Integration on and duality of algebraic quantum groupoids

Thomas Timmermann

08th of May 2014

Aim and background

Aim An algebraic approach to quantum groupoids that

1. features a generalized Pontrjagin duality
2. connects to the setting of operator algebras similar to Van Daele's theory of multiplier Hopf algebras w. integrals

Related work in this direction includes

- the full theory in the finite-dimensional case
[Böhm-Nill-Szlachányi; Nikshych-Vainerman; Vallin; ...]
- integrals on and duality of Hopf algebroids [Böhm-Szlachányi] (integration only partial; duality only in fiber-wise finite case)
- integrals on and duality of weak multiplier Hopf algebras
(not yet published; base needs to be separable Frobenius)

Sources of quantum groupoids

Idea: A quantum groupoid consists of a total algebra A, a base algebra B, target and source maps $B, B^{\circ \mathrm{P}} \rightarrow A$ and a comultiplication $\Delta: A \rightarrow A * A$ satisfying certain conditions which depend on the setting.

Examples of quantum groupoids include the following:

- linking quantum groupoids for monoidally equivalent quantum groups [De Commer]
- quantum transformation groupoids $G \ltimes B$, where G is a quantum group, B a braided-comm. G-YD-algebra [Lu, Brzezinski-Militaru]
- Tannaka-Krein duals of fiber functors into a category of B-bimodules [Hayashi, Day, Street, Hai, Pfeiffer, ...]
- dynamical quantum groups associated to solutions of the dynamical Yang-Baxter equation [Etingov-Varchenko, ...]
- two-sided crossed products $B^{\circ ค} \rtimes G \ltimes B$, where G is a quantum group acting on an algebra B

Plan

1. Regular multiplier Hopf algebroids

- definition of bialgebroids and regular multiplier Hopf algebroids
- examples: function and convolution algebra of an étale groupoid

2. Integration

- ingredients needed
- main results
- example: two-sided crossed products of quantum group actions

3. Duality

- the duality of measured regular multiplier Hopf algebroids
- example: crossed products of braided-commutative YD-algebras

4. (Passage to operator algebras)

Background - the notion of a bialgebroid

Definition A bialgebroid consists of

- a unital algebra A and commuting unital subalgebras $B, C \subseteq A$ with anti-isomorphisms $B \underset{S}{\stackrel{S}{\leftrightarrows}} C$ (we will write $a, b, c, \ldots \in A, \quad x, x^{\prime}, \ldots \in B, \quad y, y^{\prime}, \ldots \in C$)
- a left and a right comultiplication

$$
\Delta_{B}: A \rightarrow{ }_{B} A \otimes{ }_{S(B)} A \quad \text { and } \quad \Delta_{C}: A \rightarrow A_{S(C)} \otimes A_{C}
$$

satisfying

- $\Delta_{B}(a)(x \otimes 1)=\Delta_{B}(a)(1 \otimes S(x))$ and multiplicativity
- $\Delta_{B}(x)=(1 \otimes x), \Delta_{B}(y)=(y \otimes 1)$ and co-associativity
- similar conditions for Δ_{C}
- joint co-associativity relating Δ_{B} and Δ_{C}
- a left counit ${ }_{B} \varepsilon: A \rightarrow B$ and a right counit $\varepsilon_{C}: A \rightarrow C$

Note The inclusions $B \underset{S}{\stackrel{\text { id }}{\rightrightarrows}} A$ correspond to functors $A \operatorname{Mod} \rightarrow{ }_{B} \operatorname{Mod}_{B}$ and the maps $\Delta_{B}, B \varepsilon$ correspond to compatible monoidal structures on ${ }_{A} \operatorname{Mod}$

Regular multiplier Hopf algebroids

Definition A multiplier bialgebroid consists of

- an algebra A and commuting subalgebras $B, C \subseteq M(A)$ with anti-isomorphisms $B \underset{S}{\stackrel{S}{\leftrightarrows}} C$, where we assume no units but suitable regularity properties
- a left and a right comultiplication Δ_{B} and Δ_{C} which take values in a left and a right multiplier algebra such that

1. $\Delta_{B}(a)(1 \otimes b)$ and $\Delta_{B}(b)(a \otimes 1)$ lie in ${ }_{B} A \otimes{ }_{S(B)} A$
2. $(a \otimes 1) \Delta_{C}(b)$ and $(1 \otimes b) \Delta_{C}(a)$ lie in $A_{S(C)} \otimes A_{C}$
3. Δ_{B}, Δ_{C} are co-associative, multiplicative, jointly co-associative

Theorem [T.-Van Daele '13] There exist left and right counits and an antipode if and only if the maps that send $a \otimes b \in A \otimes A$ to the products in 1. and 2. descend to bijections $A \otimes_{B} A \rightarrow{ }_{B} A \otimes{ }_{S(B)} A, \ldots$
Definition We call $\left(A, \Delta_{B}, \Delta_{C}\right)$ a regular multiplier Hopf algebroid if both conditions hold.

Examples coming from étale groupoids

Consider a groupoid $X \underset{t}{\leftleftarrows_{t}^{s}} G \stackrel{m}{\longleftarrow} G_{s} \times_{t} G$ that is étale in the sense that s and t are local homeomorphisms (with discrete fibers).

Example The function algebra as a multiplier Hopf algebroid:

- $A=C_{c}(G), B=s^{*}\left(C_{c}(X)\right), \quad C=t^{*}\left(C_{c}(X)\right)$
(B and C consist of functions that are constant along fibers of s or t)
- the maps $B \underset{S}{\stackrel{S}{\leftrightarrows}} C$ are the transpose of the inversion, $(S f)(\gamma)=f\left(\gamma^{-1}\right)$
- Δ_{B} and Δ_{C} send $C_{c}(G)$ to $C_{b}\left(G_{s} \times_{t} G\right)$ and are transposes of the multiplication, $\left(\Delta_{B, C} f\right)\left(\gamma, \gamma^{\prime}\right)=f\left(\gamma \gamma^{\prime}\right)$

Example The convolution algebra as a multiplier Hopf algebroid:

- $A=C_{c}(G)$ with convolution and $B=C=C_{c}(X) \hookrightarrow A$
- Δ_{B} and Δ_{C} send $C_{c}(G)$ to $C_{c}\left(G_{(s, t)} \times_{(s, t)} G\right)$ and push forward along the diagonal map

What do we need for integration?

Recall that a left integral on a multiplier Hopf algebra is a ϕ s.t.

$$
(\mathrm{id} \otimes \phi)((a \otimes 1) \Delta(b))=a \phi(b) \text { and }(\mathrm{id} \otimes \phi)(\Delta(b)(c \otimes 1))=\phi(b) c
$$

Ansatz For a regular multiplier Hopf algebroid \mathcal{A}, we require

- a map $c \phi_{C}: A \rightarrow C$ that is left-invariant: $\forall a, b, c \in A, y \in C$,

1. ${ }_{c} \phi_{C}(a y)={ }_{c} \phi_{C}(a) y$ and $\left(\right.$ id $\left.\otimes_{C}{ }_{c} \phi_{c}\right)\left((a \otimes 1) \Delta_{c}(b)\right)=a_{C} \phi_{C}(b)$
2. $c \phi_{C}(y a)=y_{c} \phi_{C}(a)$ and $\left(i d \otimes_{B} \phi_{C}\right)\left(\Delta_{B}(b)(c \otimes 1)\right)=c \phi_{C}(b) c$

- a map ${ }_{B} \psi_{B}: A \rightarrow B$ that is right-invariant
- functionals μ_{B}, μ_{C} on B, C that are relatively invariant in the sense that the functionals
$\phi: A \xrightarrow{C^{\phi} C_{C}} C \xrightarrow{\mu_{C}} \mathbb{C} \quad$ and $\quad \psi: A \xrightarrow{B^{\psi_{B}}} B \xrightarrow{\mu_{B}} \mathbb{C}$
are related by invertible multipliers δ, δ^{\prime} via $\psi=\phi(\delta-)=\phi\left(-\delta^{\prime}\right)$

Adapted functionals and balanced slice maps

Fix a pair of faithful functionals $\mu=\left(\mu_{B}, \mu_{C}\right)$ on B and C.
Definition A functional ω on A is μ-adapted if we can write

$$
\omega=\mu_{B} \circ{ }_{B} \omega=\mu_{B} \circ \omega_{B}=\mu_{C} \circ{ }_{C} \omega=\mu_{C} \circ \omega_{C}
$$

with ${ }_{B} \omega \in \operatorname{Hom}\left({ }_{B} A,{ }_{B} B\right), \omega_{B} \in \operatorname{Hom}\left(A_{B}, B_{B}\right), \ldots$
Example $\psi=\mu_{B} \circ{ }_{B} \psi_{B}=\mu_{C} \circ{ }_{C} \phi_{C}(\delta-)=\mu_{C} \circ{ }_{C} \phi_{C}\left(-\delta^{\prime}\right)$
In the theory of multiplier Hopf algebras, one frequently uses

- slice maps of the form $v \otimes \mathrm{id}$, $\mathrm{id} \otimes \omega: A \otimes A \rightarrow A$ and
- tensor products $v \otimes \omega: A \otimes A \rightarrow \mathbb{C}$

Key If v, ω are μ-balanced, we can form balanced analogues $v \odot$ id, id $\odot \omega, v \odot \omega$ on all kinds of balanced tensor products $A \odot A$, e.g.,

$$
\begin{aligned}
& v \otimes_{B} \omega: A \otimes_{B} A \rightarrow \mathbb{C}, a \otimes b \mapsto \mu_{B}\left(v_{B}(a)_{B} \omega(b)\right)=v\left(a_{B} \omega(b)\right)=\omega\left(v_{B}(a) b\right) \\
& \text { so } v \otimes_{B} \omega=\mu_{B} \circ\left(v_{B} \otimes_{B} \omega\right)=v \circ\left(\text { id } \otimes_{B} \omega\right)=\omega \circ\left(v_{B} \otimes \mathrm{id}\right)
\end{aligned}
$$

The definition of integrals

We defined a functional ω on A to be μ-adapted if there exist ${ }_{B} \omega \in \operatorname{Hom}\left({ }_{B} A,{ }_{B} B\right), \omega_{B} \in \operatorname{Hom}\left(A_{B}, B_{B}\right), \quad c \omega, \omega_{C}$
such that $\omega=\mu_{B} \circ{ }_{B} \omega=\mu_{B} \circ \omega_{B}=\mu_{C} \circ{ }_{C} \omega=\mu_{C} \circ \omega_{C}$.

Definition A left integral for (\mathcal{A}, μ) is a μ-adapted functional ϕ s.t. ${ }_{C} \phi=\phi_{C}=:{ }_{C} \phi_{C}$ is left-invariant. We call ϕ full if ${ }_{B} \phi(A)=B=\phi_{B}(A)$. We define right integrals and full right integrals similarly.

On $\mu=\left(\mu_{B}, \mu_{C}\right)$, we henceforth impose the following conditions:

1. faithfulness, i.e., if $\mu_{B}(x B)=0$ or $\mu_{B}(B x)=0$, then $x \neq 0$
2. $\mu_{B} \circ S=\mu_{C}=\mu_{B} \circ S^{-1}$ and 3 . $\mu_{B} \circ{ }_{B} \varepsilon=\mu_{C} \circ \varepsilon_{C}$

Using B - and C-linearity of ${ }_{B} \varepsilon$ and ε_{C} and relation 3., one finds:
Proposition $\mu_{B}\left(x^{\prime} x\right)=\mu_{B}\left(S^{2}(x) x^{\prime}\right)$ and $\mu_{C}\left(y y^{\prime}\right)=\mu_{C}\left(y^{\prime} S^{2}(y)\right)$

The main results on integrals

Theorem [T.] Let \mathcal{A} be a regular multiplier Hopf algebroid with base weight μ and full left integral ϕ, where ${ }_{B} A, A_{B}, C A, A_{C}$ are flat.

1. If ${ }_{B} A, A_{B}, C A, A_{C}$ are projective, then ϕ is faithful.

Assume now that ϕ is faithful.
2. There exists a modular automorphism σ^{ϕ} of A satisfying

$$
\phi(a b)=\phi\left(b \sigma^{\phi}(a)\right) \text { for all } a, b \in A .
$$

Moreover, $\sigma^{\phi}(y)=S^{2}(y)$ for $y \in C$, and $\sigma^{\phi}(M(B))=M(B)$.
3. Every left integral has the form $\phi(x-)$ with $x \in M(B)$.
4. Every right integral has the form $\phi(\delta-)$ with $\delta \in M(A)$.
5. There exist invertible modular elements $\delta, \delta^{\dagger} \in M(A)$ such that $\phi \circ S^{-1}=\phi(\delta-)$ and $\phi \circ S=\phi\left(-\delta^{\dagger}\right)$. These elements satisfy

$$
\begin{gathered}
\Delta_{C}(\delta)=\delta \otimes \delta, \quad \Delta_{B}(\delta)=\delta^{\dagger} \otimes \delta, \quad \Delta_{B}\left(\delta^{\dagger}\right)=\delta^{\dagger} \otimes \delta^{\dagger}, \Delta_{C}\left(\delta^{\dagger}\right)=\delta \otimes \delta^{\dagger} \\
S\left(\delta^{\dagger}\right)=\delta^{-1}, \quad \varepsilon(\delta a)=\varepsilon(a)=\varepsilon\left(a \delta^{\dagger}\right), \quad \text { and (in the }{ }^{*} \text {-case) } \delta^{\dagger}=\delta^{*} .
\end{gathered}
$$

Measured regular multiplier Hopf algebroids and their duality

Definition A measured regular multiplier Hopf algebroid consists of

- a regular multiplier Hopf algebroid A as above, where the modules ${ }_{B} A, A_{B}, C A, A_{C}$ are flat
- base weights μ_{B}, μ_{C} on B, C that satisfy the conditions above (both are faithful, $\mu_{B} \circ S=\mu_{C}=\mu_{B} \circ S^{-1}, \mu_{B} \circ{ }_{B} \varepsilon=\mu_{C} \circ \varepsilon_{C}$)
- a left and a right integral ϕ and ψ that are full and faithful

Example Let G be a second countable, étale groupoid with a Radon measure on the unit space which has full support and is continuously quasi-invariant. Then the function and the convolution algebra of G become measured regular multiplier Hopf algebroids.

An example coming from quantum group actions

Example Assume that

- H is a regular (mult.) Hopf algebra with integrals ϕ_{H}, ψ_{H},
- B is an algebra with a right action of H, written $x \triangleleft h$
- μ_{B} is a faithful H-invariant trace on B.

Then $C=B^{\circ p}$ carries a left H-action and an H-invariant trace μ_{C} s.t.

$$
h \triangleright x^{\mathrm{Op}}=\left(x \triangleleft S_{H}^{-1}(h)\right)^{\mathrm{op}} \quad \text { and } \quad \mu_{C}\left(x^{\mathrm{op}}\right)=\mu_{B}(x)
$$

We obtain a measured regular multiplier Hopf algebroid, where

- $A=C \rtimes H \ltimes B$ is the space $C \otimes H \otimes B$ with the multiplication
$(y \otimes h \otimes x)\left(y^{\prime} \otimes h^{\prime} \otimes x^{\prime}\right)=y\left(h_{(1)} \triangleright y^{\prime}\right) \otimes h_{(2)} h_{(1)}^{\prime} \otimes\left(x \triangleleft h_{(2)}^{\prime}\right) x^{\prime}$
- the left and right comultiplication Δ_{B} and Δ_{C} are given by

$$
\begin{aligned}
& \Delta_{B}(y \otimes h \otimes x)(a \otimes b)=y h_{(1)} a \otimes h_{(2)} x b \\
& (a \otimes b) \Delta_{C}(y \otimes h \otimes x)=a y h_{(1)} \otimes b h_{(2)} x
\end{aligned}
$$

- $\phi(y \otimes h \otimes x)=\mu_{C}(y) \phi_{H}(h) \mu_{B}(x), \quad \psi(y \otimes h \otimes x)=\mu_{C}(y) \psi_{H}(h) \mu_{B}(x)$

The dual convolution algebra

Let (A, μ, ϕ, ψ) be a measured regular multiplier Hopf algebroid.
Lemma Consider the space $\hat{A}:=\{\phi(a-): a \in A\} \subseteq \operatorname{Hom}(A, \mathbb{C})$.

1. $\hat{A}=\{\phi(-a): a \in A\}=\{\psi(a-): a \in A\}=\{\psi(-a): a \in A\}$.
2. Let $v, \omega \in \hat{A}$. Then the compositions

$$
v *_{B} \omega:=(v \otimes \omega) \circ \Delta_{B} \text { and } v *_{C} \omega:=(v \otimes \omega) \circ \Delta_{C}
$$

(a) are well-defined, (b) belong to \hat{A} and (c) coincide.
3. \hat{A} is a non-degenerate, idempotent algebra w.r.t. $(v, \omega) \mapsto v * \omega$.

Proof of assertion 2.(c):

- coassociativity $\Rightarrow\left(v *_{B} \theta\right) *_{C} \omega=v *_{B}\left(\theta *_{C} \omega\right)$ for all μ-adapted θ
- counit property $\Rightarrow v *_{B} \varepsilon=v$ and $\varepsilon *_{C} \omega=\omega$
- relations 1.+2. $\Rightarrow v *_{B} \omega=v *_{B}\left(\varepsilon *_{C} \omega\right)=\left(v *_{B} \varepsilon\right) *_{C} \omega=v *_{C} \omega$

The duality of measured regular multiplier Hopf algebroids

Theorem [T.] Let (A, μ, ϕ, ψ) be a m.r.m.H.a. Then there exists a dual m.r.m.H.a. $(\hat{A}, \hat{\mu}, \hat{\phi}, \hat{\psi})$, where \hat{A} was defined above and

- $\hat{B}=C$ and $\hat{C}=B$ are embedded in $M(\hat{A})$ such that

$$
y \omega=\omega(-y), \quad \omega y=\omega\left(-S^{-1}(y)\right), \quad x \omega=\omega\left(S^{-1}(x)-\right), \quad \omega x=\omega(x-)
$$

for all $y \in C, x \in B, \omega \in \hat{A}$

- the left and the right comultiplication $\hat{\Delta}_{\hat{B}}$ and $\hat{\Delta}_{\hat{C}}$ of \hat{A} satisfy

$$
\begin{aligned}
& \left(\hat{\Delta}_{\hat{B}}(v)(1 \otimes \omega) \mid a \otimes b\right)=\left(u \otimes \omega \mid(a \otimes 1) \Delta_{C}(b)\right) \\
& \left((v \otimes 1) \hat{\Delta}_{\hat{C}}(\omega) \mid a \otimes b\right)=\left(u \otimes \omega \mid \Delta_{B}(a)(1 \otimes b)\right)
\end{aligned}
$$

for all $a, b \in A, v, \omega \in \hat{A}$

- the dual counit $\hat{\varepsilon}$, antipode \hat{S} and integrals $\hat{\phi}$ and $\hat{\psi}$ are given by

$$
\hat{\varepsilon}(\phi(-a))=\phi(a), \quad \hat{S}(\omega)=\omega \circ S, \quad \hat{\phi}(\psi(a-))=\varepsilon(a)=\hat{\psi}(\phi(-a))
$$

In the $*$-case, $\omega^{*}=\omega \circ * \circ S$ and $\hat{\psi}\left(\phi(-a)^{*} \phi(-a)\right)=\phi\left(a^{*} a\right)$.
Theorem [T.] Every m.r.m.H.a. is naturally isomorphic to its bidual.

Outline of the construction of the dual comultiplications

By [T.-Van Daele], a r.m.H.a. is determined by the algebras A, $B, C \subseteq M(A)$, the anti-automorphisms $B \leftrightarrows C$, and the bijections

$$
\begin{aligned}
& T_{1}: A \otimes A \rightarrow A \otimes A, \quad a \otimes b \mapsto \Delta_{B}(a)(1 \otimes b) \\
& T_{2}: A \underset{C}{\otimes} A \rightarrow A \underset{r}{\otimes} A, \quad a \otimes b \mapsto(a \otimes 1) \Delta_{C}(b) .
\end{aligned}
$$

Starting from these maps, we obtain

- dual bijections $\left(T_{1}\right)^{\vee}$ and $\left(T_{2}\right)^{\vee}$, taking transposes
- various embeddings $\hat{A} \otimes \hat{A} \rightarrow(A \otimes A)^{\vee}$, using the fact that elements of \hat{A} are μ-adapted functionals and forming balanced tensor products
- bijections \hat{T}_{1}, \hat{T}_{2}, which then define the structure of a r.m.H.a. on \hat{A}

To do: examples from braided-commutative YD-algebras

Theorem [Lu '96; Brzeziński, Militaru '01] Let B be a braidedcommutative Yetter-Drinfeld algebra over a Hopf algebra H. Then the crossed product $A=B \rtimes H$ for the action is a Hopf algebroid. Theorem [Neshveyev-Yamashita '13] Let H be a compact quantum group. Then there exists an equivalence between

- unital braided-commutative Y.D.-algebras over H and
- unitary tensor functors from $\operatorname{Rep}(H)$ to C^{*}-tensor categories.

If we assume that H is a regular multiplier Hopf algebra with integrals and that B carries a faithful quasi-invariant KMS-functional, we expect $B \rtimes H$ and $B^{o p} \rtimes \hat{H}^{c o}$ to form mutually dual measured multiplier Hopf algebroids. Theorem [Enock-T. '14] Let N be a braided-commutative Y.D.-von Neumann-algebra over a I.c.q.gp G with an invariant n.s.f. weight. Then $G \ltimes N, \hat{G} \ltimes N$ are mutually dual measured quantum groupoids.

To do: passage to the setting of operator algebras

Let (A, μ, ϕ, ψ) be a measured multiplier Hopf $*$-algebroid.
Aim We want to construct completions on the level of von Neumann algebras, to get a measured quantum groupoid [Enock, Lesieur, Vallin], and of C^{*}-algebras, where a full theory does not exist yet.

We will need additional assumptions, e.g.,

- μ_{B} and μ_{C} have associated GNS-representations $B, C \rightarrow \mathcal{L}\left(H_{\mu}\right)$
- the modular automorphisms of ϕ and ψ commute
- (the modular element δ relating ϕ and ψ has a square root $\delta^{1 / 2}$)

The key steps will be to show that

1. ϕ and ψ admit a bounded GNS-representation $A \rightarrow \mathcal{L}(H)$
2. Δ_{B} extends to a comultiplication on $A^{\prime \prime} \subseteq \mathcal{L}(H)$ rel. to $B^{\prime \prime} \subseteq \mathcal{L}\left(H_{\mu}\right)$
3. ϕ and ψ induce left- and right-invariant n.s.f. weights $A^{\prime \prime} \rightarrow B^{\prime \prime}, C^{\prime \prime}$

Special case proper dynamical quantum groups treated before [T.]

Steps for the passage to the setting of operator algebras

Theorem [T.] Let (A, μ, ϕ, ψ) be a measured multiplier Hopf *-algebroid, where μ, ϕ, ψ are positive. Assume that μ_{B} and μ_{C} admit bounded GNS-representations. Then:

1. ϕ and ψ admit bounded GNS-representations $\pi_{\phi}: A \rightarrow \mathcal{L}\left(H_{\phi}\right)$ and $\pi_{\psi}: A \rightarrow \mathcal{L}\left(H_{\psi}\right)$
2. Δ_{B} extends to comultiplications on $\pi_{\phi}(A)^{\prime \prime} \subseteq \mathcal{L}\left(H_{\phi}\right)$ and $\pi_{\psi}(A)^{\prime \prime} \subseteq \mathcal{L}\left(H_{\psi}\right)$ relative to $B^{\prime \prime} \subseteq \mathcal{L}\left(H_{\mu}\right)$ so that

- $\pi_{\phi}(A)^{\prime \prime}$ and $\pi_{\psi}(A)^{\prime \prime}$ become Hopf-von Neumann bimodules
- $\overline{\pi_{\phi}(A)}$ and $\overline{\pi_{\psi}(A)}$ become concrete Hopf C^{*}-bimodules

3. $\Lambda_{\phi}(A) \subseteq H_{\phi}$ and $\Lambda_{\psi}(A) \subseteq H_{\psi}$ are Hilbert algebras so that ϕ and ψ extend to n.s.f. weights on $\pi_{\phi}(A)^{\prime \prime}$ and $\pi_{\psi}(A)^{\prime \prime}$

Idea of proof: use $\left(C^{*}\right)$ pseudo-multiplicative unitaries [Vallin, T]:

- the map $a \otimes b \mapsto \Delta_{B}(b)(a \otimes 1)$ induces a unitary on suitable completions of the domain and range
- identify these completions with certain Connes' fusions of H_{ϕ} over $B^{\prime \prime}$
- show that U^{*} is a pseudo-multiplicative unitary

