The partial Bernoulli shift of a discrete quantum group

Thomas Timmermann August 29, 2017 Westfälische Wilhelms-Universität Münster

Partial actions of discrete groups

Definition A *partial action* of a discrete group G on a set X is given by

- a subset $D_g \subseteq X$ for each $g \in G$
- a bijection $\theta_g: D_{g^{-1}} \to D_g$ for each $g \in G$

such that

- $D_e = X$ and $\theta_e = id_X$,
- $\theta_g \circ \theta_h \subseteq \theta_{gh}$ for all $g, h \in G$ as partial maps.

Example The restriction of an action $G \bigcirc Y$ to a subset $X \subseteq Y$:

- $D_{q^{-1}} := \{x \in X : g(x) \in X\} = X \cap g^{-1}(X) \text{ for each } g \in G$
- $\theta_g(x) = g(x)$ for each $g \in G$ and $x \in D_{q^{-1}}$

Proposition Every partial action is the restriction of some action.

The partial Bernoulli shift and its transformation groupoid

Example The *Bernoulli shift* of *G* is the action on the power set $\mathcal{P}(G)$ by left multiplication, $gA = \{gy : y \in A\}$. Restriction to the subset $\mathcal{P}_e(G) = \{A \subseteq G : e \in A\}$

yields the *partial Bernoulli shift*, where each $g \in G$ acts as

$$\{A\subseteq G:e,g^{-1}\in A\}=D_{g^{-1}}\xrightarrow{g_-}D_g=\{A\subseteq G:g,e\in A\}\ .$$

Construction The partial shift gives rise to a transformation groupoid $\mathcal{P}_e(G) \rtimes G$

which consists of all labelled arrows of the form

$$gA \xleftarrow{g} A \xleftarrow{g} (g \in G, A \in D_{g^{-1}}).$$

Proposition Partial actions of *G* correspond to actions of $\mathcal{P}_e(G) \rtimes G$.

The groupoid $\mathcal{P}_e(G) \rtimes G$ consists of all labelled arrows of the form $gA \xleftarrow{g} A (g \in G, A \subseteq G, e, g^{-1} \in A).$

Proposition Partial actions of *G* correspond to actions of $\mathcal{P}_e(G) \rtimes G$. **Idea of proof** Let $((D_g)_g, (\theta_g)_g)$ be a partial action on a set *X*. We obtain an action of $\mathcal{P}_e(G) \rtimes G$ as follows.

- **1.** Define $\pi: X \to \mathcal{P}_e(G)$ by $\pi(x) = \{g \in G : x \in D_{g^{-1}}\}$. Then $\{(g, x) : x \in D_{g^{-1}}\} = \{(g, x) : g \in \pi(x)\} \subseteq G \times X.$
- **2.** Let $gA \xleftarrow{g} A$ be an arrow in $\mathcal{P}_e(G) \rtimes G$ and $x \in \pi^{-1}(A)$. As $g^{-1} \in A$, we have $x \in D_{q^{-1}}$. Now, let the arrow act by $x \mapsto \theta_g(x)$.

The converse construction is similar.

Variants of partial actions

Definition A (disconnected) partial action on a

(i) top. space, (ii) vector space, (iii) algebra

is a partial action on the underlying set such that

- (i) each D_g is open (and closed) and each θ_g is a homeomorphism
- (ii) each D_g a subspace and each θ_g a linear isomorphism
- (iii) each D_g a (unital) two-sided ideal and each θ_g an isomorphism.

Example The partial Bernoulli shift is a disc. part. action on a space: $\mathcal{P}(G) = \{0,1\}^G$ is compact space and $\mathcal{P}_e(G)$ and each D_g are clopen.

Proposition (Disc.) partial actions of *G* on top. spaces/vector spaces/ algebras correspond to actions of the groupoid $\mathcal{P}_e(G) \rtimes G$.

Partial actions of Hopf algebras

Partial representations of Hopf algebras

 $(\theta_g \circ \theta_h \subseteq \theta_{gh} \text{ iff } \theta_{gh} \circ \theta_{h^{-1}} = \theta_g \circ \theta_h \circ \theta_{h^{-1}} \text{ and } \theta_{g^{-1}} \circ \theta_{gh} = \theta_{g^{-1}} \circ \theta_g \circ \theta_h.)$

Definition A *partial representation* of a Hopf algebra *H* on a vector space *V* is a linear map $\pi: H \to \text{End}(V)$ such that for all $h, k \in H$,

- **1.** $\pi(1_H) = id_V;$
- 2. $\pi(kh_{(1)})\pi(S(h_{(2)})) = \pi(k)\pi(h_{(1)})\pi(S(h_{(2)})),$ $\pi(S(k_{(1)}))\pi(k_{(2)}h) = \pi(S(k_{(1)}))\pi(k_{(2)})\pi(h);$
- **3.** like **2.** but with S replaced by S^{-1} .

Example Partial actions of a group G on k-vector spaces correspond to partial representations of the Hopf algebra H = kG.

Lemma (Alves-Batista-Vercruysse)

There exists an algebra H_{par} such that partial representations of H on a vector space V correspond to unital homomorphisms $H_{par} \rightarrow \text{End}(V)$.

 H_{par} is the analogue of the transformation groupoid $\mathcal{P}_e(G) \rtimes G$:

Theorem (Alves-Batista-Vercruysse)

There exists a subalgebra $A \subset H_{par}$ with a partial action of H such that $H_{par} \cong A \# H$. Moreover, H_{par} is a *Hopf algebroid* with base algebra A.

Definition A *partial action* of *H* on a unital algebra *A* is a linear map $H \otimes A \rightarrow A$, written $h \otimes a \mapsto h \cdot a$, such that for all $h, k \in H$ and $a, b \in A$,

- **1.** $1_H \cdot a = a;$
- **2.** $h \cdot (ab) = (h_{(1)} \cdot a)(h_{(2)} \cdot b);$
- **3.** $h \cdot (k \cdot a) = (h_{(1)} \cdot 1_A)(h_{(2)}k \cdot a) = (h_{(1)}k \cdot a)(h_{(2)} \cdot 1_A).$

(This is an action if and only if $h \cdot 1_A = \epsilon(h) 1_A$ for all $h \in H$.)

Example Partial actions of a group algebra kG correspond to disc. partial actions of G on A (each $D_g = g \cdot A$ is an ideal with unit $g \cdot 1_A$).

The partial Bernoulli shift of a discrete quantum group

C*-algebras and C*-bialgebras

The partial Bernoulli shift of a discrete quantum group has an underlying *quantum space* given by a non-commutative *C**-algebra.

Definition A *C*^{*}-algebra is a Banach *-algebra s.t. $||a^*a|| = ||a||^2$ for all a.

Example $C_0(X)$: all cont. functions on a l.c. Hd. space X vanishing at ∞ (l.c. Hd. spaces) $\stackrel{Gelfand\ duality}{\longleftarrow}$ (commutative C*-algebras)

Definition A *C*^{*}-*bialgebra* is a *C*^{*}-algebra \mathscr{H} with a *-homomorphism $\Delta: \mathscr{H} \to \mathcal{M}(\mathscr{H} \otimes \mathscr{H})$ s.t. $\Delta(\mathscr{H})(\mathscr{H} \otimes \mathscr{H}) \subseteq \mathscr{H} \otimes \mathscr{H}$ is lin. dense and $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$.

(⊗ is the *minimal tensor product* of C*-algebras, ,

M(–) is the *multiplier C*-algebra*, a max. unitisation.)

Example Let G be a l.c. Hd. group. Then $C_0(G)$ is a C^* -bialgebra with $\Delta: C_0(G) \to M(C_0(G) \otimes C_0(G)) \cong C_b(G \times G)$ given by $(\Delta(f))(g,g') = f(gg')$.

Partial coactions of C*-bialgebras

Definition A *partial coaction* of a C^{*}-bialgebra (\mathcal{H}, Δ) on a C^{*}-algebra \mathscr{A} is a *-homomorphism $\delta: \mathscr{A} \to M(\mathscr{A} \otimes \mathscr{H})$ such that

- **1.** $\delta(\mathscr{A})(1 \otimes \mathscr{H}) \subseteq \mathscr{A} \otimes \mathscr{H},$
- **2.** δ extends to a strict *-homomorphism from $M(\mathscr{A})$ to $M(\mathscr{A} \otimes \mathscr{H})$,
- **3.** $(\delta \otimes id)(\delta(a)) = (\delta(1) \otimes 1)(id \otimes \Delta)(\delta(a))$ for all $a \in A$.

It is a *coaction* if the extension in **2.** is unital.

Example Given a coaction on a C^* -algebra \mathscr{B} and an ideal $\mathscr{A} \subseteq \mathscr{B}$, the coaction restricts to a partial coaction on \mathscr{A} .

Theorem (Kraken, Quast, T.)

If (\mathscr{H}, Δ) is a C^* -quantum group and \mathscr{H} is nuclear, then every regular partial coaction of (\mathscr{H}, Δ) is the restriction of a coaction which can be chosen to be minimal and then is unique up to iso.

Partial coactions of discrete quantum groups

We now fix a discrete quantum group, which is a C^* -bialgebra (\mathcal{H}, Δ) subject to certain conditions. Suggestively, one writes \mathcal{H} as $C_0(\mathbb{G})$, but the "quantum space \mathbb{G} " is just virtual. Then

- $\mathscr{H} = C_0(\mathbb{G})$ is a c_0 -sum of matrix algebras: $C_0(\mathbb{G}) \cong \overline{\bigoplus}_{\alpha} M_{n_{\alpha}}(\mathbb{C})$
- $\bigoplus_{\alpha}^{alg} M_n(\mathbb{C}) =: \mathcal{O}(\mathbb{G})$ is a multiplier Hopf algebra
- $\bigoplus_{\alpha}^{alg} Hom(M_n(\mathbb{C}), \mathbb{C}) =: \mathbb{CG}$ is a Hopf algebra
- $C_0(\mathbb{G})$ has a *counit*, a *-homomorphism $\varepsilon: C_0(\mathbb{G}) \to \mathbb{C}$.

Proposition Let δ be a partial coaction of $(C_0(\mathbb{G}), \Delta)$ on a C^* -algebra \mathscr{A} s.t. $(\mathrm{id} \otimes \varepsilon)\delta = \mathrm{id}$. Then we obtain a partial action of $\mathbb{C}\mathbb{G}$ on \mathscr{A} via $h \cdot a := (\mathrm{id} \otimes h)(\delta(a)) \quad (a \in \mathscr{A}, h \in \mathbb{C}\mathbb{G}).$

Proposition In case of a classical discrete group *G*, counital partial coactions of $(C_0(G), \Delta)$ correspond to disconn. partial actions of *G*.

The Bernoulli shift of a discrete quantum group I

We want a quantum analogue of the space $\mathcal{P}(G)$. The latter comes with a "tautological subset" of $\mathcal{P}(G) \times G$ which corresponds to a projection in $C_b(\mathcal{P}(G) \times G) \cong M(C(\mathcal{P}(G)) \otimes C_0(G))$.

Write $C_0(\mathbb{G}) \cong \overline{\bigoplus}_{\alpha} M_{n_{\alpha}}(\mathbb{C})$ and choose matrix units $e_{ij}^{\alpha} \in C_0(\mathbb{G})$.

Notation Let *%* be the universal unital C*-algebra with generators

$$p_{i,j}^{\alpha}$$
 for each α and $1 \le i, j \le n_{\alpha}$ (1)

and relations such that

$$p := \sum_{\alpha,i,j} p_{ij}^{\alpha} \otimes e_{ij}^{\alpha} \in \mathcal{M}(\mathscr{B} \otimes C_0(\mathbb{G})) \text{ is a projection}$$
(2)

 $[p \otimes 1, (\mathrm{id} \otimes \hat{\Delta})(p)] = 0 \text{ in } M(\mathscr{B} \otimes C_0(\mathbb{G}) \otimes C_0(\mathbb{G})).$ (3)

Example Suppose $\mathbb{G} = G$ is a classical discrete group. Then (1) $\Rightarrow \mathscr{B}$ is generated by 1 and elements p^g for each $g \in G$, (2) \Rightarrow each p^g is a projection, (3) \Rightarrow all p^g commute $\Rightarrow \mathscr{B} \cong C(\mathcal{P}(G))$.

The Bernoulli shift of a discrete quantum group II

Theorem (T.)

There exists a unique coaction $\delta: \mathscr{B} \to M(\mathscr{B} \otimes C_0(\mathbb{G}))$ such that

 $(\delta \otimes id)(p) = (id \otimes \hat{\Delta})(p)$

and \mathscr{B} is a braided-commutative Yetter-Drinfeld C^{*}-algebra over \mathbb{G} .

Lemma

- **1.** The projection $p_{\varepsilon} := (\mathrm{id} \otimes \varepsilon)(p) \in \mathcal{M}(\mathscr{B} \otimes \mathbb{C}) \cong \mathscr{B}$ is central (we apply $\mathrm{id} \otimes \varepsilon \otimes \mathrm{id}$ to $[p \otimes 1, (\mathrm{id} \otimes \Delta)(p)] = 0$ and get $[(p_{\varepsilon} \otimes 1), p] = 0$).
- **2.** $\mathscr{B}_{\varepsilon} := p_{\varepsilon} \cdot \mathscr{B} \subseteq \mathscr{B}$ is a unital ideal, that is, a direct summand.
- **3.** δ restricts to a partial coaction δ_{ε} on $\mathscr{B}_{\varepsilon}$ s.t. $b \mapsto (p_{\varepsilon} \otimes 1)\delta(b)$.

Definition We call $(\mathscr{B}_{\varepsilon}, \delta_{\varepsilon})$ the *partial Bernoulli shift* of \mathbb{G} .

Note All these constructions descend to the algebraic level, giving a braided-commutative YD- algebra $B \subseteq \mathscr{B}$ over the Hopf algebra $\mathbb{C}G$.