Compact braided quantum groups

Thomas Timmermann (joint work with Sutanu Roy)

Westfälische Wilhelms-Universität Münster
Greifswald, 12th of July 2016

Background

Goal In a given category, describe all projections

Examples

1. In vector spaces, $X \cong Y \oplus \operatorname{ker} p$ (direct sum), where $\operatorname{ker} p$ is just a vector space
2. In discrete groups, $X \cong Y \ltimes \operatorname{ker} p$ (semi-direct product), where $\operatorname{ker} p$ is a group with an action of Y by automorphisms
3. In Hopf algebras, $X \cong Y \boxtimes Z$ (Radford product/Majid's bosonization), where Z is a braided Hopf algebra in $\gamma \mathfrak{Y} \mathfrak{D}^{Y}$
4. In C^{*}-algebraic quantum groups, also $X \cong Y \boxtimes Z$ (Roy)

This talk Look at the special case of compact quantum groups; then Z is a braided compact quantum group

Notation

We fix a reduced compact quantum group $\left(A, \Delta_{A}\right)$ and write

- $A_{0} \subseteq A$ for the dense Hopf $*$-algebra of matrix elements of finite-dimensional corepresentations
- h_{A} for the Haar state on A
- H_{A} for the associated GNS-space with cyclic vector ζ_{A}
- $W_{A} \in \mathcal{L}\left(H_{A} \otimes H_{A}\right)$ for the multiplicative unitary, given by

$$
a \zeta_{A} \otimes \xi \mapsto \Delta_{A}(a)\left(\zeta_{A} \otimes \xi\right)
$$

- $\left(\hat{A}, \hat{\Delta}_{A}\right)$ for the reduced dual, so that $W_{A} \in M(\hat{A} \otimes A)$

Yetter-Drinfeld C^{*}-algebras over $\left(A, \Delta_{A}\right)$

(Nest, Voigt. Equivariant Poincaré duality for quantum group actions. JFA, 2010)
Definition A Yetter-Drinfeld C^{*}-algebra over $\left(A, \Delta_{A}\right)$ is a C^{*}-algebra B with continuous coactions α of A and λ of \hat{A} such that

$$
B \xrightarrow[(\lambda \otimes \mathrm{id}) \circ \alpha]{(\alpha \otimes \mathrm{id}) \circ \lambda} \underset{\sim}{M(B \otimes A \otimes \hat{A})} \begin{aligned}
& M \quad \downarrow \mathrm{id} \otimes \operatorname{Ad}\left(W_{A} \Sigma\right) \\
& M(B \otimes \hat{A} \otimes A)
\end{aligned}
$$

Remark These are just continuous coactions of the codouble $A \otimes \hat{A}$
Compact case: $\quad B_{\mathrm{alg}}:=\left\{b \in B: \alpha(b) \in B \otimes_{\mathrm{alg}} A\right\} \subseteq B$ is dense and

- a right A_{0}-comodule algebra by $b \mapsto b_{[0]} \otimes b_{[1]}:=\alpha(b)$
- a right A_{0}-module algebra by $b \triangleleft a:=(\mathrm{id} \otimes a)(\lambda(b))\left(\right.$ as $\left.A_{0} \subseteq \hat{A}^{\prime}\right)$ satisfying the Yetter-Drinfeld condition

$$
(b \triangleleft a)_{[0]} \otimes(b \triangleleft a)_{[1]}=\left(b_{[0]} \triangleleft a_{(2)}\right) \otimes S\left(a_{(1)}\right) b_{[1]} a_{(3)}
$$

The twisted tensor product of Yetter-Drinfeld C^{*}-algebras (Nest, Voigt. Equivariant Poincaré duality for quantum group actions. JFA, 2010)

Theorem (Nest, Voigt) Yetter-Drinfeld C^{*}-algebras for $\left(A, \Delta_{A}\right)$ form a monoidal category, where for all YD- C^{*}-algebras B and C,

- $B \boxtimes C=\alpha(B)_{13} \lambda(C)_{23}$ in $M\left(B \otimes C \otimes \mathcal{K}\left(H_{A}\right)\right)$
- the natural embeddings of B and C into $B \boxtimes C$ given by

$$
b \mapsto b \boxtimes 1:=\alpha(b)_{13} \quad \text { and } \quad c \mapsto 1 \boxtimes c:=\lambda(c)_{23}
$$ are morphisms, i.e., equivariant with respect to A and to \hat{A}

Compact case: $\quad B_{\text {alg }} \boxtimes C_{\mathrm{alg}} \subseteq B \boxtimes C$ is a dense subalgebra, where $(1 \boxtimes c)(b \boxtimes 1)=b_{[0]} \boxtimes\left(c \triangleleft b_{[1]}\right)$

Further references

- Meyer, Roy, Woronowicz: Quantum-group twisted tensor products of C*-algebras I and II (IJM 2014 and arXiv 2015)
- Roy and T.: The maximal quantum-group twisted tensor products of C^{*}-algebras (submitted)

Compact braided quantum groups over $\left(A, \triangle_{A}\right)$
 (Meyer, Roy, Woronowicz. Quantum group-twisted tensor products of C^{*}-algebras II. JNCG, to appear.)

Definition A compact braided quantum group is a Yetter-Drinfeld C^{*}-algebra $\left(B, \lambda_{B}, \alpha_{B}\right)$ with a morphism $\Delta_{B}: B \rightarrow B \boxtimes B$ such that

1. (coassociativity) $\left(\Delta_{B} \boxtimes \mathrm{id}\right) \circ \Delta_{B}=\left(\right.$ id $\left.\boxtimes \Delta_{B}\right) \circ \Delta_{B}$
2. (cancellation) $\left[(B \boxtimes 1) \Delta_{B}(B)\right]=B \boxtimes B=\left[\Delta_{B}(B)(1 \boxtimes B)\right]$

Non-Example The irrational rotation algebra

$$
B:=A_{\theta}=C^{*}\left(\text { unitaries } u, v: v u=\mathrm{e}^{2 \pi i \theta} u v\right)
$$

is a Yetter-Drinfeld C^{*}-algebra over $C^{*}(\mathbb{Z})$, where

- u has degree 0 and v has degree 1 ,
- $k \triangleright u=\mathrm{e}^{-2 \pi i k \theta} u$ and $k \triangleright v=v$ for all $k \in \mathbb{Z}$.

There exists a *-homomorphism $\Delta_{B}: B \rightarrow B \boxtimes B,\left\{\begin{array}{l}u \mapsto u \boxtimes u \\ v \mapsto v \boxtimes v\end{array} \quad\right.$ since $(v \boxtimes v)(u \boxtimes u)=v \mathrm{e}^{-2 \pi i \theta} u \boxtimes v u=\mathrm{e}^{2 \pi i \theta} u v \boxtimes u v=\mathrm{e}^{2 \pi i \theta}(u \boxtimes u)(v \boxtimes v)$

The large compact quantum group $\left(C, \Delta_{C}\right)$
 (Meyer, Roy, Woronowicz. Quantum group-twisted tensor products of C^{*}-algebras II. JNCG, to appear.)

Let $\left(B, \Delta_{B}\right)$ be a braided compact quantum group. Regard A as a Yetter-Drinfeld C^{*}-algebra s.t. $\alpha_{A}(a)=\Delta_{A}(a), \lambda_{A}(a)=\hat{W}(a \otimes 1) \hat{W}^{*}$.

Theorem (Meyer, Roy, Woronowicz) Let $C=A \boxtimes B$ with embeddings $A \xrightarrow{j_{A}} C \stackrel{j_{B}}{\longleftrightarrow} B$. There exists a *-homomorphism $\Delta_{C}: C \rightarrow C \otimes C$ s.t.

and $\left(C, \Delta_{C}\right)$ is a compact quantum group.
Remark There exist quantum group morphisms $A \xrightarrow{j_{A}} C \xrightarrow{p} A$, and every reduced compact quantum group C with projection to A arises this way (Roy).

Examples of compact braided quantum groups

1. $B=$ quantum plane, where $A=C(\mathbb{T})$ and $C=$ simplified $E(2)$ (Roy. C^{*}-quantum groups with projections. PhD thesis, 2013)
2. $B=\mathrm{SU}_{q}(2)$ for $q \notin \mathbb{R}$, where $A=C(\mathbb{T})$ and $C=\mathrm{U}_{q}(2)$ (Kasprzak, Meyer, Roy, Woronowicz. Braided quantum SU(2) groups. JNCQ, to appear).)
3. $B=$ quantum Minkowski space, where $A=C(\mathbb{C})$ (Kasprzak. Rieffel deformation of tensor functors and braided quantum groups. CMP, 2015.)

The space of matrix elements

Proposition Every unitary corepresentation of C has the form

$$
Z=X_{12} Y_{13} \in M(\mathcal{K}(H) \otimes A \boxtimes B)
$$

where X is a unitary corepresentation of $A, \quad Y \in M(\mathcal{K}(H) \otimes B)$ and

- $\left(\mathrm{id} \otimes \Delta_{B}\right)(Y)=Y_{12} Y_{13}$ in $M(\mathcal{K}(H) \otimes B \boxtimes B)$
- $\left(\mathrm{id} \otimes \alpha_{B}\right)(Y)=X_{13} Y_{12} X_{12}^{*}$ in $M(\mathcal{K}(H) \otimes B \otimes A)$

From now on we only consider Z as above with H finite-dimensional.
On $C=A \boxtimes B$, have a well-defined slice map $h_{A} \boxtimes \mathrm{id}: C \rightarrow B$.
Lemma The following subspaces of B coincide:

1. the span of matrix elements of Y for $Z=X_{12} Y_{13}$ as above;
2. the span of matrix elements of $\left(P_{X} \otimes 1\right) Y$, where $P_{X}=\left(\mathrm{id} \otimes h_{A}\right)(X)$ is the projection onto the invariant vectors;
3. $\left(h_{A} \boxtimes \mathrm{id}\right)\left(C_{0}\right)$, where $C_{0} \subseteq C$ is the dense Hopf *-algebra.

The space of matrix elements, continued

Proof Step 1: Since $C_{0} \subseteq C$ is spanned by all matrix elements

$$
(\omega \otimes \mathrm{id})\left(X_{12} Y_{13}\right) \quad\left(\omega \in \mathcal{L}(H)_{*} \text { and } Z=X_{12} Y_{13} \text { as above }\right)
$$

the space $\left(h_{A} \boxtimes \mathrm{id}\right)\left(C_{0}\right)$ is spanned by matrix elements of the form $\left(\omega \otimes h_{A} \boxtimes \mathrm{id}\right)\left(X_{12} Y_{13}\right)=(\omega \otimes \mathrm{id})\left(\left(P_{X} \otimes 1\right) Y\right)$.
Step 2: Let $Z^{\prime}:=X^{c} \circledast\left(T=: X_{13}^{\prime} Y_{23}^{\prime}\right.$. Then each

$$
\left(\omega_{\xi, \eta} \otimes \mathrm{id}\right)(Y)
$$

is equal to a matrix element of the form

$$
\left(\omega_{\zeta, \bar{\xi} \otimes \eta}^{\prime} \otimes \mathrm{id}\right)\left(\left(P_{X^{\prime}} \otimes \mathrm{id}\right) Y^{\prime}\right)
$$

Proposition This subspace $B_{0} \subseteq B$ is a dense $*$-subalgebra. It satisfies

$$
\Delta_{B}\left(B_{0}\right) \subseteq B_{0} \boxtimes B_{0}, \quad \alpha_{B}\left(B_{0}\right) \subseteq B_{0} \otimes A_{0}, \quad B_{0} \triangleleft A_{0} \subseteq B_{0} .
$$

In particular, B_{0} is a braided Hopf algebra over A_{0}.

The Haar state

Definition A Haar state for a braided compact quantum group $\left(B, \Delta_{B}\right)$ is a state h_{B} on B that

- is invariant with respect to α_{B} and λ_{B}
- is left- and right-invariant with respect to Δ_{B} in the sense that

$$
\left(h_{B} \boxtimes \mathrm{id}\right)\left(\Delta_{B}(b)\right)=h_{B}(b) 1=\left(\mathrm{id} \boxtimes h_{B}\right)\left(\Delta_{B}(b)\right)
$$

Proposition Every braided compact quantum group $\left(B, \Delta_{B}\right)$ has a unique Haar state h_{B}. More precisely, the Haar state h_{C} of the associated large compact quantum group $C=A \boxtimes B$ has the form

$$
h_{C}=h_{A} \boxtimes h_{B} .
$$

The GNS-space for the Haar state h_{B}

Consider the Haar state h_{B} on B, the associated GNS-space H_{B} with cyclic vector $\zeta_{B} \in H_{B}$, and the GNS-representation $B \rightarrow \mathcal{L}\left(H_{B}\right)$.

Invariance of h_{B} with respect to α_{B} and λ_{B} implies:
Lemma H_{B} carries corepresentations U of A and V of \hat{A} s.t.

$$
U\left(b \zeta_{B} \otimes 1\right)=\alpha_{B}(b)\left(\zeta_{B} \otimes 1\right) \text { and } V\left(b \zeta_{B} \otimes 1\right)=\lambda_{B}(b)\left(\zeta_{B} \otimes 1\right)
$$

The triple $\left(H_{B}, U, V\right)$ forms a Yetter-Drinfeld Hilbert space, that is,

$$
V_{12} U_{12} W_{23}^{A}=W_{23}^{A} U_{13} V_{12} \text { in } M\left(\mathcal{K}\left(H_{B}\right) \otimes \hat{A} \otimes A\right)
$$

Proposition (Roy) Yetter-Drinfeld Hilbert spaces form a braided monoidal category. For $\left(H^{1}, U^{1}, V^{1}\right)$ and $\left(H^{2}, U^{2}, V^{2}\right)$, the braiding is

$$
H^{1} \otimes H^{2} \xrightarrow{\Sigma} H^{2} \otimes H^{1} \xrightarrow{Z} H^{2} \otimes H^{1},
$$

where $Z=\left(\pi_{U^{2}} \otimes \pi_{V^{1}}\right)\left(W^{A, u}\right)$; equivalently, $Z_{12}=V_{23}^{1 *} U_{12}^{2 *} V_{23}^{1} U_{12}^{2}$.

The braided multiplicative unitary

For $\left(H_{B}, U, V\right)$, the associated unitary Z on $H_{B} \otimes H_{B}$ is given by

$$
Z\left(b \zeta_{B} \otimes b^{\prime} \zeta_{B}\right)=b_{[0]} \zeta_{B} \otimes\left(b^{\prime} \triangleleft b_{[1]}\right) \zeta_{B}
$$

for all $b, b^{\prime} \in B_{0}$, where $b_{[0]} \otimes b_{[1]}=\alpha_{B}(b)$, and yields a representation

$$
\Delta_{B}: B \otimes B \rightarrow H_{B} \otimes H_{B}, \quad b \boxtimes b^{\prime} \mapsto(b \otimes 1) Z\left(1 \otimes b^{\prime}\right) Z^{*} .
$$

Theorem The following formula defines a unitary W^{B} on $H_{B} \otimes H_{B}$:

$$
W^{B}\left(b \zeta_{B} \otimes b^{\prime} \zeta_{B}\right)=\Delta_{B}(b)\left(\zeta_{B} \otimes b^{\prime} \zeta_{B}\right)
$$

This is a braided multiplicative unitary in the sense of Roy, that is,

- it is a morphism of the Yetter-Drinfeld Hilbert space $H_{B} \otimes H_{B}$,
- (braided pentagon equation) $W_{23}^{B} W_{12}^{B}=W_{12}^{B} Z_{23} W_{13}^{B} Z_{23}^{*} W_{23}^{B}$

Proof. Use right-invariance of h_{B} and straightforward calculations.

The dual algebra

Remark Let $b \in B_{0}$ and write $\Delta_{B}(b)=b_{(1)} \boxtimes b_{(2)}$. Then

$$
W^{B}\left(b \zeta_{B} \otimes b^{\prime} \zeta_{B}\right)=b_{(1)} \zeta_{B} \otimes b_{(2)} b^{\prime} \zeta_{B}
$$

From W^{B}, we can construct a reduced $\left(B_{r}, \Delta_{B, r}\right)$ and a dual $\left(\hat{B}, \hat{\Delta}_{B}\right)$.
Let $\xi=b^{\prime} \zeta_{B}, \eta=b^{\prime \prime} \zeta_{B}$ and $v=b^{\prime \prime} \cdot h_{B} \cdot b^{\prime *}: b \mapsto h_{B}\left(b^{\prime *} b b^{\prime \prime}\right)$. Then

$$
\left(\text { id } \otimes \omega_{\xi, \eta}\right)\left(W^{B}\right) b \zeta_{B}=b_{(1)} v\left(b_{(2)}\right) \zeta_{B}
$$

Proposition The space $\hat{B_{0}}=B_{0} \cdot h_{B} \subseteq B_{0}^{\prime}$ is an algebra w.r.t.

$$
(v * \omega)(b)=v\left(b_{(1)}\right) \omega\left(b_{(2)}\right)
$$

Proof As $b^{\prime}, b^{\prime \prime} \in B_{0}$ vary, the following maps span the same space:

- $b \mapsto h_{B}\left(b_{(1)} b^{\prime}\right) h_{B}\left(b_{(2)} b^{\prime \prime}\right)$
- $b \mapsto h_{B}\left(b_{(1)} b_{(1)}^{\prime}\right) h_{B}\left(b_{(2)} b_{(2)}^{\prime} b^{\prime \prime}\right)$
- $b \mapsto h_{B}\left(b b^{\prime}\right) h_{B}\left(b^{\prime \prime}\right) \quad$ (beware: $\left.\Delta_{B}\left(b b^{\prime}\right) \neq b_{(1)} b_{(1)}^{\prime} \boxtimes b_{(2)} b_{(2)}^{\prime}\right)$

Proposition The slices $\left(\right.$ id $\left.\otimes \omega_{\xi, \eta}\right)\left(W^{B}\right) \in \mathcal{L}\left(H_{B}\right)$ with ξ, η as above span a $*$-algebra that is isomorphic to \hat{B}_{0}.

The structure of the dual algebra

Proposition The dual algebra \hat{B}_{0} is a direct sum of matrix algebras.
Proof. Choose a representative family $Z^{\alpha}=X_{12}^{\alpha} Y_{13}^{\alpha}$ of unitary irreducible corepresentations of C. Then matrix elements

$$
(\omega \otimes \mathrm{id})\left(\left(P_{X^{\alpha}} \otimes 1\right) Y^{\alpha}\right) \text { and }(\omega \otimes \mathrm{id})\left(Y^{\alpha}\right)
$$

span finite-dimensional subspaces B^{α} and \tilde{B}^{α} of B_{0} such that

$$
B_{0}=\oplus_{\alpha} B^{\alpha} \quad \text { and } \Delta_{B}\left(B^{\alpha}\right) \subseteq B^{\alpha} \boxtimes \tilde{B}^{\alpha}
$$

Fix α and let $I_{\alpha}=\left\{\beta: Z^{\beta}\right.$ is contained in $\left.\left(X^{\alpha}\right)^{c} \odot Z^{\alpha}\right\}$. Then

$$
\tilde{B}^{\alpha} \subseteq \oplus_{\beta \in I_{\alpha}} B^{\beta} .
$$

Let $\hat{B}^{\alpha}=\left\{\phi \in \hat{B}_{0}: B^{\beta} \subseteq \operatorname{ker} \phi\right.$ for $\left.\beta \neq \alpha\right\}$. Then $\hat{B}_{0}=\oplus_{\alpha} \hat{B}^{\alpha}$ and

$$
\hat{B}^{\alpha} \cdot \hat{B}^{\beta}=0 \text { unless } \beta \in I_{\alpha} .
$$

For each $\phi \in \hat{B}_{0}$, we get $\operatorname{dim} \phi \cdot \hat{B}_{0}<\infty$ and $\operatorname{dim} \hat{B}_{0} \cdot \phi \cdot \hat{B}_{0}<\infty$.

Advertisement for algebraic quantum groupoids

Extending Van Daele's theory of multiplier Hopf algebras with integrals, a theory of multiplier Hopf algebroids with integrals connecting the algebraic and operator-algebraic approaches to quantum groupoids is developed in
[1] T. and Van Daele. Regular multiplier Hopf algebroids. arXiv:1307.0769, 39 pages
[2] T. Integration on algebraic quantum groupoids. IJM 27(2), 72 pages, 2016
[3] T. On duality of algebraic quantum groupoids. arXiv:1605.06384, 45 pages, submitted
[4] T. Algebraic quantum groupoids on the level of operator algebras. in preparation

The compact case where the basis is classical and discrete and the quantum groupoid is proper is studied in
[5] De Commer and T. Partial compact quantum groups.

