FROM TANNAKA-KREIN DUALITY TO QUANTUM GROUPOIDS

Thomas Timmermann March 15, 2017 Westfälische Wilhelms-Universität Münster

CLASSICAL TANNAKA-KREIN DUALITY

Let *G* be a compact group. The category of finite-dimensional unitary representations of *G* has the following properties:

- It is semi-simple. (every representation is a direct sum of irreducible ones)
 It has a tensor product. (given G ℃ H, K, get G ℃ H ⊗ K, where g(ξ ⊗ η) = gξ ⊗ gη)
 This product is symmetric. (for H, K as above, the flip H ⊗ K → K ⊗ H intertwines G)
- 4. For each representation, there exists a *dual* one. (given $G \circlearrowright H$, get $G \circlearrowright \overline{H}$, where $g\overline{\xi} := \overline{g\xi}$)
- 5. It has a *tensor functor to* the category of *Hilbert spaces*.

Theorem (Tannaka-Krein) There exists a duality

(compact groups) $\stackrel{\sim}{\longleftrightarrow}$ (categories satisfying 1.–5.)

Let \mathcal{C} and $F: \mathcal{C} \to Hilb$ satisfy 1.–5. and assume $|\operatorname{Irr}(\mathcal{C})| < \infty$.

1.~~
$$\mathcal{C} \sim {}_{A}Mod$$
, where $A = \bigoplus_{[X] \in Irr(\mathcal{C})} End(FX)$

- 2.,5.~ use $_{A}A \otimes _{A}A \in _{A}Mod$ to define $\Delta : A \rightarrow A \otimes A$, $a \mapsto a \cdot (1_{A} \otimes 1_{A})$
- 2.,5.~ use tensor unit $1 \in {}_A Mod$ and $F1 = \mathbb{C}$ to define $\varepsilon : A \to \mathbb{C}$, $a \mapsto a \cdot 1_{\mathbb{C}}$
 - 3.~-> Δ is cocommutative
 - 4.~→ A has the structure of a Hopf algebra

Finally, $_AMod \cong Rep(G)$, where $G := \{x \in A \text{ invertible} : \Delta(x) = x \otimes x\}$.

COMPACT QUANTUM GROUPS

Definition (Woronowicz)

- A compact quantum group is a unital C^* -algebra A ¹ with a *-homomomorphism $\Delta : A \rightarrow A \otimes A$ such that
 - 1. $A \xrightarrow{\Delta} A \otimes A$ (coassociativity) $A \downarrow & \bigcirc & \downarrow id \otimes \Delta$ $A \otimes A \xrightarrow{\Delta \otimes id} A \otimes A \otimes A$
 - 2. $\Delta(A)(1 \otimes A)$ and $\Delta(A)(A \otimes 1)$ are dense in $A \otimes A$ (cancellation)
- A f.d. unitary representation of (A, Δ) is a unitary $u \in M_n(A)$ satisfying $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$.

2

¹A C^{*}-algebra is a unital Banach *-algebra satisfying $||a^*a|| = ||a||^2$ for all a.

$$(Compact groups) \longleftrightarrow (Compact quantum groups (A, \Delta))$$
with A commutative)
$$G \text{ compact group} \rightarrow A := C(G) \text{ with } \Delta(f)(x, y) = f(xy),$$
where $C(G) \otimes C(G) \cong C(G \times G)$

$$G := \text{Hom}(A, \mathbb{C}) \text{ with } \leftarrow (A, \Delta)$$

$$\chi \cdot \chi' := (\chi \otimes \chi') \circ \Delta$$

$$A \text{ representation is a unitary } u \in M_n(C(G)) \cong C(G; M_n(\mathbb{C})) \text{ s.t.}$$

$$u_{ij}(xy) = (\Delta(u_{ij}))(x, y) = \sum_k (u_{ik} \otimes u_{kj})(x, y) = \sum_k u_{ik}(x)u_{kj}(y),$$

that is, u(xy) = u(x)u(y) for all $x, y \in G$.

EXAMPLE SU_Q(2) AND WORONOWICZ-T.K. DUALITY

The key example is $SU_q(2)$, where $q \in (0, 1]$:

•
$$C^*\left(\alpha,\gamma: \text{ the matrix } u:=\begin{pmatrix} \alpha & -q\gamma^*\\ \gamma & \alpha^* \end{pmatrix} \text{ is unitary} \right)$$

• $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$, i.e., u is a representation

Representations $Irr(Rep(SU_q(2))) = \{u_0, u_1, u_2, ...\}$ with

- 1. dim $u_k = k + 1$
- 2. $u_k \otimes u_l \cong u_{|k-l|} \oplus u_{|k-l|+2} \oplus \cdots \oplus u_{k+l}$

Theorem (Woronowicz) There exists a duality

(compact quantum groups) \longleftrightarrow

(rigid semi-simple tensor categories with a fibre functor to *Hilb*) 4

Definition A *braiding* on a monoidal category C is a family of natural isomorphisms $c_{X,Y} \colon X \otimes Y \to Y \otimes X$ s.t. for all X, Y, Z,

1.
$$c_{X,Y\otimes Z}$$
 is $X \otimes Y \otimes Z \xrightarrow{c_{X,Y}\otimes id} Y \otimes X \otimes Z \xrightarrow{id \otimes c_{X,Z}} Y \otimes Z \otimes X$,

2.
$$c_{X \otimes Y,Z}$$
 is $X \otimes Y \otimes Z \xrightarrow{id \otimes c_{Y,Z}} X \otimes Z \otimes Y \xrightarrow{c_{X,Z} \otimes id} Z \otimes X \otimes Y$.

It is called symmetric if $c_{Y,X} = c_{X,Y}^{-1}$ for all $X, Y \in C$.

Consequence Let $X \in C$ and $c := c_{X,X}$. Then

$$(c \otimes id) \underbrace{(id \otimes c)(c \otimes id)}_{=c_{X,X \otimes X}} = \underbrace{(id \otimes c)(c \otimes id)}_{=c_{X,X \otimes X}} (id \otimes c).$$

 \Rightarrow get $B_n \rightarrow Aut(X^{\otimes n})$, where $B_n =$ braid group on n strands

Proposition $Rep(SU_q(2))$ has a braiding c.

QUANTUM GROUPOIDS

- Consider an action of a finite group Γ on a space X.
- The Hilbert bundles on X form a tensor category *Hilb*^X.
- The Γ-equivariant f.d. Hilbert bundles on X form a symmetric monoidal rigid C*-tensor category *Rep*(Γ ° X).
- Forgetting Γ , we get a functor $Rep(\Gamma \circlearrowright X) \to Hilb^X$.
- TK-duality: can reconstruct **Γ** and its action from this functor.

Theorem (De Commer, T.) There exists a duality between

- 1. semi-simple rigid partial C*-tensor categories C with local tensor units e_{α} ($\alpha \in I$) and a faithful functor $F: C \to {}_{I}Hilb_{I}$ satisfying ${}_{i}F(X \otimes Y)_{j} \cong \bigoplus_{i} F(X)_{k} \otimes {}_{k}F(X)_{j}$
- 2. partial compact quantum groups over I

6