Übung zur Analysis 3 Blatt 4

Abgabe bis Do, 19.11., 12 Uhr

Aufgabe 1 zur Bearbeitung in der Übung Aufgaben 2-5 zur selbständigen Bearbeitung

- **Aufgabe 1.** (a) Sei $A \subseteq \mathbb{R}^d$ eine messbare Menge. Zeigen Sie, dass dann eine Folge offener Mengen $U_n \subseteq \mathbb{R}^d$ existiert mit $\mu(A\Delta B) = 0$ für $B := \bigcap_n U_n$.
 - (b) Folgern Sie, dass für jede Lebesgue-messbare Menge $A \subseteq \mathbb{R}^d$ eine Borel-messbare Teilmenge $B \subseteq \mathbb{R}^d$ mit $\mu(A\Delta B) = 0$ existiert.
 - (c) Bezeichne $\mathcal{N} \subset \mathcal{P}(\mathbb{R}^d)$ die Menge aller Lebesgue-Nullmengen und $\mathcal{U} \subset \mathcal{P}(\mathbb{R}^d)$ die Menge aller offenen Teilmengen. Zeigen Sie, dass $\mathcal{B}(\mathcal{U} \cup \mathcal{N}) = \mathcal{L}$.

Aufgabe 2. Zeigen Sie, dass jede monotone Funktion $f: \mathbb{R} \to \mathbb{R}$ Lebesgue-Borelmessbar ist.

Aufgabe 3. Sei $U \subseteq \mathbb{R}^d$ offen, $N \subseteq U$ eine Nullmenge und $f: U \to \mathbb{R}$ eine Funktion, die an allen Punkten $x \in U \setminus N$ stetig ist. Zeigen Sie, dass dann f messbar ist.

Aufgabe 4. Sei $(f_n)_n$ eine Folge messbarer Funktionen auf \mathbb{R}^d . Zeigen Sie, dass dann die Menge

$$A := \{x \in \mathbb{R}^d : \text{ die Folge } (f_n(x))_n \text{ konvergiert in } [-\infty, \infty] \}$$

messbar ist.

(*Hinweis:* Betrachten Sie $B_{k,N} := \{x \in \mathbb{R}^d : |f(n) - f(m)| \le 1/k \text{ für alle } n, m \ge N\}.$)

Zusatzaufgabe 5. (Die Cantor-Volterra-Funktion) Wir betrachten den Raum

$$X := \{ f \in C([0,1]) : f \text{ ist monoton mit } f(0) = 0 \text{ und } f(1) = 1 \}$$

mit der von der Supremumsnorm induzierten Metrik

$$d(f,g) := \|f - g\|_{\infty} = \sup_{t \in [0,1]} |f(t) - g(t)|.$$

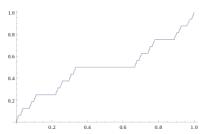
Für jedes $f \in X$ definieren wir eine Funktion $Tf: [0,1] \to \mathbb{R}$ durch

$$(Tf)(t) := \begin{cases} \frac{1}{2}f(3t), & 0 \le t \le \frac{1}{3}, \\ \frac{1}{2}, & \frac{1}{3} \le t \le \frac{2}{3}, \\ \frac{1}{2}(1 + f(3t - 2)), & \frac{2}{3} \le t \le 1. \end{cases}$$

Bezeichne $C \subseteq [0,1]$ die Cantormenge von Blatt 1 und sei $U := [0,1] \setminus C$. Zeigen Sie:

- (a) Für jedes $f \in X$ ist Tf wohldefiniert und ein Element von X, d.h. T bildet X in sich selbst ab.
- (b) Für alle $f, g \in X$ gilt $d(Tf, Tg) \leq \frac{1}{2}d(f, g)$.
- (c) Es gibt genau ein $f_C \in X$ mit $Tf_C = f_C$. (Hinweis: Banachscher Fixpunktsatz.)
- (d) U ist die Vereinigung einer Folge disjunkter offener Intervalle, auf denen f jeweils konstant ist.

(e) Es gilt $\mu(f_C(U))=0$ und $\mu(f_C(C))=1$ (obwohl $\mu(U)=1$ und $\mu(C)=0$ nach Blatt 1).



 $Bild\ der\ Cantor\text{-}Volterra\text{-}Funktion\ f_C\ aus\ Wikipedia$