensor products A� A, e.g.,
υ ⊗

B
ω : A⊗

B
A→ C, a ⊗ b 7→ µB(υB(a)Bω(b))= υ(aBω(b)) = ω(υB(a)b)

so υ ⊗
B
ω = µB ◦ (υB ⊗ Bω) = υ ◦ (id⊗Bω) = ω ◦ (υB ⊗ id)
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The definition of integrals

We defined a functional ω on A to be µ-adapted if there exist

Bω ∈ Hom(BA, BB), ωB ∈ Hom(AB ,BB), Cω, ωC

such that ω = µB ◦ Bω = µB ◦ ωB = µC ◦ Cω = µC ◦ ωC .

Definition A left integral for (A, µ) is a µ-adapted functional φ s.t.

Cφ = φC =: CφC is left-invariant. We call φ full if Bφ(A)=B =φB(A).

We define right integrals and full right integrals similarly.

On µ = (µB , µC ), we henceforth impose the following conditions:

1. faithfulness, i.e., if µB(xB) = 0 or µB(Bx) = 0, then x 6= 0

2. µB ◦ S = µC = µB ◦ S−1 and 3. µB ◦ Bε = µC ◦ εC

Using B- and C -linearity of Bε and εC and relation 3., one finds:
Proposition µB(x ′x) = µB(S2(x)x ′) and µC (yy ′) = µC (y ′S2(y))
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The main results on integrals

Theorem [T.] Let A be a regular multiplier Hopf algebroid with base
weight µ and full left integral φ, where BA,AB , CA,AC are flat.

1. If BA,AB , CA,AC are projective, then φ is faithful.

Assume now that φ is faithful.

2. There exists a modular automorphism σφ of A satisfying
φ(ab) = φ(bσφ(a)) for all a, b ∈ A.

Moreover, σφ(y) = S2(y) for y ∈ C , and σφ(M(B)) = M(B).

3. Every left integral has the form φ(x−) with x ∈ M(B).

4. Every right integral has the form φ(δ−) with δ ∈ M(A).

5. There exist invertible modular elements δ, δ† ∈ M(A) such
that φ◦S−1 = φ(δ−) and φ◦S = φ(−δ†). These elements satisfy

∆C (δ) = δ ⊗ δ, ∆B(δ) = δ† ⊗ δ, ∆B(δ†) = δ† ⊗ δ†, ∆C (δ†) = δ ⊗ δ†

S(δ†) = δ−1, ε(δa) = ε(a) = ε(aδ†), and (in the ∗-case) δ† = δ∗.
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Measured regular multiplier Hopf algebroids and their duality

Definition A measured regular multiplier Hopf algebroid consists of

I a regular multiplier Hopf algebroid A as above, where the
modules BA,AB , CA,AC are flat

I base weights µB , µC on B,C that satisfy the conditions above
(both are faithful, µB ◦ S = µC = µB ◦ S−1, µB ◦ Bε = µC ◦ εC )

I a left and a right integral φ and ψ that are full and faithful

Example Let G be a second countable, étale groupoid with a Radon
measure on the unit space which has full support and is continuously
quasi-invariant. Then the function and the convolution algebra of G
become measured regular multiplier Hopf algebroids.
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An example coming from quantum group actions

Example Assume that

I H is a regular (mult.) Hopf algebra with integrals φH , ψH ,

I B is an algebra with a right action of H, written x / h

I µB is a faithful H-invariant trace on B.

Then C =Bop carries a left H-action and an H-invariant trace µC s.t.
h . xop = (x / S−1

H (h))op and µC (xop) = µB(x)

We obtain a measured regular multiplier Hopf algebroid, where
I A = C o H n B is the space C ⊗ H ⊗ B with the multiplication

(y ⊗ h ⊗ x)(y ′ ⊗ h′ ⊗ x ′) = y(h(1) . y ′)⊗ h(2)h′(1) ⊗ (x / h′(2))x
′

I the left and right comultiplication ∆B and ∆C are given by
∆B(y ⊗ h ⊗ x)(a ⊗ b) = yh(1)a ⊗ h(2)xb
(a ⊗ b)∆C (y ⊗ h ⊗ x) = ayh(1) ⊗ bh(2)x

I φ(y ⊗ h⊗ x) = µC (y)φH(h)µB(x), ψ(y ⊗ h⊗ x) = µC (y)ψH(h)µB(x)
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The dual convolution algebra

Let (A, µ, φ, ψ) be a measured regular multiplier Hopf algebroid.

Lemma Consider the space Â := {φ(a−) : a ∈ A} ⊆ Hom(A,C).

1. Â = {φ(−a) : a ∈ A} = {ψ(a−) : a ∈ A} = {ψ(−a) : a ∈ A}.
2. Let υ, ω ∈ Â. Then the compositions

υ ∗B ω := (υ ⊗ ω) ◦∆B and υ ∗C ω := (υ ⊗ ω) ◦∆C

(a) are well-defined, (b) belong to Â and (c) coincide.

3. Â is a non-degenerate, idempotent algebra w.r.t. (υ, ω) 7→ υ ∗ω.

Proof of assertion 2.(c):

I coassociativity ⇒ (υ ∗B θ) ∗C ω = υ ∗B (θ ∗C ω) for all µ-adapted θ

I counit property ⇒ υ ∗B ε = υ and ε ∗C ω = ω

I relations 1.+2. ⇒ υ ∗B ω = υ ∗B (ε ∗C ω) = (υ ∗B ε) ∗C ω = υ ∗C ω
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The duality of measured regular multiplier Hopf algebroids

Theorem [T.] Let (A, µ, φ, ψ) be a m.r.m.H.a. Then there exists a
dual m.r.m.H.a. (Â, µ̂, φ̂, ψ̂), where Â was defined above and

I B̂ = C and Ĉ = B are embedded in M(Â) such that
yω = ω(−y), ωy = ω(−S−1(y)), xω = ω(S−1(x)−), ωx = ω(x−)

for all y ∈ C , x ∈ B, ω ∈ Â

I the left and the right comultiplication ∆̂B̂ and ∆̂Ĉ of Â satisfy
(∆̂B̂(υ)(1⊗ ω)|a ⊗ b) = (u ⊗ ω|(a ⊗ 1)∆C (b))

((υ ⊗ 1)∆̂Ĉ (ω)|a ⊗ b) = (u ⊗ ω|∆B(a)(1⊗ b))

for all a, b ∈ A, υ, ω ∈ Â

I the dual counit ε̂, antipode Ŝ and integrals φ̂ and ψ̂ are given by
ε̂(φ(−a)) = φ(a), Ŝ(ω) = ω ◦ S , φ̂(ψ(a−)) = ε(a) = ψ̂(φ(−a))

In the ∗-case, ω∗ = ω ◦ ∗ ◦ S and ψ̂(φ(−a)∗φ(−a)) = φ(a∗a).

Theorem [T.] Every m.r.m.H.a. is naturally isomorphic to its bidual.
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Outline of the construction of the dual comultiplications

By [T.-Van Daele], a r.m.H.a. is determined by the algebras A,
B,C ⊆ M(A), the anti-automorphisms B � C , and the bijections

T1 : A⊗
B

A→ A⊗
l

A, a ⊗ b 7→ ∆B(a)(1⊗ b)

T2 : A⊗
C

A→ A⊗
r

A, a ⊗ b 7→ (a ⊗ 1)∆C (b).

Starting from these maps, we obtain
I dual bijections (T1)∨ and (T2)∨, taking transposes

I various embeddings Â⊗ Â→ (A⊗ A)∨, using the fact that elements
of Â are µ-adapted functionals and forming balanced tensor products

I bijections T̂1, T̂2, which then define the structure of a r.m.H.a. on Â

(A⊗
r

A)∨
(T2)∨ // (A⊗

C
A)∨ (A⊗

l
A)∨

(T1)∨ // (A⊗
B

A)∨

Â⊗
B̂

Â
T̂1

//
?�

OO

Â⊗
l̂

Â
?�

OO

Â⊗
Ĉ

Â
T̂2

//
?�

OO

Â⊗
r̂

Â
?�

OO
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To do: examples from braided-commutative YD-algebras

Theorem [Lu ’96; Brzeziński, Militaru ’01] Let B be a braided-
commutative Yetter-Drinfeld algebra over a Hopf algebra H. Then
the crossed product A = B o H for the action is a Hopf algebroid.

Theorem [Neshveyev-Yamashita ’13] Let H be a compact quantum
group.Then there exists an equivalence between
I unital braided-commutative Y.D.-algebras over H and

I unitary tensor functors from Rep(H) to C ∗-tensor categories.

If we assume that H is a regular multiplier Hopf algebra with integrals and

that B carries a faithful quasi-invariant KMS-functional,we expect B o H

and Bop o Ĥco to form mutually dual measured multiplier Hopf algebroids.

Theorem [Enock-T. ’14] Let N be a braided-commutative Y.D.-von
Neumann-algebra over a l.c.q.gp G with an invariant n.s.f. weight.
Then G nN, Ĝ nN are mutually dual measured quantum groupoids.
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To do: passage to the setting of operator algebras

Let (A, µ, φ, ψ) be a measured multiplier Hopf ∗-algebroid.

Aim We want to construct completions on the level of von Neumann
algebras, to get a measured quantum groupoid [Enock, Lesieur, Vallin],
and of C ∗-algebras, where a full theory does not exist yet.

We will need additional assumptions, e.g.,
I µB and µC have associated GNS-representations B,C → L(Hµ)

I the modular automorphisms of φ and ψ commute
I (the modular element δ relating φ and ψ has a square root δ1/2)

The key steps will be to show that
1. φ and ψ admit a bounded GNS-representation A→ L(H)

2. ∆B extends to a comultiplication on A′′ ⊆ L(H) rel. to B ′′ ⊆ L(Hµ)

3. φ and ψ induce left- and right-invariant n.s.f. weights A′′ → B ′′,C ′′

Special case proper dynamical quantum groups treated before [T.]
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Steps for the passage to the setting of operator algebras

Theorem [T.] Let (A, µ, φ, ψ) be a measured multiplier Hopf
∗-algebroid, where µ, φ,ψ are positive. Assume that µB and µC

admit bounded GNS-representations. Then:
1. φ and ψ admit bounded GNS-representations πφ : A→ L(Hφ) and
πψ : A→ L(Hψ)

2. ∆B extends to comultiplications on πφ(A)′′ ⊆ L(Hφ) and
πψ(A)′′ ⊆ L(Hψ) relative to B ′′ ⊆ L(Hµ) so that
I πφ(A)′′ and πψ(A)′′ become Hopf-von Neumann bimodules
I πφ(A) and πψ(A) become concrete Hopf C ∗-bimodules

3. Λφ(A) ⊆ Hφ and Λψ(A) ⊆ Hψ are Hilbert algebras so that φ and ψ
extend to n.s.f. weights on πφ(A)′′ and πψ(A)′′

Idea of proof: use (C ∗)pseudo-multiplicative unitaries [Vallin, T]:
I the map a ⊗ b 7→ ∆B(b)(a ⊗ 1) induces a unitary on suitable

completions of the domain and range
I identify these completions with certain Connes’ fusions of Hφ over B ′′

I show that U∗ is a pseudo-multiplicative unitary
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