Compact braided quantum groups

Thomas Timmermann (joint work with Sutanu Roy)

Westfälische Wilhelms-Universität Münster

Greifswald, 12th of July 2016

Background Definitions Matrix elements The dual Advertisement Background

Goal In a given category, describe all projections

Examples

- 1. In vector spaces, $X \cong Y \oplus \ker p$ (direct sum), where ker p is just a vector space
- 2. In discrete groups, $X \cong Y \ltimes \ker p$ (semi-direct product), where ker p is a group with an action of Y by automorphisms
- 3. In Hopf algebras, $X \cong Y \boxtimes Z$ (Radford product/Majid's bosonization), where Z is a braided Hopf algebra in $_Y \mathfrak{YD}^Y$
- 4. In C^* -algebraic quantum groups, also $X \cong Y \boxtimes Z$ (Roy)

This talk Look at the special case of compact quantum groups; then Z is a braided compact quantum group 1/16

Matrix elements

Notation

We fix a *reduced compact quantum group* (A, Δ_A) and write

- A₀ ⊆ A for the dense Hopf *-algebra of matrix elements of finite-dimensional corepresentations
- h_A for the Haar state on A
- H_A for the associated GNS-space with cyclic vector ζ_A
- $W_A \in \mathcal{L}(H_A \otimes H_A)$ for the multiplicative unitary, given by

$$a\zeta_A \otimes \xi \mapsto \Delta_A(a)(\zeta_A \otimes \xi)$$

• $(\hat{A}, \hat{\Delta}_A)$ for the reduced dual, so that $W_A \in M(\hat{A} \otimes A)$

BackgroundDefinitionsMatrix elementsThe dualAdvertisementYetter-Drinfeld C*-algebras over
$$(A, \Delta_A)$$
(Nest, Voigt. Equivariant Poincaré duality for quantum group actions. JFA, 2010)

Definition A Yetter-Drinfeld C^* -algebra over (A, Δ_A) is a C^* -algebra B with continuous coactions α of A and λ of \hat{A} such that

$$B \xrightarrow{(\alpha \otimes \mathrm{id}) \circ \lambda}_{(\lambda \otimes \mathrm{id}) \circ \alpha} \xrightarrow{M(B \otimes A \otimes \hat{A})} \underset{M(B \otimes A d(W_A \Sigma))}{\overset{()}{\longrightarrow}} \underset{M(B \otimes \hat{A} \otimes A)}{\overset{()}{\longrightarrow}}$$

Remark These are just continuous coactions of the codouble $A \otimes \hat{A}$

Compact case: $B_{alg} := \{ b \in B : \alpha(b) \in B \otimes_{alg} A \} \subseteq B$ is dense and

▶ a right A_0 -comodule algebra by $b \mapsto b_{[0]} \otimes b_{[1]} \coloneqq \alpha(b)$

▶ a right A_0 -module algebra by $b \triangleleft a := (id \otimes a)(\lambda(b))$ (as $A_0 \subseteq \hat{A}'$) satisfying the Yetter-Drinfeld condition

 $(b \triangleleft a)_{[0]} \otimes (b \triangleleft a)_{[1]} = (b_{[0]} \triangleleft a_{(2)}) \otimes S(a_{(1)})b_{[1]}a_{(3)}$

The twisted tensor product of Yetter-Drinfeld C*-algebras (Nest, Voigt. Equivariant Poincaré duality for quantum group actions. JFA, 2010)

Theorem (Nest, Voigt) Yetter-Drinfeld C^* -algebras for (A, Δ_A) form a monoidal category, where for all YD- C^* -algebras B and C,

- $B \boxtimes C = \alpha(B)_{13}\lambda(C)_{23}$ in $M(B \otimes C \otimes \mathcal{K}(H_A))$
- the natural embeddings of B and C into $B \boxtimes C$ given by

 $b \mapsto b \boxtimes 1 \coloneqq \alpha(b)_{13}$ and $c \mapsto 1 \boxtimes c \coloneqq \lambda(c)_{23}$

are morphisms, i.e., equivariant with respect to A and to \hat{A}

Compact case:
$$B_{\text{alg}} \boxtimes C_{\text{alg}} \subseteq B \boxtimes C$$
 is a dense subalgebra, where $(1 \boxtimes c)(b \boxtimes 1) = b_{[0]} \boxtimes (c \triangleleft b_{[1]})$

Further references

- Meyer, Roy, Woronowicz: Quantum-group twisted tensor products of C*-algebras I and II (IJM 2014 and arXiv 2015)
- Roy and T.: The maximal quantum-group twisted tensor products of C*-algebras (submitted)

5/16

Background	Definitions	Matrix elements	The dual	Advertisement
Compact bra (Meyer, Roy, Wor JNCG, to appear.	aided quantun onowicz. <i>Quantum</i>)	n groups over(group-twisted tensor	(A, Δ_A) products of C^* -alg	çebras II.

Definition A compact braided quantum group is a Yetter-Drinfeld C^* -algebra (B, λ_B, α_B) with a morphism $\Delta_B: B \to B \boxtimes B$ such that

- 1. (coassociativity) $(\Delta_B \boxtimes id) \circ \Delta_B = (id \boxtimes \Delta_B) \circ \Delta_B$
- 2. (cancellation) $[(B \boxtimes 1)\Delta_B(B)] = B \boxtimes B = [\Delta_B(B)(1 \boxtimes B)]$

Non-Example The irrational rotation algebra

$$B := A_{\theta} = C^*(\text{unitaries } u, v : vu = e^{2\pi i\theta} uv)$$

is a Yetter-Drinfeld C^* -algebra over $C^*(\mathbb{Z})$, where

- u has degree 0 and v has degree 1,
- $k \triangleright u = e^{-2\pi i k \theta} u$ and $k \triangleright v = v$ for all $k \in \mathbb{Z}$.

There exists a *-homomorphism $\Delta_B: B \to B \boxtimes B$, $\begin{cases} u \mapsto u \boxtimes u \\ v \mapsto v \boxtimes v \end{cases}$ since

$$(v \boxtimes v)(u \boxtimes u) = v e^{-2\pi i \theta} u \boxtimes v u = e^{2\pi i \theta} u v \boxtimes u v = e^{2\pi i \theta} (u \boxtimes u) (v \boxtimes v)$$

The dual

The large compact quantum group (C, Δ_C) (Meyer, Roy, Woronowicz. Quantum group-twisted tensor products of C^{*}-algebras II. JNCG, to appear.)

Let (B, Δ_B) be a braided compact quantum group. Regard A as a Yetter-Drinfeld C^{*}-algebra s.t. $\alpha_A(a) = \Delta_A(a)$, $\lambda_A(a) = \hat{W}(a \otimes 1)\hat{W}^*$.

Theorem (Meyer, Roy, Woronowicz) Let $C = A \boxtimes B$ with embeddings $A \xrightarrow{j_A} C \xleftarrow{j_B} B$. There exists a *-homomorphism $\Delta_C : C \to C \otimes C$ s.t.

$$\begin{array}{c|c} A \xrightarrow{\Delta_{A}} & A \otimes A & B \xrightarrow{\Delta_{B}} & B \boxtimes B \xrightarrow{\alpha_{B} \boxtimes id} & B \otimes A \boxtimes B \\ \downarrow_{j_{A}} & \bigcirc & \downarrow_{j_{A} \otimes j_{A}} & j_{B} \\ C \xrightarrow{\Delta_{C}} & C \otimes C & C \xrightarrow{\Delta_{C}} & C \otimes C \end{array}$$

and (C, Δ_C) is a compact quantum group.

Remark There exist quantum group morphisms $A \xrightarrow{j_A} C \xrightarrow{p} A$, and every reduced compact quantum group C with projection to A arises this way (Roy).

- 1. B =quantum plane, where $A = C(\mathbb{T})$ and C =simplified E(2)(Roy. C^* -quantum groups with projections. PhD thesis, 2013)
- B = SU_q(2) for q ∉ ℝ, where A = C(T) and C = U_q(2) (Kasprzak, Meyer, Roy, Woronowicz. Braided quantum SU(2) groups. JNCQ, to appear).)
- 3. B =quantum Minkowski space, where $A = C(\mathbb{C})$ (Kasprzak. *Rieffel deformation of tensor functors and braided quantum groups*. CMP, 2015.)

7/16

The space of matrix elements

Proposition Every unitary corepresentation of *C* has the form $Z = X_{12}Y_{13} \in M(\mathcal{K}(H) \otimes A \boxtimes B),$

where X is a unitary corepresentation of A, $Y \in M(\mathcal{K}(H) \otimes B)$ and

- $(\operatorname{id} \otimes \Delta_B)(Y) = Y_{12}Y_{13}$ in $M(\mathcal{K}(H) \otimes B \boxtimes B)$
- $(\operatorname{id} \otimes \alpha_B)(Y) = X_{13}Y_{12}X_{12}^* \text{ in } M(\mathcal{K}(H) \otimes B \otimes A)$

From now on we only consider Z as above with H finite-dimensional. On $C = A \boxtimes B$, have a well-defined slice map $h_A \boxtimes id: C \to B$.

Lemma The following subspaces of *B* coincide:

- 1. the span of matrix elements of Y for $Z = X_{12}Y_{13}$ as above;
- 2. the span of matrix elements of $(P_X \otimes 1)Y$, where $P_X = (id \otimes h_A)(X)$ is the projection onto the invariant vectors;
- 3. $(h_A \boxtimes id)(C_0)$, where $C_0 \subseteq C$ is the dense Hopf *-algebra.

9/16

Background	Definitions	Matrix elements	The dual	Advertisement
The space of	⁻ matrix elem	ents, continued		

Proof Step 1: Since $C_0 \subseteq C$ is spanned by all matrix elements

 $(\omega \otimes \mathrm{id})(X_{12}Y_{13})$ ($\omega \in \mathcal{L}(H)_*$ and $Z = X_{12}Y_{13}$ as above),

the space $(h_A \boxtimes id)(C_0)$ is spanned by matrix elements of the form

$$(\omega \otimes h_A \boxtimes \mathrm{id})(X_{12}Y_{13}) = (\omega \otimes \mathrm{id})((P_X \otimes 1)Y).$$

Step 2: Let $Z' := X^c \oplus Z =: X'_{13}Y'_{23}$. Then each $(\omega_{\xi,\eta} \otimes id)(Y)$

is equal to a matrix element of the form

$$(\omega'_{\zeta,\overline{\xi}\otimes\eta}\otimes \mathrm{id})((P_{X'}\otimes \mathrm{id})Y').$$

Proposition This subspace $B_0 \subseteq B$ is a dense *-subalgebra. It satisfies

 $\Delta_B(B_0) \subseteq B_0 \boxtimes B_0, \quad \alpha_B(B_0) \subseteq B_0 \otimes A_0, \quad B_0 \triangleleft A_0 \subseteq B_0.$ In particular, B_0 is a braided Hopf algebra over A_0 . Definitions

Matrix elements

The Haar state

Definition A *Haar state* for a braided compact quantum group (B, Δ_B) is a state h_B on B that

- is invariant with respect to α_B and λ_B
- ▶ is left- and right-invariant with respect to Δ_B in the sense that $(h_B \boxtimes id)(\Delta_B(b)) = h_B(b)1 = (id \boxtimes h_B)(\Delta_B(b))$

Proposition Every braided compact quantum group (B, Δ_B) has a unique Haar state h_B . More precisely, the Haar state h_C of the associated large compact quantum group $C = A \boxtimes B$ has the form

$$h_C = h_A \boxtimes h_B$$
.

11/16

Consider the Haar state h_B on B, the associated GNS-space H_B with cyclic vector $\zeta_B \in H_B$, and the GNS-representation $B \rightarrow \mathcal{L}(H_B)$.

Invariance of h_B with respect to α_B and λ_B implies:

Lemma H_B carries corepresentations U of A and V of \hat{A} s.t.

 $U(b\zeta_B \otimes 1) = \alpha_B(b)(\zeta_B \otimes 1)$ and $V(b\zeta_B \otimes 1) = \lambda_B(b)(\zeta_B \otimes 1)$.

The triple (H_B, U, V) forms a Yetter-Drinfeld Hilbert space, that is,

 $V_{12}U_{12}W_{23}^{A} = W_{23}^{A}U_{13}V_{12}$ in $M(\mathcal{K}(H_{B}) \otimes \hat{A} \otimes A)$.

Proposition (Roy) Yetter-Drinfeld Hilbert spaces form a braided monoidal category. For (H^1, U^1, V^1) and (H^2, U^2, V^2) , the braiding is

$$H^1 \otimes H^2 \xrightarrow{\Sigma} H^2 \otimes H^1 \xrightarrow{Z} H^2 \otimes H^1,$$

where $Z = (\pi_{U^2} \otimes \pi_{V^1})(W^{A,u})$; equivalently, $Z_{12} = V_{23}^{1*} U_{12}^{2*} V_{23}^1 U_{12}^2.$

The braided multiplicative unitary

For (H_B, U, V) , the associated unitary Z on $H_B \otimes H_B$ is given by $Z(b\zeta_B \otimes b'\zeta_B) = b_{[0]}\zeta_B \otimes (b' \triangleleft b_{[1]})\zeta_B$

for all $b, b' \in B_0$, where $b_{[0]} \otimes b_{[1]} = \alpha_B(b)$, and yields a representation $\Delta_B: B \boxtimes B \to H_B \otimes H_B, \quad b \boxtimes b' \mapsto (b \otimes 1)Z(1 \otimes b')Z^*.$

Theorem The following formula defines a unitary W^B on $H_B \otimes H_B$: $W^B(b\zeta_B \otimes b'\zeta_B) = \Delta_B(b)(\zeta_B \otimes b'\zeta_B).$

This is a *braided multiplicative unitary* in the sense of Roy, that is,

- it is a morphism of the Yetter-Drinfeld Hilbert space $H_B \otimes H_B$,
- (braided pentagon equation) $W_{23}^B W_{12}^B = W_{12}^B Z_{23} W_{13}^B Z_{23}^* W_{23}^B$

Use right-invariance of h_B and straightforward calculations. Proof.

13/16

Background	Definitions	Matrix elements	The dual	Advertisement
The dual a	lgebra			

Remark Let
$$b \in B_0$$
 and write $\Delta_B(b) = b_{(1)} \boxtimes b_{(2)}$. Then
 $W^B(b\zeta_B \otimes b'\zeta_B) = b_{(1)}\zeta_B \otimes b_{(2)}b'\zeta_B$.

From W^B , we can construct a reduced $(B_r, \Delta_{B,r})$ and a dual $(\hat{B}, \hat{\Delta}_B)$. Let $\xi = b'\zeta_B$, $\eta = b''\zeta_B$ and $\upsilon = b'' \cdot h_B \cdot b'^* \colon b \mapsto h_B(b'^*bb'')$. Then $(\operatorname{id} \otimes \omega_{\xi,\eta})(W^B)b\zeta_B = b_{(1)}\upsilon(b_{(2)})\zeta_B.$

Proposition The space $\hat{B}_0 = B_0 \cdot h_B \subseteq B'_0$ is an algebra w.r.t.

$$(\upsilon * \omega)(b) = \upsilon(b_{(1)})\omega(b_{(2)})$$

Proof As $b', b'' \in B_0$ vary, the following maps span the same space:

- $b \mapsto h_B(b_{(1)}b')h_B(b_{(2)}b'')$
- *b* → *h*_B(*b*₍₁₎*b*'₍₁₎)*h*_B(*b*₍₂₎*b*''₍₂₎*b*'')
 b → *h*_B(*bb'*)*h*_B(*b''*) (beware) (beware: $\Delta_B(bb') \neq b_{(1)}b'_{(1)} \boxtimes b_{(2)}b'_{(2)}$)

Proposition The slices $(id \otimes \omega_{\xi,\eta})(W^B) \in \mathcal{L}(H_B)$ with ξ, η as above span a *-algebra that is isomorphic to \hat{B}_0 .

Matrix elements

The structure of the dual algebra

Proposition The dual algebra \hat{B}_0 is a direct sum of matrix algebras. **Proof.** Choose a representative family $Z^{\alpha} = X_{12}^{\alpha} Y_{13}^{\alpha}$ of unitary irreducible corepresentations of *C*. Then matrix elements

$$(\omega \otimes \operatorname{id})((P_{X^{lpha}} \otimes 1)Y^{lpha})$$
 and $(\omega \otimes \operatorname{id})(Y^{lpha})$

span finite-dimensional subspaces B^{lpha} and $ilde{B}^{lpha}$ of B_0 such that

$$B_0 = \bigoplus_{\alpha} B^{\alpha}$$
 and $\Delta_B(B^{\alpha}) \subseteq B^{\alpha} \boxtimes \tilde{B}^{\alpha}$

Fix α and let $I_{\alpha} = \{\beta : Z^{\beta} \text{ is contained in } (X^{\alpha})^{c} \oplus Z^{\alpha}\}$. Then $\tilde{B}^{\alpha} \subseteq \bigoplus_{\beta \in I_{\alpha}} B^{\beta}$.

Let $\hat{B}^{\alpha} = \{ \phi \in \hat{B}_0 : B^{\beta} \subseteq \ker \phi \text{ for } \beta \neq \alpha \}$. Then $\hat{B}_0 = \bigoplus_{\alpha} \hat{B}^{\alpha}$ and $\hat{B}^{\alpha} \cdot \hat{B}^{\beta} = 0$ unless $\beta \in I_{\alpha}$.

For each $\phi \in \hat{B}_0$, we get dim $\phi \cdot \hat{B}_0 < \infty$ and dim $\hat{B}_0 \cdot \phi \cdot \hat{B}_0 < \infty$.

15/16

Extending Van Daele's theory of multiplier Hopf algebras with integrals, a theory of *multiplier Hopf algebroids with integrals* connecting the *algebraic* and *operator-algebraic* approaches to quantum groupoids is developed in

- T. and Van Daele. *Regular multiplier Hopf algebroids.* arXiv:1307.0769, 39 pages
- [2] T. Integration on algebraic quantum groupoids.IJM 27(2), 72 pages, 2016
- [3] T. On duality of algebraic quantum groupoids. arXiv:1605.06384, 45 pages, submitted
- [4] T. Algebraic quantum groupoids on the level of operator algebras. in preparation

The compact case where the basis is classical and discrete and the quantum groupoid is proper is studied in

[5] De Commer and T. Partial compact quantum groups.J. Algebra 438, 41 pages, 2015