Quantum Transformation Groupoids in the Setting of Operator Algebras

 (work in progress)Thomas Timmermann
Westflische Wilhelms-Universität Münster

22th of September 2011
Operator Algebras and Quantum Groups, Warsaw on the occasion of the 70th birthday of S. L. Woronowicz

Recall:

- action $X \circlearrowleft \Gamma \rightsquigarrow$ transformation groupoid $X \rtimes \Gamma$
- action $C_{0}(X) \circlearrowleft \Gamma \rightsquigarrow C_{0}(X) \rtimes \Gamma=C^{*}(X \rtimes \Gamma)$

Question:

- Given an action $B \circlearrowleft \Gamma$, is $B \rtimes \Gamma$ still a quantum groupoid
- if B is a noncommutative C^{*}-algebra or W^{*}-algebra?
- if Γ is a locally compact quantum group?
- if $B \circlearrowleft \Gamma$ is a deformation of a classical action?

Plan of the Talk and some Relation to the Audience

What we shall do．．．
．．．and some buzzwords related to conference participants：
1．Warming up in the algebraic setting
－Quantum transformation groupoid
－Multiplier Hopf＊－algebroids

2．Passage to the setting of operator algebras
－Measured quantum groupoids
－Yetter－Drinfeld algebras
（Nest－Voigt）
－Crossed product
－Example：$S U_{q}(2) \ltimes S_{q}^{2}$

Tentative Constituents of a Quantum Transformation Groupoid

Which structure should be there？What do we have for $B \circlearrowleft \Gamma$ ？
－a base algebra B and a total algebra A

$$
A=B \rtimes \Gamma
$$

－commuting range and source maps $r: B \rightarrow A$ and $s: B^{o p} \rightarrow A$ $r: b \mapsto b \rtimes 1 ; s: b^{o p} \mapsto b \rtimes 1$ not possible unless B commutes
－a comultiplication Δ from A to a fiber product $A_{s} *_{r} A$ should correspond to the dual coaction on $A=B \rtimes \Gamma$
－an antipode $S:(A, \Delta) \rightarrow\left(A^{o p}, \Delta^{c o}\right)$
$\operatorname{expect} S(b \rtimes 1)=S(r(b))=s\left(b^{\circ p}\right)$ and $S(1 \rtimes f)=1 \rtimes S_{\Gamma}(f)$
－weight μ on B
should be（quasi－）invariant with respect to $B \circlearrowleft \Gamma$
－Haar weights $\Phi: A \rightarrow r(B) \equiv B$ and $\Psi: A \rightarrow s\left(B^{o p}\right) \equiv B^{o p}$ expect $\Phi(b \rtimes f)=b \phi_{\Gamma}(f)$ ；for ψ need to s or S

"Quantum" necessitates a Dual Pair of Transformations

Assume $B \circlearrowleft \Gamma$, where B is an algebra an Γ a (quantum) group

Thought experiment:

- If $B \rtimes \Gamma$ is a quantum groupoid, it should have a dual $\widehat{B \rtimes \Gamma}$
- In the special case where $B=C_{0}(X)$ and Γ is a group,

$$
\begin{aligned}
C_{0} \widehat{(X) \rtimes} \Gamma & \left.=C^{*} \widehat{(X \rtimes} \Gamma\right) \\
& =C_{0}(X \rtimes \Gamma)=C_{0}(X) \otimes C_{0}(\Gamma)
\end{aligned}
$$

- Expect $\widehat{B \rtimes \Gamma}=B \rtimes \widehat{\Gamma}$ for a suitable action $B \circlearrowleft \widehat{\Gamma}$

Conclusion:

- Assume a second action $B \circlearrowleft \hat{\Gamma}$, compatible with $B \circlearrowleft \Gamma$

Compatibility Assumptions on the Pair of Transformations

Assume $B \circlearrowleft \Gamma$ and $B \circlearrowleft \hat{\Gamma}$

Thought experiment:

- Assume Γ is a discrete group
- Then for all $b, c \in B$,

$$
\begin{aligned}
{\left[r(b), s\left(c^{o p}\right)\right] } & =\left[b \rtimes 1, \sum_{\gamma} c_{\gamma} \rtimes \gamma\right] \\
& =\sum_{\gamma} b c_{\gamma} \rtimes \gamma-\sum_{\gamma} c_{\gamma}(\gamma \triangleright b) \rtimes \gamma
\end{aligned}
$$

should be 0

- ... and $s\left(b^{o p}\right) s\left(c^{o p}\right)=s\left((c b)^{o p}\right) \ldots .$.

Conclusion:

- Assume B is a braided-commutative Yetter-Drinfeld algebra

The Algebraic Version of Quantum Transformation Groupoids

Theorem（Lu＇96；Brzeziński，Militaru＇01）

Assume

－H is a Hopf algebra
－B is a braided－commutative Yetter－Drinfeld algebra over H ．
Then the following ingredients form a Hopf algebroid：
－$A=B \rtimes H \quad$（the crossed product for the action）
－$r: B \rightarrow A, b \mapsto b \rtimes 1_{H}$
－$s: B^{O P} \rightarrow A, b^{O P} \mapsto \sum b_{(0)} \rtimes b_{(1)}\left(b \mapsto \sum b_{(0)} \otimes b_{(1)}\right.$ the coaction）
－$\Delta: A \rightarrow \underset{B_{r}}{A_{B_{r}}} A, \quad b \rtimes h \mapsto \sum\left(b \rtimes h_{(1)}\right) \otimes\left(1 \rtimes h_{(2)}\right)$ ．

Passage to Operator Algebras

Assumptions

－$\left(L^{\infty} \mathbb{G}, \Delta\right)$ and $(L \mathbb{G}, \hat{\Delta})$ are dual I．c．quantum groups with
－right Haar weights $\phi, \hat{\phi}$ and GNS－space \mathbb{H}
－multiplicative unitary $\mathbb{W} \in \mathcal{L}(\mathbb{H} \otimes \mathbb{H})$ of $\left(L^{\infty} \mathbb{G}, \Delta\right)$
－B is a W^{*}－algebra with right coactions α, λ of $L^{\infty} \mathbb{G}, L \mathbb{G}$ s．t．
－Yetter－Drinfeld condition，Nest－Voigt＇09：

－braided commutativity：

$$
\left[\alpha(B), \operatorname{Ad}_{U \otimes 1}(\lambda(B))\right]=0 \text { in } \mathcal{L}(\mathbb{H}) \bar{\otimes} B, \text { where } U=J_{\phi} J_{\hat{\phi}}
$$

－μ is a weight on B which is invariant for $\alpha, \lambda\left(\right.$ w．r．t．$\delta^{-1}, \hat{\delta}^{-1}$ ）

The Hopf-von Neumann Bimodule

To obtain a Hopf-von Neumann bimodule, define

- $A:=L \mathbb{G} \ltimes_{\alpha} B=((L \mathbb{G} \otimes 1) \alpha(B))^{\prime \prime} \subseteq \mathcal{L}(\mathbb{H}) \bar{\otimes} B \hookrightarrow \mathcal{L}\left(\mathbb{H} \otimes H_{\mu}\right)$
- the range map $r: B \rightarrow A, b \mapsto \alpha(b)$
- a source map s: $B^{o p} \rightarrow \mathcal{L}\left(\mathbb{H} \otimes H_{\mu}\right), b^{o p} \mapsto \operatorname{Ad}_{\left(J_{\phi} \otimes J_{\mu}\right)}\left(\lambda(b)^{*}\right)$

Proposition

1. $s\left(B^{o p}\right) \subseteq A$
2. \exists specific unitary $\equiv: \mathbb{H} \otimes H_{\mu} \otimes \mathbb{H} \rightarrow\left(\mathbb{H} \otimes H_{\mu}\right)_{s} \otimes_{\mu} r\left(\mathbb{H} \otimes H_{\mu}\right)$
3. $\Delta_{A}: A \xrightarrow{\hat{\alpha}} L \mathbb{G} \bar{\otimes} A \hookrightarrow \mathcal{L}\left(\mathbb{H} \otimes \mathbb{H} \otimes H_{\mu}\right) \xrightarrow{\sigma_{(321)}} \mathcal{L}\left(\mathbb{H} \otimes H_{\mu} \otimes \mathbb{H}\right)-\cdots$ $\cdots \xrightarrow{\text { Ad }} \mathcal{L}\left(\left(\mathbb{H} \otimes H_{\mu}\right)_{s} \otimes_{\mu} r\left(\mathbb{H} \otimes H_{\mu}\right)\right)$ satisfies $\Delta_{A}(A) \subseteq A_{s} *{ }_{r} A$ and $\left(\Delta_{A} * \mathrm{id}\right) \circ \Delta_{A}=\left(\mathrm{id} * \Delta_{A}\right) \circ \Delta_{A}$ whence $\left(B, A, r, s, \mu, \Delta_{A}\right)$ is a Hopf W^{*}-bimodule (Vallin '96).

Guessing the Unitary Antipode

The proof uses the unitary implementations of the coactions α, λ : $X, \hat{X} \in \mathcal{U}\left(\mathbb{H} \otimes H_{\mu}\right)$ s.t. $\alpha=\operatorname{Ad}_{X}(1 \otimes-)$ and $\lambda=\operatorname{Ad}_{\hat{X}}(1 \otimes-)$

How to proceed?

- a left Haar weight on A is easy to guess, but not a right one
- try to guess an anti-unitary I_{A} on $\mathbb{H} \otimes H_{\mu}$ such that $I_{A} r(b)^{*} I_{A}=s\left(b^{\circ p}\right), I_{A}\left(f^{*} \otimes 1\right) I_{A}=\hat{R}(f) \otimes 1$ for $f \in L \mathbb{G}$

Proposition

1. $I_{A}:=\operatorname{Ad}\left(\hat{X}^{*}\left(J_{\phi} \otimes J_{\mu}\right)\right)$ satisfies $\left({ }^{*}\right)$, whence $I_{A} A I_{A}=A$.
2. $R_{A}: A \rightarrow A, a \mapsto I_{A} a^{*} I_{A}$, satisfies $R_{A}(r(b))=R_{A}\left(s\left(b^{o p}\right)\right)$ for all $b \in B$ and $\Delta_{A} \circ R_{A}=\left(R_{A} * R_{A}\right) \circ A d_{\Sigma} \circ \Delta_{A}$

The Haar Weights and the Measured Quantum Groupoid

There exists an expectation $\Phi_{A}: A \xrightarrow{\hat{\alpha}} L \mathbb{G} \bar{\otimes} A \xrightarrow{\hat{\phi} \bar{\otimes} \mathrm{id} \bar{\otimes} \mathrm{id}} \alpha(B) \equiv B$ ； if $\hat{\phi}$ is bounded，$\Phi_{A}((f \otimes 1) \alpha(b))=\hat{\phi}(f) \alpha(b)$ for $f \in L \mathbb{G}, b \in B$ ．

Claims

1．Φ_{A} is left－invariant with respect to Δ_{A}

2．$\Psi_{A}:=R_{A} \circ \Phi_{A} \circ R_{A}$ is right－invariant with respect to Δ_{A} （immediate from

3．$\left(B, A, r, s, \Delta_{A}, \mu, \Phi_{A}, \Psi_{A}\right)$ is a measured quantum groupoid （immediate from 1．and 2．）

Application to $\mathrm{SU}_{\mathrm{q}}(2) \ltimes \mathrm{S}_{\mathrm{q}}^{2}$

Example

Let $\mathbb{G}=\mathrm{SU}_{q}(2)$（Woronowicz）and let S_{q}^{2} be the Podleś sphere．
Then：
－$C\left(\mathrm{~S}_{q}^{2}\right)$ is a braided－commutative \mathbb{G}－Yetter－Drinfeld C^{*}－algebra （for the natural coaction of $C(\mathbb{G})$ and the adjoint coaction of $C^{*}(\mathbb{G})$ ）
－$L\left(\mathrm{SU}_{q}(2)\right) \ltimes L^{\infty}\left(\mathrm{S}_{q}^{2}\right)$ is a measured quantum groupoid and $C^{*}\left(\mathrm{SU}_{q}(2)\right) \ltimes_{r} C\left(\mathrm{~S}_{q}^{2}\right)$ is a＂reduced C^{*}－quantum groupoid＂

Recall：G compact，$K, N \triangleleft G \Rightarrow(K \backslash G) \rtimes N \sim_{M} K \ltimes(G / N)$ ．
Question：Is $L(\mathbb{G}) \ltimes L^{\infty}(\mathbb{G} / \mathbb{T}) \sim_{M} L^{\infty}(\mathbb{G} / \mathbb{G}) \rtimes L(\mathbb{T})=L(\mathbb{T})$ ？

