Integration on and duality of algebraic quantum groupoids

Thomas Timmermann

08th of May 2014

Aim and background

Aim An algebraic approach to quantum groupoids that

- 1. features a generalized Pontrjagin duality (done)
- 2. connects to the setting of operator algebras (open)

similar to Van Daele's theory of multiplier Hopf algebras w. integrals

Related work in this direction includes

- the full theory in the finite-dimensional case
 [Böhm-Nill-Szlachányi; Nikshych-Vainerman; Vallin; ...]
- integrals on and duality of Hopf algebroids [Böhm-Szlachányi] (integration only partial; duality only in fiber-wise finite case)
- integrals on and duality of weak multiplier Hopf algebras

[Van Daele-Wang]

(not yet published; base needs to be separable Frobenius)

Sources of quantum groupoids

<u>Idea</u>: A quantum groupoid consists of a total algebra A, a base algebra B, target and source maps $B, B^{op} \to A$ and a comultiplication $\Delta \colon A \to A \underset{B}{*} A$ satisfying certain conditions which depend on the setting.

Examples of quantum groupoids include the following:

- *linking quantum groupoids* for monoidally equivalent quantum groups [De Commer]
- quantum transformation groupoids $G \ltimes B$, where G is a quantum group, B a braided-comm. G-YD-algebra [Lu, Brzezinski-Militaru]
- Tannaka-Krein duals of fiber functors into a category of B-bimodules [Hayashi, Day, Street, Hai, Pfeiffer, ...]
- dynamical quantum groups associated to solutions of the dynamical Yang-Baxter equation [Etingov-Varchenko, ...]
- two-sided crossed products $B^{op} \rtimes G \ltimes B$, where G is a quantum group acting on an algebra B

Plan

- 1. Regular multiplier Hopf algebroids
 - definition of bialgebroids and regular multiplier Hopf algebroids
 - examples: function and convolution algebra of an étale groupoid

2. Integration

- ingredients needed
- main results
- example: two-sided crossed products of quantum group actions
- 3. Duality
 - the duality of measured regular multiplier Hopf algebroids
 - example: crossed products of braided-commutative YD-algebras
- 4. (Passage to operator algebras)

Background — the notion of a bialgebroid

Definition A bialgebroid consists of

- ▶ a unital algebra *A* and commuting unital subalgebras *B*, *C* ⊆ *A* with anti-isomorphisms $B \stackrel{S}{\underset{S}{\leftarrow}} C$ (we will write *a*, *b*, *c*, ... ∈ *A*, *x*, *x'*, ... ∈ *B*, *y*, *y'*, ... ∈ *C*)
- ► a left and a right comultiplication

 $\Delta_B \colon A \to {}_BA \otimes {}_{S(B)}A \quad \text{and} \quad \Delta_C \colon A \to A_{S(C)} \otimes A_C$ satisfying

- $\Delta_B(a)(x \otimes 1) = \Delta_B(a)(1 \otimes S(x))$ and multiplicativity
- $\Delta_B(x) = (1 \otimes x), \ \Delta_B(y) = (y \otimes 1)$ and co-associativity
- similar conditions for Δ_C
- joint co-associativity relating Δ_B and Δ_C
- ▶ a left counit $_B\varepsilon$: $A \to B$ and a right counit ε_C : $A \to C$

<u>Note</u> The inclusions $B \stackrel{id}{\Rightarrow} A$ correspond to functors ${}_{A}Mod \rightarrow {}_{B}Mod_{B}$ and the maps Δ_{B} , ${}_{B}\varepsilon$ correspond to compatible monoidal structures on ${}_{A}Mod$

Regular multiplier Hopf algebroids

Definition A multiplier bialgebroid consists of

- ▶ an algebra A and commuting subalgebras $B, C \subseteq M(A)$ with anti-isomorphisms $B \stackrel{S}{\underset{S}{\hookrightarrow}} C$, where we assume no units but suitable regularity properties
- a *left* and a *right comultiplication* Δ_B and Δ_C which take values in a left and a right multiplier algebra such that
 - 1. $\Delta_B(a)(1 \otimes b)$ and $\Delta_B(b)(a \otimes 1)$ lie in $_BA \otimes _{S(B)}A$
 - 2. $(a \otimes 1)\Delta_{\mathcal{C}}(b)$ and $(1 \otimes b)\Delta_{\mathcal{C}}(a)$ lie in $A_{\mathcal{S}(\mathcal{C})} \otimes A_{\mathcal{C}}$
 - 3. Δ_B , Δ_C are co-associative, multiplicative, jointly co-associative

<u>Theorem</u> [T.-Van Daele '13] There exist left and right counits and an antipode if and only if the maps that send $a \otimes b \in A \otimes A$ to the products in 1. and 2. descend to bijections $A \bigotimes A \to {}_{B}A \otimes {}_{S(B)}A, \ldots$

<u>Definition</u> We call (A, Δ_B, Δ_C) a *regular multiplier Hopf algebroid* if both conditions hold.

Examples coming from étale groupoids

Consider a groupoid $X \stackrel{s}{\underset{t}{\leftarrow}} G \stackrel{m}{\longleftarrow} G_s \times_t G$ that is étale in the sense that *s* and *t* are local homeomorphisms (with discrete fibers).

Example The function algebra as a multiplier Hopf algebroid:

- A = C_c(G), B = s*(C_c(X)), C = t*(C_c(X))
 (B and C consist of functions that are constant along fibers of s or t)
- the maps $B \stackrel{s}{\underset{C}{\leftrightarrow}} C$ are the transpose of the inversion, $(Sf)(\gamma) = f(\gamma^{-1})$
- Δ_B and Δ_C send $C_c(G)$ to $C_b(G_s \times_t G)$ and are transposes of the multiplication, $(\Delta_{B,C} f)(\gamma, \gamma') = f(\gamma \gamma')$

Example The convolution algebra as a multiplier Hopf algebroid:

- $A = C_c(G)$ with convolution and $B = C = C_c(X) \hookrightarrow A$
- ► Δ_B and Δ_C send C_c(G) to C_c(G_(s,t)×_(s,t)G) and push forward along the diagonal map

What do we need for integration?

Recall that a *left integral* on a multiplier Hopf algebra is a ϕ s.t. (id $\otimes \phi$)(($a \otimes 1$) $\Delta(b)$) = $a\phi(b)$ and (id $\otimes \phi$)($\Delta(b)(c \otimes 1)$) = $\phi(b)c$

<u>Ansatz</u> For a regular multiplier Hopf algebroid \mathcal{A} , we require

- ► a map $_{C}\phi_{C}$: $A \to C$ that is *left-invariant*: $\forall a, b, c \in A, y \in C$, 1. $_{C}\phi_{C}(ay) = _{C}\phi_{C}(a)y$ and $(\operatorname{id} \bigotimes_{C}\phi_{C})((a \otimes 1)\Delta_{C}(b)) = a_{C}\phi_{C}(b)$ 2. $_{C}\phi_{C}(ya) = y_{C}\phi_{C}(a)$ and $(\operatorname{id} \bigotimes_{B}c\phi_{C})(\Delta_{B}(b)(c \otimes 1)) = _{C}\phi_{C}(b)c$
- a map $_B\psi_B \colon A \to B$ that is *right-invariant*
- ▶ functionals µ_B, µ_C on B, C that are *relatively invariant* in the sense that the functionals

 $\phi \colon A \xrightarrow{c \phi_C} C \xrightarrow{\mu_C} \mathbb{C}$ and $\psi \colon A \xrightarrow{B \psi_B} B \xrightarrow{\mu_B} \mathbb{C}$ are related by invertible multipliers δ, δ' via $\psi = \phi(\delta -) = \phi(-\delta')$

Adapted functionals and balanced slice maps

Fix a pair of faithful functionals $\mu = (\mu_B, \mu_C)$ on B and C.

<u>Definition</u> A functional ω on A is μ -adapted if we can write $\omega = \mu_B \circ {}_B\omega = \mu_B \circ \omega_B = \mu_C \circ {}_C\omega = \mu_C \circ \omega_C$

with $_B\omega \in \text{Hom}(_BA, _BB)$, $\omega_B \in \text{Hom}(A_B, B_B)$, ...

Example
$$\psi = \mu_B \circ {}_B \psi_B = \mu_C \circ {}_C \phi_C(\delta -) = \mu_C \circ {}_C \phi_C(-\delta')$$

In the theory of multiplier Hopf algebras, one frequently uses

- ▶ *slice* maps of the form $\upsilon \otimes id$, $id \otimes \omega : A \otimes A \rightarrow A$ and
- tensor products $v \otimes \omega : A \otimes A \to \mathbb{C}$

Key If v, ω are μ -balanced, we can form *balanced analogues* $v \odot id$, id $\odot \omega$, $v \odot \omega$ on all kinds of balanced tensor products $A \odot A$, e.g.,

$$\begin{array}{l} \upsilon \underset{B}{\otimes} \omega \colon A \underset{B}{\otimes} A \to \mathbb{C}, \ a \otimes b \mapsto \mu_B(\upsilon_B(a)_B \omega(b)) = \upsilon(a_B \omega(b)) = \omega(\upsilon_B(a)b) \\ \text{so } \upsilon \underset{B}{\otimes} \omega = \mu_B \circ (\upsilon_B \otimes B\omega) = \upsilon \circ (\text{id} \otimes_B \omega) = \omega \circ (\upsilon_B \otimes \text{id}) \end{array} \end{array}$$

The definition of integrals

We defined a functional ω on A to be μ -adapted if there exist $_{B}\omega \in \text{Hom}(_{B}A, _{B}B), \ \omega_{B} \in \text{Hom}(A_{B}, B_{B}), \ _{C}\omega, \ \omega_{C}$ such that $\omega = \mu_{B} \circ _{B}\omega = \mu_{B} \circ \omega_{B} = \mu_{C} \circ _{C}\omega = \mu_{C} \circ \omega_{C}$.

<u>Definition</u> A *left integral* for (\mathcal{A}, μ) is a μ -adapted functional ϕ s.t. $_{C}\phi = \phi_{C} =: _{C}\phi_{C}$ is left-invariant. We call ϕ *full* if $_{B}\phi(A) = B = \phi_{B}(A)$. We define *right integrals* and *full right integrals* similarly.

On $\mu = (\mu_B, \mu_C)$, we henceforth impose the following conditions:

1. faithfulness, i.e., if
$$\mu_B(xB) = 0$$
 or $\mu_B(Bx) = 0$, then $x \neq 0$

2. $\mu_B \circ S = \mu_C = \mu_B \circ S^{-1}$ and 3. $\mu_B \circ B\varepsilon = \mu_C \circ \varepsilon_C$

Using *B*- and *C*-linearity of $_{B}\varepsilon$ and ε_{C} and relation 3., one finds: Proposition $\mu_{B}(x'x) = \mu_{B}(S^{2}(x)x')$ and $\mu_{C}(yy') = \mu_{C}(y'S^{2}(y))$

<u>Theorem</u> [T.] Let \mathcal{A} be a regular multiplier Hopf algebroid with base weight μ and full left integral ϕ , where $_{B}A$, A_{B} , $_{C}A$, A_{C} are flat.

1. If ${}_{B}A$, A_{B} , ${}_{C}A$, A_{C} are projective, then ϕ is faithful.

Assume now that ϕ is faithful.

 There exists a modular automorphism σ^φ of A satisfying φ(ab) = φ(bσ^φ(a)) for all a, b ∈ A. Moreover, σ^φ(y) = S²(y) for y ∈ C, and σ^φ(M(B)) = M(B).

 Every left integral has the form φ(x-) with x ∈ M(B).

 Every right integral has the form φ(δ-) with δ ∈ M(A).

 There exist invertible modular elements δ, δ[†] ∈ M(A) such that φ∘S⁻¹ = φ(δ-) and φ∘S = φ(-δ[†]). These elements satisfy Δ_C(δ) = δ ⊗ δ, Δ_B(δ) = δ[†] ⊗ δ, Δ_B(δ[†]) = δ[†] ⊗ δ[†], Δ_C(δ[†]) = δ ⊗ δ[†]

$$S(\delta^{\dagger}) = \delta^{-1}$$
, $\varepsilon(\delta a) = \varepsilon(a) = \varepsilon(a\delta^{\dagger})$, and (in the *-case) $\delta^{\dagger} = \delta^{*}$.

11/1

Measured regular multiplier Hopf algebroids and their duality

Definition A measured regular multiplier Hopf algebroid consists of

- ► a regular multiplier Hopf algebroid A as above, where the modules BA, AB, CA, AC are flat
- ▶ base weights μ_B , μ_C on B, C that satisfy the conditions above (both are faithful, $\mu_B \circ S = \mu_C = \mu_B \circ S^{-1}$, $\mu_B \circ B\varepsilon = \mu_C \circ \varepsilon_C$)
- \blacktriangleright a left and a right integral ϕ and ψ that are full and faithful

Example Let G be a second countable, étale groupoid with a Radon measure on the unit space which has full support and is *continuously quasi-invariant*. Then the function and the convolution algebra of G become measured regular multiplier Hopf algebroids.

An example coming from quantum group actions

Example Assume that

- *H* is a regular (mult.) Hopf algebra with integrals ϕ_H , ψ_H ,
- B is an algebra with a right action of H, written $x \triangleleft h$
- μ_B is a faithful *H*-invariant trace on *B*.

Then
$$C = B^{\text{op}}$$
 carries a left *H*-action and an *H*-invariant trace μ_C s.t.
 $h \triangleright x^{\text{op}} = (x \triangleleft S_H^{-1}(h))^{\text{op}}$ and $\mu_C(x^{\text{op}}) = \mu_B(x)$

We obtain a measured regular multiplier Hopf algebroid, where

- $A = C \rtimes H \ltimes B$ is the space $C \otimes H \otimes B$ with the multiplication $(y \otimes h \otimes x)(y' \otimes h' \otimes x') = y(h_{(1)} \triangleright y') \otimes h_{(2)}h'_{(1)} \otimes (x \triangleleft h'_{(2)})x'$
- the left and right comultiplication Δ_B and Δ_C are given by

$$\Delta_{B}(y \otimes h \otimes x)(a \otimes b) = yh_{(1)}a \otimes h_{(2)}xb$$
$$(a \otimes b)\Delta_{C}(y \otimes h \otimes x) = ayh_{(1)} \otimes bh_{(2)}x$$
$$\Rightarrow \phi(y \otimes h \otimes x) = \mu_{C}(y)\phi_{H}(h)\mu_{B}(x), \ \psi(y \otimes h \otimes x) = \mu_{C}(y)\psi_{H}(h)\mu_{B}(x)$$

The dual convolution algebra

Let (A, μ, ϕ, ψ) be a measured regular multiplier Hopf algebroid.

Lemma Consider the space $\hat{A} := \{\phi(a-) : a \in A\} \subseteq \text{Hom}(A, \mathbb{C}).$

1.
$$\hat{A} = \{\phi(-a) : a \in A\} = \{\psi(a-) : a \in A\} = \{\psi(-a) : a \in A\}.$$

2. Let $v, \omega \in \hat{A}$. Then the compositions

 $v *_B \omega := (v \otimes \omega) \circ \Delta_B$ and $v *_C \omega := (v \otimes \omega) \circ \Delta_C$

- (a) are well-defined, (b) belong to \hat{A} and (c) coincide.
- 3. \hat{A} is a non-degenerate, idempotent algebra w.r.t. $(v, \omega) \mapsto v * \omega$.

<u>Proof</u> of assertion 2.(c):

- coassociativity $\Rightarrow (\upsilon *_B \theta) *_C \omega = \upsilon *_B (\theta *_C \omega)$ for all μ -adapted θ
- counit property $\Rightarrow \upsilon *_B \varepsilon = \upsilon$ and $\varepsilon *_C \omega = \omega$
- ► relations 1.+2. $\Rightarrow \upsilon *_B \omega = \upsilon *_B (\varepsilon *_C \omega) = (\upsilon *_B \varepsilon) *_C \omega = \upsilon *_C \omega$

The duality of measured regular multiplier Hopf algebroids

<u>Theorem</u> [T.] Let (A, μ, ϕ, ψ) be a m.r.m.H.a. Then there exists a *dual m.r.m.H.a.* $(\hat{A}, \hat{\mu}, \hat{\phi}, \hat{\psi})$, where \hat{A} was defined above and

- the left and the right comultiplication Â_B and Â_C of satisfy
 (Â_B(v)(1 ⊗ ω)|a ⊗ b) = (u ⊗ ω|(a ⊗ 1)Δ_C(b))
 ((v ⊗ 1)Â_C(ω)|a ⊗ b) = (u ⊗ ω|Δ_B(a)(1 ⊗ b))
 for all a, b ∈ A, v, ω ∈ Â
- ► the dual counit $\hat{\varepsilon}$, antipode \hat{S} and integrals $\hat{\phi}$ and $\hat{\psi}$ are given by $\hat{\varepsilon}(\phi(-a)) = \phi(a)$, $\hat{S}(\omega) = \omega \circ S$, $\hat{\phi}(\psi(a-)) = \varepsilon(a) = \hat{\psi}(\phi(-a))$

In the *-case, $\omega^* = \omega \circ * \circ S$ and $\hat{\psi}(\phi(-a)^*\phi(-a)) = \phi(a^*a)$.

<u>Theorem</u> [T.] Every m.r.m.H.a. is naturally isomorphic to its bidual.

Outline of the construction of the dual comultiplications

By [T.-Van Daele], a r.m.H.a. is determined by the algebras A, $B, C \subseteq M(A)$, the anti-automorphisms $B \leftrightarrows C$, and the bijections $T_1: A \otimes A \to A \otimes A, \ a \otimes b \mapsto \Delta_B(a)(1 \otimes b)$ $T_2: A \otimes A \to A \otimes A, \ a \otimes b \mapsto (a \otimes 1)\Delta_C(b)$.

Starting from these maps, we obtain

- dual bijections $(T_1)^{\vee}$ and $(T_2)^{\vee}$, taking transposes
- ▶ various embeddings $\hat{A} \otimes \hat{A} \rightarrow (A \otimes A)^{\vee}$, using the fact that elements of \hat{A} are μ -adapted functionals and forming balanced tensor products
- ▶ bijections \hat{T}_1 , \hat{T}_2 , which then define the structure of a r.m.H.a. on \hat{A}

To do: examples from braided-commutative YD-algebras

<u>Theorem</u> [Lu '96; Brzeziński, Militaru '01] Let *B* be a *braided-commutative Yetter-Drinfeld algebra* over a Hopf algebra *H*. Then the crossed product $A = B \rtimes H$ for the action is a Hopf algebroid.

<u>Theorem</u> [Neshveyev-Yamashita '13] Let H be a compact quantum group. Then there exists an equivalence between

- unital braided-commutative Y.D.-algebras over H and
- unitary tensor functors from $\operatorname{Rep}(H)$ to C^* -tensor categories.

If we assume that H is a regular multiplier Hopf algebra with integrals and that B carries a faithful quasi-invariant KMS-functional, we expect $B \rtimes H$ and $B^{\text{op}} \rtimes \hat{H}^{\text{co}}$ to form mutually dual measured multiplier Hopf algebroids.

<u>Theorem</u> [Enock-T. '14] Let N be a braided-commutative Y.D.-von Neumann-algebra over a l.c.q.gp G with an invariant n.s.f. weight. Then $G \ltimes N$, $\hat{G} \ltimes N$ are mutually dual measured quantum groupoids.

To do: passage to the setting of operator algebras

Let (A, μ, ϕ, ψ) be a measured multiplier Hopf *-algebroid.

<u>Aim</u> We want to construct completions on the level of von Neumann algebras, to get a *measured quantum groupoid* [Enock, Lesieur, Vallin], and of C^* -algebras, where a full theory does not exist yet.

We will need additional assumptions, e.g.,

- μ_B and μ_C have associated GNS-representations $B, C \rightarrow \mathcal{L}(H_{\mu})$
- \blacktriangleright the modular automorphisms of ϕ and ψ commute
- (the modular element δ relating ϕ and ψ has a square root $\delta^{1/2}$)

The key steps will be to show that

- 1. ϕ and ψ admit a *bounded* GNS-representation $A \rightarrow \mathcal{L}(H)$
- 2. Δ_B extends to a comultiplication on $A'' \subseteq \mathcal{L}(H)$ rel. to $B'' \subseteq \mathcal{L}(H_{\mu})$
- 3. ϕ and ψ induce left- and right-invariant n.s.f. weights $A'' \to B''$, C''

Special case proper dynamical quantum groups treated before [T.]

Steps for the passage to the setting of operator algebras

<u>Theorem</u> [T.] Let (A, μ, ϕ, ψ) be a measured multiplier Hopf *-algebroid, where μ, ϕ, ψ are positive. Assume that μ_B and μ_C admit bounded GNS-representations. Then:

- 1. ϕ and ψ admit *bounded* GNS-representations $\pi_{\phi} \colon A \to \mathcal{L}(H_{\phi})$ and $\pi_{\psi} \colon A \to \mathcal{L}(H_{\psi})$
- 2. Δ_B extends to comultiplications on $\pi_{\phi}(A)'' \subseteq \mathcal{L}(H_{\phi})$ and $\pi_{\psi}(A)'' \subseteq \mathcal{L}(H_{\psi})$ relative to $B'' \subseteq \mathcal{L}(H_{\mu})$ so that
 - $\pi_{\phi}(A)''$ and $\pi_{\psi}(A)''$ become Hopf-von Neumann bimodules
 - $\overline{\pi_{\phi}(A)}$ and $\overline{\pi_{\psi}(A)}$ become concrete Hopf C^{*}-bimodules
- 3. $\Lambda_{\phi}(A) \subseteq H_{\phi}$ and $\Lambda_{\psi}(A) \subseteq H_{\psi}$ are Hilbert algebras so that ϕ and ψ extend to n.s.f. weights on $\pi_{\phi}(A)''$ and $\pi_{\psi}(A)''$

Idea of proof: use (C^*) pseudo-multiplicative unitaries [Vallin, T]:

- the map $a \otimes b \mapsto \Delta_B(b)(a \otimes 1)$ induces a unitary on suitable completions of the domain and range
- identify these completions with certain Connes' fusions of H_{ϕ} over B''
- show that U^* is a pseudo-multiplicative unitary